Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/ia64/kvm/kvm-ia64.c
10817 views
1
/*
2
* kvm_ia64.c: Basic KVM suppport On Itanium series processors
3
*
4
*
5
* Copyright (C) 2007, Intel Corporation.
6
* Xiantao Zhang ([email protected])
7
*
8
* This program is free software; you can redistribute it and/or modify it
9
* under the terms and conditions of the GNU General Public License,
10
* version 2, as published by the Free Software Foundation.
11
*
12
* This program is distributed in the hope it will be useful, but WITHOUT
13
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15
* more details.
16
*
17
* You should have received a copy of the GNU General Public License along with
18
* this program; if not, write to the Free Software Foundation, Inc., 59 Temple
19
* Place - Suite 330, Boston, MA 02111-1307 USA.
20
*
21
*/
22
23
#include <linux/module.h>
24
#include <linux/errno.h>
25
#include <linux/percpu.h>
26
#include <linux/fs.h>
27
#include <linux/slab.h>
28
#include <linux/smp.h>
29
#include <linux/kvm_host.h>
30
#include <linux/kvm.h>
31
#include <linux/bitops.h>
32
#include <linux/hrtimer.h>
33
#include <linux/uaccess.h>
34
#include <linux/iommu.h>
35
#include <linux/intel-iommu.h>
36
37
#include <asm/pgtable.h>
38
#include <asm/gcc_intrin.h>
39
#include <asm/pal.h>
40
#include <asm/cacheflush.h>
41
#include <asm/div64.h>
42
#include <asm/tlb.h>
43
#include <asm/elf.h>
44
#include <asm/sn/addrs.h>
45
#include <asm/sn/clksupport.h>
46
#include <asm/sn/shub_mmr.h>
47
48
#include "misc.h"
49
#include "vti.h"
50
#include "iodev.h"
51
#include "ioapic.h"
52
#include "lapic.h"
53
#include "irq.h"
54
55
static unsigned long kvm_vmm_base;
56
static unsigned long kvm_vsa_base;
57
static unsigned long kvm_vm_buffer;
58
static unsigned long kvm_vm_buffer_size;
59
unsigned long kvm_vmm_gp;
60
61
static long vp_env_info;
62
63
static struct kvm_vmm_info *kvm_vmm_info;
64
65
static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
66
67
struct kvm_stats_debugfs_item debugfs_entries[] = {
68
{ NULL }
69
};
70
71
static unsigned long kvm_get_itc(struct kvm_vcpu *vcpu)
72
{
73
#if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
74
if (vcpu->kvm->arch.is_sn2)
75
return rtc_time();
76
else
77
#endif
78
return ia64_getreg(_IA64_REG_AR_ITC);
79
}
80
81
static void kvm_flush_icache(unsigned long start, unsigned long len)
82
{
83
int l;
84
85
for (l = 0; l < (len + 32); l += 32)
86
ia64_fc((void *)(start + l));
87
88
ia64_sync_i();
89
ia64_srlz_i();
90
}
91
92
static void kvm_flush_tlb_all(void)
93
{
94
unsigned long i, j, count0, count1, stride0, stride1, addr;
95
long flags;
96
97
addr = local_cpu_data->ptce_base;
98
count0 = local_cpu_data->ptce_count[0];
99
count1 = local_cpu_data->ptce_count[1];
100
stride0 = local_cpu_data->ptce_stride[0];
101
stride1 = local_cpu_data->ptce_stride[1];
102
103
local_irq_save(flags);
104
for (i = 0; i < count0; ++i) {
105
for (j = 0; j < count1; ++j) {
106
ia64_ptce(addr);
107
addr += stride1;
108
}
109
addr += stride0;
110
}
111
local_irq_restore(flags);
112
ia64_srlz_i(); /* srlz.i implies srlz.d */
113
}
114
115
long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
116
{
117
struct ia64_pal_retval iprv;
118
119
PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
120
(u64)opt_handler);
121
122
return iprv.status;
123
}
124
125
static DEFINE_SPINLOCK(vp_lock);
126
127
int kvm_arch_hardware_enable(void *garbage)
128
{
129
long status;
130
long tmp_base;
131
unsigned long pte;
132
unsigned long saved_psr;
133
int slot;
134
135
pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
136
local_irq_save(saved_psr);
137
slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
138
local_irq_restore(saved_psr);
139
if (slot < 0)
140
return -EINVAL;
141
142
spin_lock(&vp_lock);
143
status = ia64_pal_vp_init_env(kvm_vsa_base ?
144
VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
145
__pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
146
if (status != 0) {
147
spin_unlock(&vp_lock);
148
printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
149
return -EINVAL;
150
}
151
152
if (!kvm_vsa_base) {
153
kvm_vsa_base = tmp_base;
154
printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
155
}
156
spin_unlock(&vp_lock);
157
ia64_ptr_entry(0x3, slot);
158
159
return 0;
160
}
161
162
void kvm_arch_hardware_disable(void *garbage)
163
{
164
165
long status;
166
int slot;
167
unsigned long pte;
168
unsigned long saved_psr;
169
unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
170
171
pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
172
PAGE_KERNEL));
173
174
local_irq_save(saved_psr);
175
slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
176
local_irq_restore(saved_psr);
177
if (slot < 0)
178
return;
179
180
status = ia64_pal_vp_exit_env(host_iva);
181
if (status)
182
printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
183
status);
184
ia64_ptr_entry(0x3, slot);
185
}
186
187
void kvm_arch_check_processor_compat(void *rtn)
188
{
189
*(int *)rtn = 0;
190
}
191
192
int kvm_dev_ioctl_check_extension(long ext)
193
{
194
195
int r;
196
197
switch (ext) {
198
case KVM_CAP_IRQCHIP:
199
case KVM_CAP_MP_STATE:
200
case KVM_CAP_IRQ_INJECT_STATUS:
201
r = 1;
202
break;
203
case KVM_CAP_COALESCED_MMIO:
204
r = KVM_COALESCED_MMIO_PAGE_OFFSET;
205
break;
206
case KVM_CAP_IOMMU:
207
r = iommu_found();
208
break;
209
default:
210
r = 0;
211
}
212
return r;
213
214
}
215
216
static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
217
{
218
kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
219
kvm_run->hw.hardware_exit_reason = 1;
220
return 0;
221
}
222
223
static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
224
{
225
struct kvm_mmio_req *p;
226
struct kvm_io_device *mmio_dev;
227
int r;
228
229
p = kvm_get_vcpu_ioreq(vcpu);
230
231
if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
232
goto mmio;
233
vcpu->mmio_needed = 1;
234
vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
235
vcpu->mmio_size = kvm_run->mmio.len = p->size;
236
vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
237
238
if (vcpu->mmio_is_write)
239
memcpy(vcpu->mmio_data, &p->data, p->size);
240
memcpy(kvm_run->mmio.data, &p->data, p->size);
241
kvm_run->exit_reason = KVM_EXIT_MMIO;
242
return 0;
243
mmio:
244
if (p->dir)
245
r = kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, p->addr,
246
p->size, &p->data);
247
else
248
r = kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, p->addr,
249
p->size, &p->data);
250
if (r)
251
printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
252
p->state = STATE_IORESP_READY;
253
254
return 1;
255
}
256
257
static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
258
{
259
struct exit_ctl_data *p;
260
261
p = kvm_get_exit_data(vcpu);
262
263
if (p->exit_reason == EXIT_REASON_PAL_CALL)
264
return kvm_pal_emul(vcpu, kvm_run);
265
else {
266
kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
267
kvm_run->hw.hardware_exit_reason = 2;
268
return 0;
269
}
270
}
271
272
static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
273
{
274
struct exit_ctl_data *p;
275
276
p = kvm_get_exit_data(vcpu);
277
278
if (p->exit_reason == EXIT_REASON_SAL_CALL) {
279
kvm_sal_emul(vcpu);
280
return 1;
281
} else {
282
kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
283
kvm_run->hw.hardware_exit_reason = 3;
284
return 0;
285
}
286
287
}
288
289
static int __apic_accept_irq(struct kvm_vcpu *vcpu, uint64_t vector)
290
{
291
struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
292
293
if (!test_and_set_bit(vector, &vpd->irr[0])) {
294
vcpu->arch.irq_new_pending = 1;
295
kvm_vcpu_kick(vcpu);
296
return 1;
297
}
298
return 0;
299
}
300
301
/*
302
* offset: address offset to IPI space.
303
* value: deliver value.
304
*/
305
static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
306
uint64_t vector)
307
{
308
switch (dm) {
309
case SAPIC_FIXED:
310
break;
311
case SAPIC_NMI:
312
vector = 2;
313
break;
314
case SAPIC_EXTINT:
315
vector = 0;
316
break;
317
case SAPIC_INIT:
318
case SAPIC_PMI:
319
default:
320
printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
321
return;
322
}
323
__apic_accept_irq(vcpu, vector);
324
}
325
326
static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
327
unsigned long eid)
328
{
329
union ia64_lid lid;
330
int i;
331
struct kvm_vcpu *vcpu;
332
333
kvm_for_each_vcpu(i, vcpu, kvm) {
334
lid.val = VCPU_LID(vcpu);
335
if (lid.id == id && lid.eid == eid)
336
return vcpu;
337
}
338
339
return NULL;
340
}
341
342
static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
343
{
344
struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
345
struct kvm_vcpu *target_vcpu;
346
struct kvm_pt_regs *regs;
347
union ia64_ipi_a addr = p->u.ipi_data.addr;
348
union ia64_ipi_d data = p->u.ipi_data.data;
349
350
target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
351
if (!target_vcpu)
352
return handle_vm_error(vcpu, kvm_run);
353
354
if (!target_vcpu->arch.launched) {
355
regs = vcpu_regs(target_vcpu);
356
357
regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
358
regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
359
360
target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
361
if (waitqueue_active(&target_vcpu->wq))
362
wake_up_interruptible(&target_vcpu->wq);
363
} else {
364
vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
365
if (target_vcpu != vcpu)
366
kvm_vcpu_kick(target_vcpu);
367
}
368
369
return 1;
370
}
371
372
struct call_data {
373
struct kvm_ptc_g ptc_g_data;
374
struct kvm_vcpu *vcpu;
375
};
376
377
static void vcpu_global_purge(void *info)
378
{
379
struct call_data *p = (struct call_data *)info;
380
struct kvm_vcpu *vcpu = p->vcpu;
381
382
if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
383
return;
384
385
set_bit(KVM_REQ_PTC_G, &vcpu->requests);
386
if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
387
vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
388
p->ptc_g_data;
389
} else {
390
clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
391
vcpu->arch.ptc_g_count = 0;
392
set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
393
}
394
}
395
396
static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
397
{
398
struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
399
struct kvm *kvm = vcpu->kvm;
400
struct call_data call_data;
401
int i;
402
struct kvm_vcpu *vcpui;
403
404
call_data.ptc_g_data = p->u.ptc_g_data;
405
406
kvm_for_each_vcpu(i, vcpui, kvm) {
407
if (vcpui->arch.mp_state == KVM_MP_STATE_UNINITIALIZED ||
408
vcpu == vcpui)
409
continue;
410
411
if (waitqueue_active(&vcpui->wq))
412
wake_up_interruptible(&vcpui->wq);
413
414
if (vcpui->cpu != -1) {
415
call_data.vcpu = vcpui;
416
smp_call_function_single(vcpui->cpu,
417
vcpu_global_purge, &call_data, 1);
418
} else
419
printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
420
421
}
422
return 1;
423
}
424
425
static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
426
{
427
return 1;
428
}
429
430
static int kvm_sn2_setup_mappings(struct kvm_vcpu *vcpu)
431
{
432
unsigned long pte, rtc_phys_addr, map_addr;
433
int slot;
434
435
map_addr = KVM_VMM_BASE + (1UL << KVM_VMM_SHIFT);
436
rtc_phys_addr = LOCAL_MMR_OFFSET | SH_RTC;
437
pte = pte_val(mk_pte_phys(rtc_phys_addr, PAGE_KERNEL_UC));
438
slot = ia64_itr_entry(0x3, map_addr, pte, PAGE_SHIFT);
439
vcpu->arch.sn_rtc_tr_slot = slot;
440
if (slot < 0) {
441
printk(KERN_ERR "Mayday mayday! RTC mapping failed!\n");
442
slot = 0;
443
}
444
return slot;
445
}
446
447
int kvm_emulate_halt(struct kvm_vcpu *vcpu)
448
{
449
450
ktime_t kt;
451
long itc_diff;
452
unsigned long vcpu_now_itc;
453
unsigned long expires;
454
struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
455
unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
456
struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
457
458
if (irqchip_in_kernel(vcpu->kvm)) {
459
460
vcpu_now_itc = kvm_get_itc(vcpu) + vcpu->arch.itc_offset;
461
462
if (time_after(vcpu_now_itc, vpd->itm)) {
463
vcpu->arch.timer_check = 1;
464
return 1;
465
}
466
itc_diff = vpd->itm - vcpu_now_itc;
467
if (itc_diff < 0)
468
itc_diff = -itc_diff;
469
470
expires = div64_u64(itc_diff, cyc_per_usec);
471
kt = ktime_set(0, 1000 * expires);
472
473
vcpu->arch.ht_active = 1;
474
hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
475
476
vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
477
kvm_vcpu_block(vcpu);
478
hrtimer_cancel(p_ht);
479
vcpu->arch.ht_active = 0;
480
481
if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests) ||
482
kvm_cpu_has_pending_timer(vcpu))
483
if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
484
vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
485
486
if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
487
return -EINTR;
488
return 1;
489
} else {
490
printk(KERN_ERR"kvm: Unsupported userspace halt!");
491
return 0;
492
}
493
}
494
495
static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
496
struct kvm_run *kvm_run)
497
{
498
kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
499
return 0;
500
}
501
502
static int handle_external_interrupt(struct kvm_vcpu *vcpu,
503
struct kvm_run *kvm_run)
504
{
505
return 1;
506
}
507
508
static int handle_vcpu_debug(struct kvm_vcpu *vcpu,
509
struct kvm_run *kvm_run)
510
{
511
printk("VMM: %s", vcpu->arch.log_buf);
512
return 1;
513
}
514
515
static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
516
struct kvm_run *kvm_run) = {
517
[EXIT_REASON_VM_PANIC] = handle_vm_error,
518
[EXIT_REASON_MMIO_INSTRUCTION] = handle_mmio,
519
[EXIT_REASON_PAL_CALL] = handle_pal_call,
520
[EXIT_REASON_SAL_CALL] = handle_sal_call,
521
[EXIT_REASON_SWITCH_RR6] = handle_switch_rr6,
522
[EXIT_REASON_VM_DESTROY] = handle_vm_shutdown,
523
[EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
524
[EXIT_REASON_IPI] = handle_ipi,
525
[EXIT_REASON_PTC_G] = handle_global_purge,
526
[EXIT_REASON_DEBUG] = handle_vcpu_debug,
527
528
};
529
530
static const int kvm_vti_max_exit_handlers =
531
sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
532
533
static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
534
{
535
struct exit_ctl_data *p_exit_data;
536
537
p_exit_data = kvm_get_exit_data(vcpu);
538
return p_exit_data->exit_reason;
539
}
540
541
/*
542
* The guest has exited. See if we can fix it or if we need userspace
543
* assistance.
544
*/
545
static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
546
{
547
u32 exit_reason = kvm_get_exit_reason(vcpu);
548
vcpu->arch.last_exit = exit_reason;
549
550
if (exit_reason < kvm_vti_max_exit_handlers
551
&& kvm_vti_exit_handlers[exit_reason])
552
return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
553
else {
554
kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
555
kvm_run->hw.hardware_exit_reason = exit_reason;
556
}
557
return 0;
558
}
559
560
static inline void vti_set_rr6(unsigned long rr6)
561
{
562
ia64_set_rr(RR6, rr6);
563
ia64_srlz_i();
564
}
565
566
static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
567
{
568
unsigned long pte;
569
struct kvm *kvm = vcpu->kvm;
570
int r;
571
572
/*Insert a pair of tr to map vmm*/
573
pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
574
r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
575
if (r < 0)
576
goto out;
577
vcpu->arch.vmm_tr_slot = r;
578
/*Insert a pairt of tr to map data of vm*/
579
pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
580
r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
581
pte, KVM_VM_DATA_SHIFT);
582
if (r < 0)
583
goto out;
584
vcpu->arch.vm_tr_slot = r;
585
586
#if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
587
if (kvm->arch.is_sn2) {
588
r = kvm_sn2_setup_mappings(vcpu);
589
if (r < 0)
590
goto out;
591
}
592
#endif
593
594
r = 0;
595
out:
596
return r;
597
}
598
599
static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
600
{
601
struct kvm *kvm = vcpu->kvm;
602
ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
603
ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
604
#if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
605
if (kvm->arch.is_sn2)
606
ia64_ptr_entry(0x3, vcpu->arch.sn_rtc_tr_slot);
607
#endif
608
}
609
610
static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
611
{
612
unsigned long psr;
613
int r;
614
int cpu = smp_processor_id();
615
616
if (vcpu->arch.last_run_cpu != cpu ||
617
per_cpu(last_vcpu, cpu) != vcpu) {
618
per_cpu(last_vcpu, cpu) = vcpu;
619
vcpu->arch.last_run_cpu = cpu;
620
kvm_flush_tlb_all();
621
}
622
623
vcpu->arch.host_rr6 = ia64_get_rr(RR6);
624
vti_set_rr6(vcpu->arch.vmm_rr);
625
local_irq_save(psr);
626
r = kvm_insert_vmm_mapping(vcpu);
627
local_irq_restore(psr);
628
return r;
629
}
630
631
static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
632
{
633
kvm_purge_vmm_mapping(vcpu);
634
vti_set_rr6(vcpu->arch.host_rr6);
635
}
636
637
static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
638
{
639
union context *host_ctx, *guest_ctx;
640
int r, idx;
641
642
idx = srcu_read_lock(&vcpu->kvm->srcu);
643
644
again:
645
if (signal_pending(current)) {
646
r = -EINTR;
647
kvm_run->exit_reason = KVM_EXIT_INTR;
648
goto out;
649
}
650
651
preempt_disable();
652
local_irq_disable();
653
654
/*Get host and guest context with guest address space.*/
655
host_ctx = kvm_get_host_context(vcpu);
656
guest_ctx = kvm_get_guest_context(vcpu);
657
658
clear_bit(KVM_REQ_KICK, &vcpu->requests);
659
660
r = kvm_vcpu_pre_transition(vcpu);
661
if (r < 0)
662
goto vcpu_run_fail;
663
664
srcu_read_unlock(&vcpu->kvm->srcu, idx);
665
vcpu->mode = IN_GUEST_MODE;
666
kvm_guest_enter();
667
668
/*
669
* Transition to the guest
670
*/
671
kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
672
673
kvm_vcpu_post_transition(vcpu);
674
675
vcpu->arch.launched = 1;
676
set_bit(KVM_REQ_KICK, &vcpu->requests);
677
local_irq_enable();
678
679
/*
680
* We must have an instruction between local_irq_enable() and
681
* kvm_guest_exit(), so the timer interrupt isn't delayed by
682
* the interrupt shadow. The stat.exits increment will do nicely.
683
* But we need to prevent reordering, hence this barrier():
684
*/
685
barrier();
686
kvm_guest_exit();
687
vcpu->mode = OUTSIDE_GUEST_MODE;
688
preempt_enable();
689
690
idx = srcu_read_lock(&vcpu->kvm->srcu);
691
692
r = kvm_handle_exit(kvm_run, vcpu);
693
694
if (r > 0) {
695
if (!need_resched())
696
goto again;
697
}
698
699
out:
700
srcu_read_unlock(&vcpu->kvm->srcu, idx);
701
if (r > 0) {
702
kvm_resched(vcpu);
703
idx = srcu_read_lock(&vcpu->kvm->srcu);
704
goto again;
705
}
706
707
return r;
708
709
vcpu_run_fail:
710
local_irq_enable();
711
preempt_enable();
712
kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
713
goto out;
714
}
715
716
static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
717
{
718
struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
719
720
if (!vcpu->mmio_is_write)
721
memcpy(&p->data, vcpu->mmio_data, 8);
722
p->state = STATE_IORESP_READY;
723
}
724
725
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
726
{
727
int r;
728
sigset_t sigsaved;
729
730
if (vcpu->sigset_active)
731
sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
732
733
if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
734
kvm_vcpu_block(vcpu);
735
clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
736
r = -EAGAIN;
737
goto out;
738
}
739
740
if (vcpu->mmio_needed) {
741
memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
742
kvm_set_mmio_data(vcpu);
743
vcpu->mmio_read_completed = 1;
744
vcpu->mmio_needed = 0;
745
}
746
r = __vcpu_run(vcpu, kvm_run);
747
out:
748
if (vcpu->sigset_active)
749
sigprocmask(SIG_SETMASK, &sigsaved, NULL);
750
751
return r;
752
}
753
754
struct kvm *kvm_arch_alloc_vm(void)
755
{
756
757
struct kvm *kvm;
758
uint64_t vm_base;
759
760
BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);
761
762
vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
763
764
if (!vm_base)
765
return NULL;
766
767
memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
768
kvm = (struct kvm *)(vm_base +
769
offsetof(struct kvm_vm_data, kvm_vm_struct));
770
kvm->arch.vm_base = vm_base;
771
printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
772
773
return kvm;
774
}
775
776
struct kvm_io_range {
777
unsigned long start;
778
unsigned long size;
779
unsigned long type;
780
};
781
782
static const struct kvm_io_range io_ranges[] = {
783
{VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
784
{MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
785
{LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
786
{IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
787
{PIB_START, PIB_SIZE, GPFN_PIB},
788
};
789
790
static void kvm_build_io_pmt(struct kvm *kvm)
791
{
792
unsigned long i, j;
793
794
/* Mark I/O ranges */
795
for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
796
i++) {
797
for (j = io_ranges[i].start;
798
j < io_ranges[i].start + io_ranges[i].size;
799
j += PAGE_SIZE)
800
kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
801
io_ranges[i].type, 0);
802
}
803
804
}
805
806
/*Use unused rids to virtualize guest rid.*/
807
#define GUEST_PHYSICAL_RR0 0x1739
808
#define GUEST_PHYSICAL_RR4 0x2739
809
#define VMM_INIT_RR 0x1660
810
811
int kvm_arch_init_vm(struct kvm *kvm)
812
{
813
BUG_ON(!kvm);
814
815
kvm->arch.is_sn2 = ia64_platform_is("sn2");
816
817
kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
818
kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
819
kvm->arch.vmm_init_rr = VMM_INIT_RR;
820
821
/*
822
*Fill P2M entries for MMIO/IO ranges
823
*/
824
kvm_build_io_pmt(kvm);
825
826
INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
827
828
/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
829
set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
830
831
return 0;
832
}
833
834
static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
835
struct kvm_irqchip *chip)
836
{
837
int r;
838
839
r = 0;
840
switch (chip->chip_id) {
841
case KVM_IRQCHIP_IOAPIC:
842
r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
843
break;
844
default:
845
r = -EINVAL;
846
break;
847
}
848
return r;
849
}
850
851
static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
852
{
853
int r;
854
855
r = 0;
856
switch (chip->chip_id) {
857
case KVM_IRQCHIP_IOAPIC:
858
r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
859
break;
860
default:
861
r = -EINVAL;
862
break;
863
}
864
return r;
865
}
866
867
#define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
868
869
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
870
{
871
struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
872
int i;
873
874
for (i = 0; i < 16; i++) {
875
vpd->vgr[i] = regs->vpd.vgr[i];
876
vpd->vbgr[i] = regs->vpd.vbgr[i];
877
}
878
for (i = 0; i < 128; i++)
879
vpd->vcr[i] = regs->vpd.vcr[i];
880
vpd->vhpi = regs->vpd.vhpi;
881
vpd->vnat = regs->vpd.vnat;
882
vpd->vbnat = regs->vpd.vbnat;
883
vpd->vpsr = regs->vpd.vpsr;
884
885
vpd->vpr = regs->vpd.vpr;
886
887
memcpy(&vcpu->arch.guest, &regs->saved_guest, sizeof(union context));
888
889
RESTORE_REGS(mp_state);
890
RESTORE_REGS(vmm_rr);
891
memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
892
memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
893
RESTORE_REGS(itr_regions);
894
RESTORE_REGS(dtr_regions);
895
RESTORE_REGS(tc_regions);
896
RESTORE_REGS(irq_check);
897
RESTORE_REGS(itc_check);
898
RESTORE_REGS(timer_check);
899
RESTORE_REGS(timer_pending);
900
RESTORE_REGS(last_itc);
901
for (i = 0; i < 8; i++) {
902
vcpu->arch.vrr[i] = regs->vrr[i];
903
vcpu->arch.ibr[i] = regs->ibr[i];
904
vcpu->arch.dbr[i] = regs->dbr[i];
905
}
906
for (i = 0; i < 4; i++)
907
vcpu->arch.insvc[i] = regs->insvc[i];
908
RESTORE_REGS(xtp);
909
RESTORE_REGS(metaphysical_rr0);
910
RESTORE_REGS(metaphysical_rr4);
911
RESTORE_REGS(metaphysical_saved_rr0);
912
RESTORE_REGS(metaphysical_saved_rr4);
913
RESTORE_REGS(fp_psr);
914
RESTORE_REGS(saved_gp);
915
916
vcpu->arch.irq_new_pending = 1;
917
vcpu->arch.itc_offset = regs->saved_itc - kvm_get_itc(vcpu);
918
set_bit(KVM_REQ_RESUME, &vcpu->requests);
919
920
return 0;
921
}
922
923
long kvm_arch_vm_ioctl(struct file *filp,
924
unsigned int ioctl, unsigned long arg)
925
{
926
struct kvm *kvm = filp->private_data;
927
void __user *argp = (void __user *)arg;
928
int r = -ENOTTY;
929
930
switch (ioctl) {
931
case KVM_SET_MEMORY_REGION: {
932
struct kvm_memory_region kvm_mem;
933
struct kvm_userspace_memory_region kvm_userspace_mem;
934
935
r = -EFAULT;
936
if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
937
goto out;
938
kvm_userspace_mem.slot = kvm_mem.slot;
939
kvm_userspace_mem.flags = kvm_mem.flags;
940
kvm_userspace_mem.guest_phys_addr =
941
kvm_mem.guest_phys_addr;
942
kvm_userspace_mem.memory_size = kvm_mem.memory_size;
943
r = kvm_vm_ioctl_set_memory_region(kvm,
944
&kvm_userspace_mem, 0);
945
if (r)
946
goto out;
947
break;
948
}
949
case KVM_CREATE_IRQCHIP:
950
r = -EFAULT;
951
r = kvm_ioapic_init(kvm);
952
if (r)
953
goto out;
954
r = kvm_setup_default_irq_routing(kvm);
955
if (r) {
956
mutex_lock(&kvm->slots_lock);
957
kvm_ioapic_destroy(kvm);
958
mutex_unlock(&kvm->slots_lock);
959
goto out;
960
}
961
break;
962
case KVM_IRQ_LINE_STATUS:
963
case KVM_IRQ_LINE: {
964
struct kvm_irq_level irq_event;
965
966
r = -EFAULT;
967
if (copy_from_user(&irq_event, argp, sizeof irq_event))
968
goto out;
969
r = -ENXIO;
970
if (irqchip_in_kernel(kvm)) {
971
__s32 status;
972
status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
973
irq_event.irq, irq_event.level);
974
if (ioctl == KVM_IRQ_LINE_STATUS) {
975
r = -EFAULT;
976
irq_event.status = status;
977
if (copy_to_user(argp, &irq_event,
978
sizeof irq_event))
979
goto out;
980
}
981
r = 0;
982
}
983
break;
984
}
985
case KVM_GET_IRQCHIP: {
986
/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
987
struct kvm_irqchip chip;
988
989
r = -EFAULT;
990
if (copy_from_user(&chip, argp, sizeof chip))
991
goto out;
992
r = -ENXIO;
993
if (!irqchip_in_kernel(kvm))
994
goto out;
995
r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
996
if (r)
997
goto out;
998
r = -EFAULT;
999
if (copy_to_user(argp, &chip, sizeof chip))
1000
goto out;
1001
r = 0;
1002
break;
1003
}
1004
case KVM_SET_IRQCHIP: {
1005
/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1006
struct kvm_irqchip chip;
1007
1008
r = -EFAULT;
1009
if (copy_from_user(&chip, argp, sizeof chip))
1010
goto out;
1011
r = -ENXIO;
1012
if (!irqchip_in_kernel(kvm))
1013
goto out;
1014
r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
1015
if (r)
1016
goto out;
1017
r = 0;
1018
break;
1019
}
1020
default:
1021
;
1022
}
1023
out:
1024
return r;
1025
}
1026
1027
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1028
struct kvm_sregs *sregs)
1029
{
1030
return -EINVAL;
1031
}
1032
1033
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1034
struct kvm_sregs *sregs)
1035
{
1036
return -EINVAL;
1037
1038
}
1039
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1040
struct kvm_translation *tr)
1041
{
1042
1043
return -EINVAL;
1044
}
1045
1046
static int kvm_alloc_vmm_area(void)
1047
{
1048
if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
1049
kvm_vmm_base = __get_free_pages(GFP_KERNEL,
1050
get_order(KVM_VMM_SIZE));
1051
if (!kvm_vmm_base)
1052
return -ENOMEM;
1053
1054
memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1055
kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
1056
1057
printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
1058
kvm_vmm_base, kvm_vm_buffer);
1059
}
1060
1061
return 0;
1062
}
1063
1064
static void kvm_free_vmm_area(void)
1065
{
1066
if (kvm_vmm_base) {
1067
/*Zero this area before free to avoid bits leak!!*/
1068
memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1069
free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
1070
kvm_vmm_base = 0;
1071
kvm_vm_buffer = 0;
1072
kvm_vsa_base = 0;
1073
}
1074
}
1075
1076
static int vti_init_vpd(struct kvm_vcpu *vcpu)
1077
{
1078
int i;
1079
union cpuid3_t cpuid3;
1080
struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1081
1082
if (IS_ERR(vpd))
1083
return PTR_ERR(vpd);
1084
1085
/* CPUID init */
1086
for (i = 0; i < 5; i++)
1087
vpd->vcpuid[i] = ia64_get_cpuid(i);
1088
1089
/* Limit the CPUID number to 5 */
1090
cpuid3.value = vpd->vcpuid[3];
1091
cpuid3.number = 4; /* 5 - 1 */
1092
vpd->vcpuid[3] = cpuid3.value;
1093
1094
/*Set vac and vdc fields*/
1095
vpd->vac.a_from_int_cr = 1;
1096
vpd->vac.a_to_int_cr = 1;
1097
vpd->vac.a_from_psr = 1;
1098
vpd->vac.a_from_cpuid = 1;
1099
vpd->vac.a_cover = 1;
1100
vpd->vac.a_bsw = 1;
1101
vpd->vac.a_int = 1;
1102
vpd->vdc.d_vmsw = 1;
1103
1104
/*Set virtual buffer*/
1105
vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
1106
1107
return 0;
1108
}
1109
1110
static int vti_create_vp(struct kvm_vcpu *vcpu)
1111
{
1112
long ret;
1113
struct vpd *vpd = vcpu->arch.vpd;
1114
unsigned long vmm_ivt;
1115
1116
vmm_ivt = kvm_vmm_info->vmm_ivt;
1117
1118
printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
1119
1120
ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
1121
1122
if (ret) {
1123
printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
1124
return -EINVAL;
1125
}
1126
return 0;
1127
}
1128
1129
static void init_ptce_info(struct kvm_vcpu *vcpu)
1130
{
1131
ia64_ptce_info_t ptce = {0};
1132
1133
ia64_get_ptce(&ptce);
1134
vcpu->arch.ptce_base = ptce.base;
1135
vcpu->arch.ptce_count[0] = ptce.count[0];
1136
vcpu->arch.ptce_count[1] = ptce.count[1];
1137
vcpu->arch.ptce_stride[0] = ptce.stride[0];
1138
vcpu->arch.ptce_stride[1] = ptce.stride[1];
1139
}
1140
1141
static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
1142
{
1143
struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
1144
1145
if (hrtimer_cancel(p_ht))
1146
hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
1147
}
1148
1149
static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
1150
{
1151
struct kvm_vcpu *vcpu;
1152
wait_queue_head_t *q;
1153
1154
vcpu = container_of(data, struct kvm_vcpu, arch.hlt_timer);
1155
q = &vcpu->wq;
1156
1157
if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
1158
goto out;
1159
1160
if (waitqueue_active(q))
1161
wake_up_interruptible(q);
1162
1163
out:
1164
vcpu->arch.timer_fired = 1;
1165
vcpu->arch.timer_check = 1;
1166
return HRTIMER_NORESTART;
1167
}
1168
1169
#define PALE_RESET_ENTRY 0x80000000ffffffb0UL
1170
1171
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1172
{
1173
struct kvm_vcpu *v;
1174
int r;
1175
int i;
1176
long itc_offset;
1177
struct kvm *kvm = vcpu->kvm;
1178
struct kvm_pt_regs *regs = vcpu_regs(vcpu);
1179
1180
union context *p_ctx = &vcpu->arch.guest;
1181
struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
1182
1183
/*Init vcpu context for first run.*/
1184
if (IS_ERR(vmm_vcpu))
1185
return PTR_ERR(vmm_vcpu);
1186
1187
if (kvm_vcpu_is_bsp(vcpu)) {
1188
vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1189
1190
/*Set entry address for first run.*/
1191
regs->cr_iip = PALE_RESET_ENTRY;
1192
1193
/*Initialize itc offset for vcpus*/
1194
itc_offset = 0UL - kvm_get_itc(vcpu);
1195
for (i = 0; i < KVM_MAX_VCPUS; i++) {
1196
v = (struct kvm_vcpu *)((char *)vcpu +
1197
sizeof(struct kvm_vcpu_data) * i);
1198
v->arch.itc_offset = itc_offset;
1199
v->arch.last_itc = 0;
1200
}
1201
} else
1202
vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
1203
1204
r = -ENOMEM;
1205
vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
1206
if (!vcpu->arch.apic)
1207
goto out;
1208
vcpu->arch.apic->vcpu = vcpu;
1209
1210
p_ctx->gr[1] = 0;
1211
p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
1212
p_ctx->gr[13] = (unsigned long)vmm_vcpu;
1213
p_ctx->psr = 0x1008522000UL;
1214
p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
1215
p_ctx->caller_unat = 0;
1216
p_ctx->pr = 0x0;
1217
p_ctx->ar[36] = 0x0; /*unat*/
1218
p_ctx->ar[19] = 0x0; /*rnat*/
1219
p_ctx->ar[18] = (unsigned long)vmm_vcpu +
1220
((sizeof(struct kvm_vcpu)+15) & ~15);
1221
p_ctx->ar[64] = 0x0; /*pfs*/
1222
p_ctx->cr[0] = 0x7e04UL;
1223
p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
1224
p_ctx->cr[8] = 0x3c;
1225
1226
/*Initialize region register*/
1227
p_ctx->rr[0] = 0x30;
1228
p_ctx->rr[1] = 0x30;
1229
p_ctx->rr[2] = 0x30;
1230
p_ctx->rr[3] = 0x30;
1231
p_ctx->rr[4] = 0x30;
1232
p_ctx->rr[5] = 0x30;
1233
p_ctx->rr[7] = 0x30;
1234
1235
/*Initialize branch register 0*/
1236
p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
1237
1238
vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
1239
vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
1240
vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
1241
1242
hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1243
vcpu->arch.hlt_timer.function = hlt_timer_fn;
1244
1245
vcpu->arch.last_run_cpu = -1;
1246
vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
1247
vcpu->arch.vsa_base = kvm_vsa_base;
1248
vcpu->arch.__gp = kvm_vmm_gp;
1249
vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
1250
vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
1251
vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
1252
init_ptce_info(vcpu);
1253
1254
r = 0;
1255
out:
1256
return r;
1257
}
1258
1259
static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
1260
{
1261
unsigned long psr;
1262
int r;
1263
1264
local_irq_save(psr);
1265
r = kvm_insert_vmm_mapping(vcpu);
1266
local_irq_restore(psr);
1267
if (r)
1268
goto fail;
1269
r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
1270
if (r)
1271
goto fail;
1272
1273
r = vti_init_vpd(vcpu);
1274
if (r) {
1275
printk(KERN_DEBUG"kvm: vpd init error!!\n");
1276
goto uninit;
1277
}
1278
1279
r = vti_create_vp(vcpu);
1280
if (r)
1281
goto uninit;
1282
1283
kvm_purge_vmm_mapping(vcpu);
1284
1285
return 0;
1286
uninit:
1287
kvm_vcpu_uninit(vcpu);
1288
fail:
1289
return r;
1290
}
1291
1292
struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
1293
unsigned int id)
1294
{
1295
struct kvm_vcpu *vcpu;
1296
unsigned long vm_base = kvm->arch.vm_base;
1297
int r;
1298
int cpu;
1299
1300
BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);
1301
1302
r = -EINVAL;
1303
if (id >= KVM_MAX_VCPUS) {
1304
printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
1305
KVM_MAX_VCPUS);
1306
goto fail;
1307
}
1308
1309
r = -ENOMEM;
1310
if (!vm_base) {
1311
printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
1312
goto fail;
1313
}
1314
vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
1315
vcpu_data[id].vcpu_struct));
1316
vcpu->kvm = kvm;
1317
1318
cpu = get_cpu();
1319
r = vti_vcpu_setup(vcpu, id);
1320
put_cpu();
1321
1322
if (r) {
1323
printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
1324
goto fail;
1325
}
1326
1327
return vcpu;
1328
fail:
1329
return ERR_PTR(r);
1330
}
1331
1332
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1333
{
1334
return 0;
1335
}
1336
1337
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1338
{
1339
return -EINVAL;
1340
}
1341
1342
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1343
{
1344
return -EINVAL;
1345
}
1346
1347
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1348
struct kvm_guest_debug *dbg)
1349
{
1350
return -EINVAL;
1351
}
1352
1353
void kvm_arch_free_vm(struct kvm *kvm)
1354
{
1355
unsigned long vm_base = kvm->arch.vm_base;
1356
1357
if (vm_base) {
1358
memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
1359
free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
1360
}
1361
1362
}
1363
1364
static void kvm_release_vm_pages(struct kvm *kvm)
1365
{
1366
struct kvm_memslots *slots;
1367
struct kvm_memory_slot *memslot;
1368
int i, j;
1369
unsigned long base_gfn;
1370
1371
slots = kvm_memslots(kvm);
1372
for (i = 0; i < slots->nmemslots; i++) {
1373
memslot = &slots->memslots[i];
1374
base_gfn = memslot->base_gfn;
1375
1376
for (j = 0; j < memslot->npages; j++) {
1377
if (memslot->rmap[j])
1378
put_page((struct page *)memslot->rmap[j]);
1379
}
1380
}
1381
}
1382
1383
void kvm_arch_sync_events(struct kvm *kvm)
1384
{
1385
}
1386
1387
void kvm_arch_destroy_vm(struct kvm *kvm)
1388
{
1389
kvm_iommu_unmap_guest(kvm);
1390
#ifdef KVM_CAP_DEVICE_ASSIGNMENT
1391
kvm_free_all_assigned_devices(kvm);
1392
#endif
1393
kfree(kvm->arch.vioapic);
1394
kvm_release_vm_pages(kvm);
1395
}
1396
1397
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1398
{
1399
}
1400
1401
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1402
{
1403
if (cpu != vcpu->cpu) {
1404
vcpu->cpu = cpu;
1405
if (vcpu->arch.ht_active)
1406
kvm_migrate_hlt_timer(vcpu);
1407
}
1408
}
1409
1410
#define SAVE_REGS(_x) regs->_x = vcpu->arch._x
1411
1412
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1413
{
1414
struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1415
int i;
1416
1417
vcpu_load(vcpu);
1418
1419
for (i = 0; i < 16; i++) {
1420
regs->vpd.vgr[i] = vpd->vgr[i];
1421
regs->vpd.vbgr[i] = vpd->vbgr[i];
1422
}
1423
for (i = 0; i < 128; i++)
1424
regs->vpd.vcr[i] = vpd->vcr[i];
1425
regs->vpd.vhpi = vpd->vhpi;
1426
regs->vpd.vnat = vpd->vnat;
1427
regs->vpd.vbnat = vpd->vbnat;
1428
regs->vpd.vpsr = vpd->vpsr;
1429
regs->vpd.vpr = vpd->vpr;
1430
1431
memcpy(&regs->saved_guest, &vcpu->arch.guest, sizeof(union context));
1432
1433
SAVE_REGS(mp_state);
1434
SAVE_REGS(vmm_rr);
1435
memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
1436
memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
1437
SAVE_REGS(itr_regions);
1438
SAVE_REGS(dtr_regions);
1439
SAVE_REGS(tc_regions);
1440
SAVE_REGS(irq_check);
1441
SAVE_REGS(itc_check);
1442
SAVE_REGS(timer_check);
1443
SAVE_REGS(timer_pending);
1444
SAVE_REGS(last_itc);
1445
for (i = 0; i < 8; i++) {
1446
regs->vrr[i] = vcpu->arch.vrr[i];
1447
regs->ibr[i] = vcpu->arch.ibr[i];
1448
regs->dbr[i] = vcpu->arch.dbr[i];
1449
}
1450
for (i = 0; i < 4; i++)
1451
regs->insvc[i] = vcpu->arch.insvc[i];
1452
regs->saved_itc = vcpu->arch.itc_offset + kvm_get_itc(vcpu);
1453
SAVE_REGS(xtp);
1454
SAVE_REGS(metaphysical_rr0);
1455
SAVE_REGS(metaphysical_rr4);
1456
SAVE_REGS(metaphysical_saved_rr0);
1457
SAVE_REGS(metaphysical_saved_rr4);
1458
SAVE_REGS(fp_psr);
1459
SAVE_REGS(saved_gp);
1460
1461
vcpu_put(vcpu);
1462
return 0;
1463
}
1464
1465
int kvm_arch_vcpu_ioctl_get_stack(struct kvm_vcpu *vcpu,
1466
struct kvm_ia64_vcpu_stack *stack)
1467
{
1468
memcpy(stack, vcpu, sizeof(struct kvm_ia64_vcpu_stack));
1469
return 0;
1470
}
1471
1472
int kvm_arch_vcpu_ioctl_set_stack(struct kvm_vcpu *vcpu,
1473
struct kvm_ia64_vcpu_stack *stack)
1474
{
1475
memcpy(vcpu + 1, &stack->stack[0] + sizeof(struct kvm_vcpu),
1476
sizeof(struct kvm_ia64_vcpu_stack) - sizeof(struct kvm_vcpu));
1477
1478
vcpu->arch.exit_data = ((struct kvm_vcpu *)stack)->arch.exit_data;
1479
return 0;
1480
}
1481
1482
void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1483
{
1484
1485
hrtimer_cancel(&vcpu->arch.hlt_timer);
1486
kfree(vcpu->arch.apic);
1487
}
1488
1489
1490
long kvm_arch_vcpu_ioctl(struct file *filp,
1491
unsigned int ioctl, unsigned long arg)
1492
{
1493
struct kvm_vcpu *vcpu = filp->private_data;
1494
void __user *argp = (void __user *)arg;
1495
struct kvm_ia64_vcpu_stack *stack = NULL;
1496
long r;
1497
1498
switch (ioctl) {
1499
case KVM_IA64_VCPU_GET_STACK: {
1500
struct kvm_ia64_vcpu_stack __user *user_stack;
1501
void __user *first_p = argp;
1502
1503
r = -EFAULT;
1504
if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1505
goto out;
1506
1507
if (!access_ok(VERIFY_WRITE, user_stack,
1508
sizeof(struct kvm_ia64_vcpu_stack))) {
1509
printk(KERN_INFO "KVM_IA64_VCPU_GET_STACK: "
1510
"Illegal user destination address for stack\n");
1511
goto out;
1512
}
1513
stack = kzalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1514
if (!stack) {
1515
r = -ENOMEM;
1516
goto out;
1517
}
1518
1519
r = kvm_arch_vcpu_ioctl_get_stack(vcpu, stack);
1520
if (r)
1521
goto out;
1522
1523
if (copy_to_user(user_stack, stack,
1524
sizeof(struct kvm_ia64_vcpu_stack))) {
1525
r = -EFAULT;
1526
goto out;
1527
}
1528
1529
break;
1530
}
1531
case KVM_IA64_VCPU_SET_STACK: {
1532
struct kvm_ia64_vcpu_stack __user *user_stack;
1533
void __user *first_p = argp;
1534
1535
r = -EFAULT;
1536
if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1537
goto out;
1538
1539
if (!access_ok(VERIFY_READ, user_stack,
1540
sizeof(struct kvm_ia64_vcpu_stack))) {
1541
printk(KERN_INFO "KVM_IA64_VCPU_SET_STACK: "
1542
"Illegal user address for stack\n");
1543
goto out;
1544
}
1545
stack = kmalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1546
if (!stack) {
1547
r = -ENOMEM;
1548
goto out;
1549
}
1550
if (copy_from_user(stack, user_stack,
1551
sizeof(struct kvm_ia64_vcpu_stack)))
1552
goto out;
1553
1554
r = kvm_arch_vcpu_ioctl_set_stack(vcpu, stack);
1555
break;
1556
}
1557
1558
default:
1559
r = -EINVAL;
1560
}
1561
1562
out:
1563
kfree(stack);
1564
return r;
1565
}
1566
1567
int kvm_arch_prepare_memory_region(struct kvm *kvm,
1568
struct kvm_memory_slot *memslot,
1569
struct kvm_memory_slot old,
1570
struct kvm_userspace_memory_region *mem,
1571
int user_alloc)
1572
{
1573
unsigned long i;
1574
unsigned long pfn;
1575
int npages = memslot->npages;
1576
unsigned long base_gfn = memslot->base_gfn;
1577
1578
if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
1579
return -ENOMEM;
1580
1581
for (i = 0; i < npages; i++) {
1582
pfn = gfn_to_pfn(kvm, base_gfn + i);
1583
if (!kvm_is_mmio_pfn(pfn)) {
1584
kvm_set_pmt_entry(kvm, base_gfn + i,
1585
pfn << PAGE_SHIFT,
1586
_PAGE_AR_RWX | _PAGE_MA_WB);
1587
memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
1588
} else {
1589
kvm_set_pmt_entry(kvm, base_gfn + i,
1590
GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
1591
_PAGE_MA_UC);
1592
memslot->rmap[i] = 0;
1593
}
1594
}
1595
1596
return 0;
1597
}
1598
1599
void kvm_arch_commit_memory_region(struct kvm *kvm,
1600
struct kvm_userspace_memory_region *mem,
1601
struct kvm_memory_slot old,
1602
int user_alloc)
1603
{
1604
return;
1605
}
1606
1607
void kvm_arch_flush_shadow(struct kvm *kvm)
1608
{
1609
kvm_flush_remote_tlbs(kvm);
1610
}
1611
1612
long kvm_arch_dev_ioctl(struct file *filp,
1613
unsigned int ioctl, unsigned long arg)
1614
{
1615
return -EINVAL;
1616
}
1617
1618
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
1619
{
1620
kvm_vcpu_uninit(vcpu);
1621
}
1622
1623
static int vti_cpu_has_kvm_support(void)
1624
{
1625
long avail = 1, status = 1, control = 1;
1626
long ret;
1627
1628
ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
1629
if (ret)
1630
goto out;
1631
1632
if (!(avail & PAL_PROC_VM_BIT))
1633
goto out;
1634
1635
printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
1636
1637
ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
1638
if (ret)
1639
goto out;
1640
printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
1641
1642
if (!(vp_env_info & VP_OPCODE)) {
1643
printk(KERN_WARNING"kvm: No opcode ability on hardware, "
1644
"vm_env_info:0x%lx\n", vp_env_info);
1645
}
1646
1647
return 1;
1648
out:
1649
return 0;
1650
}
1651
1652
1653
/*
1654
* On SN2, the ITC isn't stable, so copy in fast path code to use the
1655
* SN2 RTC, replacing the ITC based default verion.
1656
*/
1657
static void kvm_patch_vmm(struct kvm_vmm_info *vmm_info,
1658
struct module *module)
1659
{
1660
unsigned long new_ar, new_ar_sn2;
1661
unsigned long module_base;
1662
1663
if (!ia64_platform_is("sn2"))
1664
return;
1665
1666
module_base = (unsigned long)module->module_core;
1667
1668
new_ar = kvm_vmm_base + vmm_info->patch_mov_ar - module_base;
1669
new_ar_sn2 = kvm_vmm_base + vmm_info->patch_mov_ar_sn2 - module_base;
1670
1671
printk(KERN_INFO "kvm: Patching ITC emulation to use SGI SN2 RTC "
1672
"as source\n");
1673
1674
/*
1675
* Copy the SN2 version of mov_ar into place. They are both
1676
* the same size, so 6 bundles is sufficient (6 * 0x10).
1677
*/
1678
memcpy((void *)new_ar, (void *)new_ar_sn2, 0x60);
1679
}
1680
1681
static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
1682
struct module *module)
1683
{
1684
unsigned long module_base;
1685
unsigned long vmm_size;
1686
1687
unsigned long vmm_offset, func_offset, fdesc_offset;
1688
struct fdesc *p_fdesc;
1689
1690
BUG_ON(!module);
1691
1692
if (!kvm_vmm_base) {
1693
printk("kvm: kvm area hasn't been initialized yet!!\n");
1694
return -EFAULT;
1695
}
1696
1697
/*Calculate new position of relocated vmm module.*/
1698
module_base = (unsigned long)module->module_core;
1699
vmm_size = module->core_size;
1700
if (unlikely(vmm_size > KVM_VMM_SIZE))
1701
return -EFAULT;
1702
1703
memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
1704
kvm_patch_vmm(vmm_info, module);
1705
kvm_flush_icache(kvm_vmm_base, vmm_size);
1706
1707
/*Recalculate kvm_vmm_info based on new VMM*/
1708
vmm_offset = vmm_info->vmm_ivt - module_base;
1709
kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
1710
printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
1711
kvm_vmm_info->vmm_ivt);
1712
1713
fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
1714
kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
1715
fdesc_offset);
1716
func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
1717
p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1718
p_fdesc->ip = KVM_VMM_BASE + func_offset;
1719
p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
1720
1721
printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
1722
KVM_VMM_BASE+func_offset);
1723
1724
fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
1725
kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
1726
fdesc_offset);
1727
func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
1728
p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1729
p_fdesc->ip = KVM_VMM_BASE + func_offset;
1730
p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
1731
1732
kvm_vmm_gp = p_fdesc->gp;
1733
1734
printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
1735
kvm_vmm_info->vmm_entry);
1736
printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
1737
KVM_VMM_BASE + func_offset);
1738
1739
return 0;
1740
}
1741
1742
int kvm_arch_init(void *opaque)
1743
{
1744
int r;
1745
struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
1746
1747
if (!vti_cpu_has_kvm_support()) {
1748
printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
1749
r = -EOPNOTSUPP;
1750
goto out;
1751
}
1752
1753
if (kvm_vmm_info) {
1754
printk(KERN_ERR "kvm: Already loaded VMM module!\n");
1755
r = -EEXIST;
1756
goto out;
1757
}
1758
1759
r = -ENOMEM;
1760
kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
1761
if (!kvm_vmm_info)
1762
goto out;
1763
1764
if (kvm_alloc_vmm_area())
1765
goto out_free0;
1766
1767
r = kvm_relocate_vmm(vmm_info, vmm_info->module);
1768
if (r)
1769
goto out_free1;
1770
1771
return 0;
1772
1773
out_free1:
1774
kvm_free_vmm_area();
1775
out_free0:
1776
kfree(kvm_vmm_info);
1777
out:
1778
return r;
1779
}
1780
1781
void kvm_arch_exit(void)
1782
{
1783
kvm_free_vmm_area();
1784
kfree(kvm_vmm_info);
1785
kvm_vmm_info = NULL;
1786
}
1787
1788
static void kvm_ia64_sync_dirty_log(struct kvm *kvm,
1789
struct kvm_memory_slot *memslot)
1790
{
1791
int i;
1792
long base;
1793
unsigned long n;
1794
unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
1795
offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
1796
1797
n = kvm_dirty_bitmap_bytes(memslot);
1798
base = memslot->base_gfn / BITS_PER_LONG;
1799
1800
spin_lock(&kvm->arch.dirty_log_lock);
1801
for (i = 0; i < n/sizeof(long); ++i) {
1802
memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
1803
dirty_bitmap[base + i] = 0;
1804
}
1805
spin_unlock(&kvm->arch.dirty_log_lock);
1806
}
1807
1808
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1809
struct kvm_dirty_log *log)
1810
{
1811
int r;
1812
unsigned long n;
1813
struct kvm_memory_slot *memslot;
1814
int is_dirty = 0;
1815
1816
mutex_lock(&kvm->slots_lock);
1817
1818
r = -EINVAL;
1819
if (log->slot >= KVM_MEMORY_SLOTS)
1820
goto out;
1821
1822
memslot = &kvm->memslots->memslots[log->slot];
1823
r = -ENOENT;
1824
if (!memslot->dirty_bitmap)
1825
goto out;
1826
1827
kvm_ia64_sync_dirty_log(kvm, memslot);
1828
r = kvm_get_dirty_log(kvm, log, &is_dirty);
1829
if (r)
1830
goto out;
1831
1832
/* If nothing is dirty, don't bother messing with page tables. */
1833
if (is_dirty) {
1834
kvm_flush_remote_tlbs(kvm);
1835
n = kvm_dirty_bitmap_bytes(memslot);
1836
memset(memslot->dirty_bitmap, 0, n);
1837
}
1838
r = 0;
1839
out:
1840
mutex_unlock(&kvm->slots_lock);
1841
return r;
1842
}
1843
1844
int kvm_arch_hardware_setup(void)
1845
{
1846
return 0;
1847
}
1848
1849
void kvm_arch_hardware_unsetup(void)
1850
{
1851
}
1852
1853
void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1854
{
1855
int me;
1856
int cpu = vcpu->cpu;
1857
1858
if (waitqueue_active(&vcpu->wq))
1859
wake_up_interruptible(&vcpu->wq);
1860
1861
me = get_cpu();
1862
if (cpu != me && (unsigned) cpu < nr_cpu_ids && cpu_online(cpu))
1863
if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
1864
smp_send_reschedule(cpu);
1865
put_cpu();
1866
}
1867
1868
int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq)
1869
{
1870
return __apic_accept_irq(vcpu, irq->vector);
1871
}
1872
1873
int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
1874
{
1875
return apic->vcpu->vcpu_id == dest;
1876
}
1877
1878
int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
1879
{
1880
return 0;
1881
}
1882
1883
int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1884
{
1885
return vcpu1->arch.xtp - vcpu2->arch.xtp;
1886
}
1887
1888
int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
1889
int short_hand, int dest, int dest_mode)
1890
{
1891
struct kvm_lapic *target = vcpu->arch.apic;
1892
return (dest_mode == 0) ?
1893
kvm_apic_match_physical_addr(target, dest) :
1894
kvm_apic_match_logical_addr(target, dest);
1895
}
1896
1897
static int find_highest_bits(int *dat)
1898
{
1899
u32 bits, bitnum;
1900
int i;
1901
1902
/* loop for all 256 bits */
1903
for (i = 7; i >= 0 ; i--) {
1904
bits = dat[i];
1905
if (bits) {
1906
bitnum = fls(bits);
1907
return i * 32 + bitnum - 1;
1908
}
1909
}
1910
1911
return -1;
1912
}
1913
1914
int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
1915
{
1916
struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1917
1918
if (vpd->irr[0] & (1UL << NMI_VECTOR))
1919
return NMI_VECTOR;
1920
if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
1921
return ExtINT_VECTOR;
1922
1923
return find_highest_bits((int *)&vpd->irr[0]);
1924
}
1925
1926
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1927
{
1928
return vcpu->arch.timer_fired;
1929
}
1930
1931
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
1932
{
1933
return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE) ||
1934
(kvm_highest_pending_irq(vcpu) != -1);
1935
}
1936
1937
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1938
struct kvm_mp_state *mp_state)
1939
{
1940
mp_state->mp_state = vcpu->arch.mp_state;
1941
return 0;
1942
}
1943
1944
static int vcpu_reset(struct kvm_vcpu *vcpu)
1945
{
1946
int r;
1947
long psr;
1948
local_irq_save(psr);
1949
r = kvm_insert_vmm_mapping(vcpu);
1950
local_irq_restore(psr);
1951
if (r)
1952
goto fail;
1953
1954
vcpu->arch.launched = 0;
1955
kvm_arch_vcpu_uninit(vcpu);
1956
r = kvm_arch_vcpu_init(vcpu);
1957
if (r)
1958
goto fail;
1959
1960
kvm_purge_vmm_mapping(vcpu);
1961
r = 0;
1962
fail:
1963
return r;
1964
}
1965
1966
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1967
struct kvm_mp_state *mp_state)
1968
{
1969
int r = 0;
1970
1971
vcpu->arch.mp_state = mp_state->mp_state;
1972
if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
1973
r = vcpu_reset(vcpu);
1974
return r;
1975
}
1976
1977