Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/ia64/lib/copy_user.S
10817 views
1
/*
2
*
3
* Optimized version of the copy_user() routine.
4
* It is used to copy date across the kernel/user boundary.
5
*
6
* The source and destination are always on opposite side of
7
* the boundary. When reading from user space we must catch
8
* faults on loads. When writing to user space we must catch
9
* errors on stores. Note that because of the nature of the copy
10
* we don't need to worry about overlapping regions.
11
*
12
*
13
* Inputs:
14
* in0 address of source buffer
15
* in1 address of destination buffer
16
* in2 number of bytes to copy
17
*
18
* Outputs:
19
* ret0 0 in case of success. The number of bytes NOT copied in
20
* case of error.
21
*
22
* Copyright (C) 2000-2001 Hewlett-Packard Co
23
* Stephane Eranian <[email protected]>
24
*
25
* Fixme:
26
* - handle the case where we have more than 16 bytes and the alignment
27
* are different.
28
* - more benchmarking
29
* - fix extraneous stop bit introduced by the EX() macro.
30
*/
31
32
#include <asm/asmmacro.h>
33
34
//
35
// Tuneable parameters
36
//
37
#define COPY_BREAK 16 // we do byte copy below (must be >=16)
38
#define PIPE_DEPTH 21 // pipe depth
39
40
#define EPI p[PIPE_DEPTH-1]
41
42
//
43
// arguments
44
//
45
#define dst in0
46
#define src in1
47
#define len in2
48
49
//
50
// local registers
51
//
52
#define t1 r2 // rshift in bytes
53
#define t2 r3 // lshift in bytes
54
#define rshift r14 // right shift in bits
55
#define lshift r15 // left shift in bits
56
#define word1 r16
57
#define word2 r17
58
#define cnt r18
59
#define len2 r19
60
#define saved_lc r20
61
#define saved_pr r21
62
#define tmp r22
63
#define val r23
64
#define src1 r24
65
#define dst1 r25
66
#define src2 r26
67
#define dst2 r27
68
#define len1 r28
69
#define enddst r29
70
#define endsrc r30
71
#define saved_pfs r31
72
73
GLOBAL_ENTRY(__copy_user)
74
.prologue
75
.save ar.pfs, saved_pfs
76
alloc saved_pfs=ar.pfs,3,((2*PIPE_DEPTH+7)&~7),0,((2*PIPE_DEPTH+7)&~7)
77
78
.rotr val1[PIPE_DEPTH],val2[PIPE_DEPTH]
79
.rotp p[PIPE_DEPTH]
80
81
adds len2=-1,len // br.ctop is repeat/until
82
mov ret0=r0
83
84
;; // RAW of cfm when len=0
85
cmp.eq p8,p0=r0,len // check for zero length
86
.save ar.lc, saved_lc
87
mov saved_lc=ar.lc // preserve ar.lc (slow)
88
(p8) br.ret.spnt.many rp // empty mempcy()
89
;;
90
add enddst=dst,len // first byte after end of source
91
add endsrc=src,len // first byte after end of destination
92
.save pr, saved_pr
93
mov saved_pr=pr // preserve predicates
94
95
.body
96
97
mov dst1=dst // copy because of rotation
98
mov ar.ec=PIPE_DEPTH
99
mov pr.rot=1<<16 // p16=true all others are false
100
101
mov src1=src // copy because of rotation
102
mov ar.lc=len2 // initialize lc for small count
103
cmp.lt p10,p7=COPY_BREAK,len // if len > COPY_BREAK then long copy
104
105
xor tmp=src,dst // same alignment test prepare
106
(p10) br.cond.dptk .long_copy_user
107
;; // RAW pr.rot/p16 ?
108
//
109
// Now we do the byte by byte loop with software pipeline
110
//
111
// p7 is necessarily false by now
112
1:
113
EX(.failure_in_pipe1,(p16) ld1 val1[0]=[src1],1)
114
EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1)
115
br.ctop.dptk.few 1b
116
;;
117
mov ar.lc=saved_lc
118
mov pr=saved_pr,0xffffffffffff0000
119
mov ar.pfs=saved_pfs // restore ar.ec
120
br.ret.sptk.many rp // end of short memcpy
121
122
//
123
// Not 8-byte aligned
124
//
125
.diff_align_copy_user:
126
// At this point we know we have more than 16 bytes to copy
127
// and also that src and dest do _not_ have the same alignment.
128
and src2=0x7,src1 // src offset
129
and dst2=0x7,dst1 // dst offset
130
;;
131
// The basic idea is that we copy byte-by-byte at the head so
132
// that we can reach 8-byte alignment for both src1 and dst1.
133
// Then copy the body using software pipelined 8-byte copy,
134
// shifting the two back-to-back words right and left, then copy
135
// the tail by copying byte-by-byte.
136
//
137
// Fault handling. If the byte-by-byte at the head fails on the
138
// load, then restart and finish the pipleline by copying zeros
139
// to the dst1. Then copy zeros for the rest of dst1.
140
// If 8-byte software pipeline fails on the load, do the same as
141
// failure_in3 does. If the byte-by-byte at the tail fails, it is
142
// handled simply by failure_in_pipe1.
143
//
144
// The case p14 represents the source has more bytes in the
145
// the first word (by the shifted part), whereas the p15 needs to
146
// copy some bytes from the 2nd word of the source that has the
147
// tail of the 1st of the destination.
148
//
149
150
//
151
// Optimization. If dst1 is 8-byte aligned (quite common), we don't need
152
// to copy the head to dst1, to start 8-byte copy software pipeline.
153
// We know src1 is not 8-byte aligned in this case.
154
//
155
cmp.eq p14,p15=r0,dst2
156
(p15) br.cond.spnt 1f
157
;;
158
sub t1=8,src2
159
mov t2=src2
160
;;
161
shl rshift=t2,3
162
sub len1=len,t1 // set len1
163
;;
164
sub lshift=64,rshift
165
;;
166
br.cond.spnt .word_copy_user
167
;;
168
1:
169
cmp.leu p14,p15=src2,dst2
170
sub t1=dst2,src2
171
;;
172
.pred.rel "mutex", p14, p15
173
(p14) sub word1=8,src2 // (8 - src offset)
174
(p15) sub t1=r0,t1 // absolute value
175
(p15) sub word1=8,dst2 // (8 - dst offset)
176
;;
177
// For the case p14, we don't need to copy the shifted part to
178
// the 1st word of destination.
179
sub t2=8,t1
180
(p14) sub word1=word1,t1
181
;;
182
sub len1=len,word1 // resulting len
183
(p15) shl rshift=t1,3 // in bits
184
(p14) shl rshift=t2,3
185
;;
186
(p14) sub len1=len1,t1
187
adds cnt=-1,word1
188
;;
189
sub lshift=64,rshift
190
mov ar.ec=PIPE_DEPTH
191
mov pr.rot=1<<16 // p16=true all others are false
192
mov ar.lc=cnt
193
;;
194
2:
195
EX(.failure_in_pipe2,(p16) ld1 val1[0]=[src1],1)
196
EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1)
197
br.ctop.dptk.few 2b
198
;;
199
clrrrb
200
;;
201
.word_copy_user:
202
cmp.gtu p9,p0=16,len1
203
(p9) br.cond.spnt 4f // if (16 > len1) skip 8-byte copy
204
;;
205
shr.u cnt=len1,3 // number of 64-bit words
206
;;
207
adds cnt=-1,cnt
208
;;
209
.pred.rel "mutex", p14, p15
210
(p14) sub src1=src1,t2
211
(p15) sub src1=src1,t1
212
//
213
// Now both src1 and dst1 point to an 8-byte aligned address. And
214
// we have more than 8 bytes to copy.
215
//
216
mov ar.lc=cnt
217
mov ar.ec=PIPE_DEPTH
218
mov pr.rot=1<<16 // p16=true all others are false
219
;;
220
3:
221
//
222
// The pipleline consists of 3 stages:
223
// 1 (p16): Load a word from src1
224
// 2 (EPI_1): Shift right pair, saving to tmp
225
// 3 (EPI): Store tmp to dst1
226
//
227
// To make it simple, use at least 2 (p16) loops to set up val1[n]
228
// because we need 2 back-to-back val1[] to get tmp.
229
// Note that this implies EPI_2 must be p18 or greater.
230
//
231
232
#define EPI_1 p[PIPE_DEPTH-2]
233
#define SWITCH(pred, shift) cmp.eq pred,p0=shift,rshift
234
#define CASE(pred, shift) \
235
(pred) br.cond.spnt .copy_user_bit##shift
236
#define BODY(rshift) \
237
.copy_user_bit##rshift: \
238
1: \
239
EX(.failure_out,(EPI) st8 [dst1]=tmp,8); \
240
(EPI_1) shrp tmp=val1[PIPE_DEPTH-2],val1[PIPE_DEPTH-1],rshift; \
241
EX(3f,(p16) ld8 val1[1]=[src1],8); \
242
(p16) mov val1[0]=r0; \
243
br.ctop.dptk 1b; \
244
;; \
245
br.cond.sptk.many .diff_align_do_tail; \
246
2: \
247
(EPI) st8 [dst1]=tmp,8; \
248
(EPI_1) shrp tmp=val1[PIPE_DEPTH-2],val1[PIPE_DEPTH-1],rshift; \
249
3: \
250
(p16) mov val1[1]=r0; \
251
(p16) mov val1[0]=r0; \
252
br.ctop.dptk 2b; \
253
;; \
254
br.cond.sptk.many .failure_in2
255
256
//
257
// Since the instruction 'shrp' requires a fixed 128-bit value
258
// specifying the bits to shift, we need to provide 7 cases
259
// below.
260
//
261
SWITCH(p6, 8)
262
SWITCH(p7, 16)
263
SWITCH(p8, 24)
264
SWITCH(p9, 32)
265
SWITCH(p10, 40)
266
SWITCH(p11, 48)
267
SWITCH(p12, 56)
268
;;
269
CASE(p6, 8)
270
CASE(p7, 16)
271
CASE(p8, 24)
272
CASE(p9, 32)
273
CASE(p10, 40)
274
CASE(p11, 48)
275
CASE(p12, 56)
276
;;
277
BODY(8)
278
BODY(16)
279
BODY(24)
280
BODY(32)
281
BODY(40)
282
BODY(48)
283
BODY(56)
284
;;
285
.diff_align_do_tail:
286
.pred.rel "mutex", p14, p15
287
(p14) sub src1=src1,t1
288
(p14) adds dst1=-8,dst1
289
(p15) sub dst1=dst1,t1
290
;;
291
4:
292
// Tail correction.
293
//
294
// The problem with this piplelined loop is that the last word is not
295
// loaded and thus parf of the last word written is not correct.
296
// To fix that, we simply copy the tail byte by byte.
297
298
sub len1=endsrc,src1,1
299
clrrrb
300
;;
301
mov ar.ec=PIPE_DEPTH
302
mov pr.rot=1<<16 // p16=true all others are false
303
mov ar.lc=len1
304
;;
305
5:
306
EX(.failure_in_pipe1,(p16) ld1 val1[0]=[src1],1)
307
EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1)
308
br.ctop.dptk.few 5b
309
;;
310
mov ar.lc=saved_lc
311
mov pr=saved_pr,0xffffffffffff0000
312
mov ar.pfs=saved_pfs
313
br.ret.sptk.many rp
314
315
//
316
// Beginning of long mempcy (i.e. > 16 bytes)
317
//
318
.long_copy_user:
319
tbit.nz p6,p7=src1,0 // odd alignment
320
and tmp=7,tmp
321
;;
322
cmp.eq p10,p8=r0,tmp
323
mov len1=len // copy because of rotation
324
(p8) br.cond.dpnt .diff_align_copy_user
325
;;
326
// At this point we know we have more than 16 bytes to copy
327
// and also that both src and dest have the same alignment
328
// which may not be the one we want. So for now we must move
329
// forward slowly until we reach 16byte alignment: no need to
330
// worry about reaching the end of buffer.
331
//
332
EX(.failure_in1,(p6) ld1 val1[0]=[src1],1) // 1-byte aligned
333
(p6) adds len1=-1,len1;;
334
tbit.nz p7,p0=src1,1
335
;;
336
EX(.failure_in1,(p7) ld2 val1[1]=[src1],2) // 2-byte aligned
337
(p7) adds len1=-2,len1;;
338
tbit.nz p8,p0=src1,2
339
;;
340
//
341
// Stop bit not required after ld4 because if we fail on ld4
342
// we have never executed the ld1, therefore st1 is not executed.
343
//
344
EX(.failure_in1,(p8) ld4 val2[0]=[src1],4) // 4-byte aligned
345
;;
346
EX(.failure_out,(p6) st1 [dst1]=val1[0],1)
347
tbit.nz p9,p0=src1,3
348
;;
349
//
350
// Stop bit not required after ld8 because if we fail on ld8
351
// we have never executed the ld2, therefore st2 is not executed.
352
//
353
EX(.failure_in1,(p9) ld8 val2[1]=[src1],8) // 8-byte aligned
354
EX(.failure_out,(p7) st2 [dst1]=val1[1],2)
355
(p8) adds len1=-4,len1
356
;;
357
EX(.failure_out, (p8) st4 [dst1]=val2[0],4)
358
(p9) adds len1=-8,len1;;
359
shr.u cnt=len1,4 // number of 128-bit (2x64bit) words
360
;;
361
EX(.failure_out, (p9) st8 [dst1]=val2[1],8)
362
tbit.nz p6,p0=len1,3
363
cmp.eq p7,p0=r0,cnt
364
adds tmp=-1,cnt // br.ctop is repeat/until
365
(p7) br.cond.dpnt .dotail // we have less than 16 bytes left
366
;;
367
adds src2=8,src1
368
adds dst2=8,dst1
369
mov ar.lc=tmp
370
;;
371
//
372
// 16bytes/iteration
373
//
374
2:
375
EX(.failure_in3,(p16) ld8 val1[0]=[src1],16)
376
(p16) ld8 val2[0]=[src2],16
377
378
EX(.failure_out, (EPI) st8 [dst1]=val1[PIPE_DEPTH-1],16)
379
(EPI) st8 [dst2]=val2[PIPE_DEPTH-1],16
380
br.ctop.dptk 2b
381
;; // RAW on src1 when fall through from loop
382
//
383
// Tail correction based on len only
384
//
385
// No matter where we come from (loop or test) the src1 pointer
386
// is 16 byte aligned AND we have less than 16 bytes to copy.
387
//
388
.dotail:
389
EX(.failure_in1,(p6) ld8 val1[0]=[src1],8) // at least 8 bytes
390
tbit.nz p7,p0=len1,2
391
;;
392
EX(.failure_in1,(p7) ld4 val1[1]=[src1],4) // at least 4 bytes
393
tbit.nz p8,p0=len1,1
394
;;
395
EX(.failure_in1,(p8) ld2 val2[0]=[src1],2) // at least 2 bytes
396
tbit.nz p9,p0=len1,0
397
;;
398
EX(.failure_out, (p6) st8 [dst1]=val1[0],8)
399
;;
400
EX(.failure_in1,(p9) ld1 val2[1]=[src1]) // only 1 byte left
401
mov ar.lc=saved_lc
402
;;
403
EX(.failure_out,(p7) st4 [dst1]=val1[1],4)
404
mov pr=saved_pr,0xffffffffffff0000
405
;;
406
EX(.failure_out, (p8) st2 [dst1]=val2[0],2)
407
mov ar.pfs=saved_pfs
408
;;
409
EX(.failure_out, (p9) st1 [dst1]=val2[1])
410
br.ret.sptk.many rp
411
412
413
//
414
// Here we handle the case where the byte by byte copy fails
415
// on the load.
416
// Several factors make the zeroing of the rest of the buffer kind of
417
// tricky:
418
// - the pipeline: loads/stores are not in sync (pipeline)
419
//
420
// In the same loop iteration, the dst1 pointer does not directly
421
// reflect where the faulty load was.
422
//
423
// - pipeline effect
424
// When you get a fault on load, you may have valid data from
425
// previous loads not yet store in transit. Such data must be
426
// store normally before moving onto zeroing the rest.
427
//
428
// - single/multi dispersal independence.
429
//
430
// solution:
431
// - we don't disrupt the pipeline, i.e. data in transit in
432
// the software pipeline will be eventually move to memory.
433
// We simply replace the load with a simple mov and keep the
434
// pipeline going. We can't really do this inline because
435
// p16 is always reset to 1 when lc > 0.
436
//
437
.failure_in_pipe1:
438
sub ret0=endsrc,src1 // number of bytes to zero, i.e. not copied
439
1:
440
(p16) mov val1[0]=r0
441
(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1
442
br.ctop.dptk 1b
443
;;
444
mov pr=saved_pr,0xffffffffffff0000
445
mov ar.lc=saved_lc
446
mov ar.pfs=saved_pfs
447
br.ret.sptk.many rp
448
449
//
450
// This is the case where the byte by byte copy fails on the load
451
// when we copy the head. We need to finish the pipeline and copy
452
// zeros for the rest of the destination. Since this happens
453
// at the top we still need to fill the body and tail.
454
.failure_in_pipe2:
455
sub ret0=endsrc,src1 // number of bytes to zero, i.e. not copied
456
2:
457
(p16) mov val1[0]=r0
458
(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1
459
br.ctop.dptk 2b
460
;;
461
sub len=enddst,dst1,1 // precompute len
462
br.cond.dptk.many .failure_in1bis
463
;;
464
465
//
466
// Here we handle the head & tail part when we check for alignment.
467
// The following code handles only the load failures. The
468
// main diffculty comes from the fact that loads/stores are
469
// scheduled. So when you fail on a load, the stores corresponding
470
// to previous successful loads must be executed.
471
//
472
// However some simplifications are possible given the way
473
// things work.
474
//
475
// 1) HEAD
476
// Theory of operation:
477
//
478
// Page A | Page B
479
// ---------|-----
480
// 1|8 x
481
// 1 2|8 x
482
// 4|8 x
483
// 1 4|8 x
484
// 2 4|8 x
485
// 1 2 4|8 x
486
// |1
487
// |2 x
488
// |4 x
489
//
490
// page_size >= 4k (2^12). (x means 4, 2, 1)
491
// Here we suppose Page A exists and Page B does not.
492
//
493
// As we move towards eight byte alignment we may encounter faults.
494
// The numbers on each page show the size of the load (current alignment).
495
//
496
// Key point:
497
// - if you fail on 1, 2, 4 then you have never executed any smaller
498
// size loads, e.g. failing ld4 means no ld1 nor ld2 executed
499
// before.
500
//
501
// This allows us to simplify the cleanup code, because basically you
502
// only have to worry about "pending" stores in the case of a failing
503
// ld8(). Given the way the code is written today, this means only
504
// worry about st2, st4. There we can use the information encapsulated
505
// into the predicates.
506
//
507
// Other key point:
508
// - if you fail on the ld8 in the head, it means you went straight
509
// to it, i.e. 8byte alignment within an unexisting page.
510
// Again this comes from the fact that if you crossed just for the ld8 then
511
// you are 8byte aligned but also 16byte align, therefore you would
512
// either go for the 16byte copy loop OR the ld8 in the tail part.
513
// The combination ld1, ld2, ld4, ld8 where you fail on ld8 is impossible
514
// because it would mean you had 15bytes to copy in which case you
515
// would have defaulted to the byte by byte copy.
516
//
517
//
518
// 2) TAIL
519
// Here we now we have less than 16 bytes AND we are either 8 or 16 byte
520
// aligned.
521
//
522
// Key point:
523
// This means that we either:
524
// - are right on a page boundary
525
// OR
526
// - are at more than 16 bytes from a page boundary with
527
// at most 15 bytes to copy: no chance of crossing.
528
//
529
// This allows us to assume that if we fail on a load we haven't possibly
530
// executed any of the previous (tail) ones, so we don't need to do
531
// any stores. For instance, if we fail on ld2, this means we had
532
// 2 or 3 bytes left to copy and we did not execute the ld8 nor ld4.
533
//
534
// This means that we are in a situation similar the a fault in the
535
// head part. That's nice!
536
//
537
.failure_in1:
538
sub ret0=endsrc,src1 // number of bytes to zero, i.e. not copied
539
sub len=endsrc,src1,1
540
//
541
// we know that ret0 can never be zero at this point
542
// because we failed why trying to do a load, i.e. there is still
543
// some work to do.
544
// The failure_in1bis and length problem is taken care of at the
545
// calling side.
546
//
547
;;
548
.failure_in1bis: // from (.failure_in3)
549
mov ar.lc=len // Continue with a stupid byte store.
550
;;
551
5:
552
st1 [dst1]=r0,1
553
br.cloop.dptk 5b
554
;;
555
mov pr=saved_pr,0xffffffffffff0000
556
mov ar.lc=saved_lc
557
mov ar.pfs=saved_pfs
558
br.ret.sptk.many rp
559
560
//
561
// Here we simply restart the loop but instead
562
// of doing loads we fill the pipeline with zeroes
563
// We can't simply store r0 because we may have valid
564
// data in transit in the pipeline.
565
// ar.lc and ar.ec are setup correctly at this point
566
//
567
// we MUST use src1/endsrc here and not dst1/enddst because
568
// of the pipeline effect.
569
//
570
.failure_in3:
571
sub ret0=endsrc,src1 // number of bytes to zero, i.e. not copied
572
;;
573
2:
574
(p16) mov val1[0]=r0
575
(p16) mov val2[0]=r0
576
(EPI) st8 [dst1]=val1[PIPE_DEPTH-1],16
577
(EPI) st8 [dst2]=val2[PIPE_DEPTH-1],16
578
br.ctop.dptk 2b
579
;;
580
cmp.ne p6,p0=dst1,enddst // Do we need to finish the tail ?
581
sub len=enddst,dst1,1 // precompute len
582
(p6) br.cond.dptk .failure_in1bis
583
;;
584
mov pr=saved_pr,0xffffffffffff0000
585
mov ar.lc=saved_lc
586
mov ar.pfs=saved_pfs
587
br.ret.sptk.many rp
588
589
.failure_in2:
590
sub ret0=endsrc,src1
591
cmp.ne p6,p0=dst1,enddst // Do we need to finish the tail ?
592
sub len=enddst,dst1,1 // precompute len
593
(p6) br.cond.dptk .failure_in1bis
594
;;
595
mov pr=saved_pr,0xffffffffffff0000
596
mov ar.lc=saved_lc
597
mov ar.pfs=saved_pfs
598
br.ret.sptk.many rp
599
600
//
601
// handling of failures on stores: that's the easy part
602
//
603
.failure_out:
604
sub ret0=enddst,dst1
605
mov pr=saved_pr,0xffffffffffff0000
606
mov ar.lc=saved_lc
607
608
mov ar.pfs=saved_pfs
609
br.ret.sptk.many rp
610
END(__copy_user)
611
612