Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/ia64/lib/do_csum.S
10817 views
1
/*
2
*
3
* Optmized version of the standard do_csum() function
4
*
5
* Return: a 64bit quantity containing the 16bit Internet checksum
6
*
7
* Inputs:
8
* in0: address of buffer to checksum (char *)
9
* in1: length of the buffer (int)
10
*
11
* Copyright (C) 1999, 2001-2002 Hewlett-Packard Co
12
* Stephane Eranian <[email protected]>
13
*
14
* 02/04/22 Ken Chen <[email protected]>
15
* Data locality study on the checksum buffer.
16
* More optimization cleanup - remove excessive stop bits.
17
* 02/04/08 David Mosberger <[email protected]>
18
* More cleanup and tuning.
19
* 01/04/18 Jun Nakajima <[email protected]>
20
* Clean up and optimize and the software pipeline, loading two
21
* back-to-back 8-byte words per loop. Clean up the initialization
22
* for the loop. Support the cases where load latency = 1 or 2.
23
* Set CONFIG_IA64_LOAD_LATENCY to 1 or 2 (default).
24
*/
25
26
#include <asm/asmmacro.h>
27
28
//
29
// Theory of operations:
30
// The goal is to go as quickly as possible to the point where
31
// we can checksum 16 bytes/loop. Before reaching that point we must
32
// take care of incorrect alignment of first byte.
33
//
34
// The code hereafter also takes care of the "tail" part of the buffer
35
// before entering the core loop, if any. The checksum is a sum so it
36
// allows us to commute operations. So we do the "head" and "tail"
37
// first to finish at full speed in the body. Once we get the head and
38
// tail values, we feed them into the pipeline, very handy initialization.
39
//
40
// Of course we deal with the special case where the whole buffer fits
41
// into one 8 byte word. In this case we have only one entry in the pipeline.
42
//
43
// We use a (LOAD_LATENCY+2)-stage pipeline in the loop to account for
44
// possible load latency and also to accommodate for head and tail.
45
//
46
// The end of the function deals with folding the checksum from 64bits
47
// down to 16bits taking care of the carry.
48
//
49
// This version avoids synchronization in the core loop by also using a
50
// pipeline for the accumulation of the checksum in resultx[] (x=1,2).
51
//
52
// wordx[] (x=1,2)
53
// |---|
54
// | | 0 : new value loaded in pipeline
55
// |---|
56
// | | - : in transit data
57
// |---|
58
// | | LOAD_LATENCY : current value to add to checksum
59
// |---|
60
// | | LOAD_LATENCY+1 : previous value added to checksum
61
// |---| (previous iteration)
62
//
63
// resultx[] (x=1,2)
64
// |---|
65
// | | 0 : initial value
66
// |---|
67
// | | LOAD_LATENCY-1 : new checksum
68
// |---|
69
// | | LOAD_LATENCY : previous value of checksum
70
// |---|
71
// | | LOAD_LATENCY+1 : final checksum when out of the loop
72
// |---|
73
//
74
//
75
// See RFC1071 "Computing the Internet Checksum" for various techniques for
76
// calculating the Internet checksum.
77
//
78
// NOT YET DONE:
79
// - Maybe another algorithm which would take care of the folding at the
80
// end in a different manner
81
// - Work with people more knowledgeable than me on the network stack
82
// to figure out if we could not split the function depending on the
83
// type of packet or alignment we get. Like the ip_fast_csum() routine
84
// where we know we have at least 20bytes worth of data to checksum.
85
// - Do a better job of handling small packets.
86
// - Note on prefetching: it was found that under various load, i.e. ftp read/write,
87
// nfs read/write, the L1 cache hit rate is at 60% and L2 cache hit rate is at 99.8%
88
// on the data that buffer points to (partly because the checksum is often preceded by
89
// a copy_from_user()). This finding indiate that lfetch will not be beneficial since
90
// the data is already in the cache.
91
//
92
93
#define saved_pfs r11
94
#define hmask r16
95
#define tmask r17
96
#define first1 r18
97
#define firstval r19
98
#define firstoff r20
99
#define last r21
100
#define lastval r22
101
#define lastoff r23
102
#define saved_lc r24
103
#define saved_pr r25
104
#define tmp1 r26
105
#define tmp2 r27
106
#define tmp3 r28
107
#define carry1 r29
108
#define carry2 r30
109
#define first2 r31
110
111
#define buf in0
112
#define len in1
113
114
#define LOAD_LATENCY 2 // XXX fix me
115
116
#if (LOAD_LATENCY != 1) && (LOAD_LATENCY != 2)
117
# error "Only 1 or 2 is supported/tested for LOAD_LATENCY."
118
#endif
119
120
#define PIPE_DEPTH (LOAD_LATENCY+2)
121
#define ELD p[LOAD_LATENCY] // end of load
122
#define ELD_1 p[LOAD_LATENCY+1] // and next stage
123
124
// unsigned long do_csum(unsigned char *buf,long len)
125
126
GLOBAL_ENTRY(do_csum)
127
.prologue
128
.save ar.pfs, saved_pfs
129
alloc saved_pfs=ar.pfs,2,16,0,16
130
.rotr word1[4], word2[4],result1[LOAD_LATENCY+2],result2[LOAD_LATENCY+2]
131
.rotp p[PIPE_DEPTH], pC1[2], pC2[2]
132
mov ret0=r0 // in case we have zero length
133
cmp.lt p0,p6=r0,len // check for zero length or negative (32bit len)
134
;;
135
add tmp1=buf,len // last byte's address
136
.save pr, saved_pr
137
mov saved_pr=pr // preserve predicates (rotation)
138
(p6) br.ret.spnt.many rp // return if zero or negative length
139
140
mov hmask=-1 // initialize head mask
141
tbit.nz p15,p0=buf,0 // is buf an odd address?
142
and first1=-8,buf // 8-byte align down address of first1 element
143
144
and firstoff=7,buf // how many bytes off for first1 element
145
mov tmask=-1 // initialize tail mask
146
147
;;
148
adds tmp2=-1,tmp1 // last-1
149
and lastoff=7,tmp1 // how many bytes off for last element
150
;;
151
sub tmp1=8,lastoff // complement to lastoff
152
and last=-8,tmp2 // address of word containing last byte
153
;;
154
sub tmp3=last,first1 // tmp3=distance from first1 to last
155
.save ar.lc, saved_lc
156
mov saved_lc=ar.lc // save lc
157
cmp.eq p8,p9=last,first1 // everything fits in one word ?
158
159
ld8 firstval=[first1],8 // load, ahead of time, "first1" word
160
and tmp1=7, tmp1 // make sure that if tmp1==8 -> tmp1=0
161
shl tmp2=firstoff,3 // number of bits
162
;;
163
(p9) ld8 lastval=[last] // load, ahead of time, "last" word, if needed
164
shl tmp1=tmp1,3 // number of bits
165
(p9) adds tmp3=-8,tmp3 // effectively loaded
166
;;
167
(p8) mov lastval=r0 // we don't need lastval if first1==last
168
shl hmask=hmask,tmp2 // build head mask, mask off [0,first1off[
169
shr.u tmask=tmask,tmp1 // build tail mask, mask off ]8,lastoff]
170
;;
171
.body
172
#define count tmp3
173
174
(p8) and hmask=hmask,tmask // apply tail mask to head mask if 1 word only
175
(p9) and word2[0]=lastval,tmask // mask last it as appropriate
176
shr.u count=count,3 // how many 8-byte?
177
;;
178
// If count is odd, finish this 8-byte word so that we can
179
// load two back-to-back 8-byte words per loop thereafter.
180
and word1[0]=firstval,hmask // and mask it as appropriate
181
tbit.nz p10,p11=count,0 // if (count is odd)
182
;;
183
(p8) mov result1[0]=word1[0]
184
(p9) add result1[0]=word1[0],word2[0]
185
;;
186
cmp.ltu p6,p0=result1[0],word1[0] // check the carry
187
cmp.eq.or.andcm p8,p0=0,count // exit if zero 8-byte
188
;;
189
(p6) adds result1[0]=1,result1[0]
190
(p8) br.cond.dptk .do_csum_exit // if (within an 8-byte word)
191
(p11) br.cond.dptk .do_csum16 // if (count is even)
192
193
// Here count is odd.
194
ld8 word1[1]=[first1],8 // load an 8-byte word
195
cmp.eq p9,p10=1,count // if (count == 1)
196
adds count=-1,count // loaded an 8-byte word
197
;;
198
add result1[0]=result1[0],word1[1]
199
;;
200
cmp.ltu p6,p0=result1[0],word1[1]
201
;;
202
(p6) adds result1[0]=1,result1[0]
203
(p9) br.cond.sptk .do_csum_exit // if (count == 1) exit
204
// Fall through to calculate the checksum, feeding result1[0] as
205
// the initial value in result1[0].
206
//
207
// Calculate the checksum loading two 8-byte words per loop.
208
//
209
.do_csum16:
210
add first2=8,first1
211
shr.u count=count,1 // we do 16 bytes per loop
212
;;
213
adds count=-1,count
214
mov carry1=r0
215
mov carry2=r0
216
brp.loop.imp 1f,2f
217
;;
218
mov ar.ec=PIPE_DEPTH
219
mov ar.lc=count // set lc
220
mov pr.rot=1<<16
221
// result1[0] must be initialized in advance.
222
mov result2[0]=r0
223
;;
224
.align 32
225
1:
226
(ELD_1) cmp.ltu pC1[0],p0=result1[LOAD_LATENCY],word1[LOAD_LATENCY+1]
227
(pC1[1])adds carry1=1,carry1
228
(ELD_1) cmp.ltu pC2[0],p0=result2[LOAD_LATENCY],word2[LOAD_LATENCY+1]
229
(pC2[1])adds carry2=1,carry2
230
(ELD) add result1[LOAD_LATENCY-1]=result1[LOAD_LATENCY],word1[LOAD_LATENCY]
231
(ELD) add result2[LOAD_LATENCY-1]=result2[LOAD_LATENCY],word2[LOAD_LATENCY]
232
2:
233
(p[0]) ld8 word1[0]=[first1],16
234
(p[0]) ld8 word2[0]=[first2],16
235
br.ctop.sptk 1b
236
;;
237
// Since len is a 32-bit value, carry cannot be larger than a 64-bit value.
238
(pC1[1])adds carry1=1,carry1 // since we miss the last one
239
(pC2[1])adds carry2=1,carry2
240
;;
241
add result1[LOAD_LATENCY+1]=result1[LOAD_LATENCY+1],carry1
242
add result2[LOAD_LATENCY+1]=result2[LOAD_LATENCY+1],carry2
243
;;
244
cmp.ltu p6,p0=result1[LOAD_LATENCY+1],carry1
245
cmp.ltu p7,p0=result2[LOAD_LATENCY+1],carry2
246
;;
247
(p6) adds result1[LOAD_LATENCY+1]=1,result1[LOAD_LATENCY+1]
248
(p7) adds result2[LOAD_LATENCY+1]=1,result2[LOAD_LATENCY+1]
249
;;
250
add result1[0]=result1[LOAD_LATENCY+1],result2[LOAD_LATENCY+1]
251
;;
252
cmp.ltu p6,p0=result1[0],result2[LOAD_LATENCY+1]
253
;;
254
(p6) adds result1[0]=1,result1[0]
255
;;
256
.do_csum_exit:
257
//
258
// now fold 64 into 16 bits taking care of carry
259
// that's not very good because it has lots of sequentiality
260
//
261
mov tmp3=0xffff
262
zxt4 tmp1=result1[0]
263
shr.u tmp2=result1[0],32
264
;;
265
add result1[0]=tmp1,tmp2
266
;;
267
and tmp1=result1[0],tmp3
268
shr.u tmp2=result1[0],16
269
;;
270
add result1[0]=tmp1,tmp2
271
;;
272
and tmp1=result1[0],tmp3
273
shr.u tmp2=result1[0],16
274
;;
275
add result1[0]=tmp1,tmp2
276
;;
277
and tmp1=result1[0],tmp3
278
shr.u tmp2=result1[0],16
279
;;
280
add ret0=tmp1,tmp2
281
mov pr=saved_pr,0xffffffffffff0000
282
;;
283
// if buf was odd then swap bytes
284
mov ar.pfs=saved_pfs // restore ar.ec
285
(p15) mux1 ret0=ret0,@rev // reverse word
286
;;
287
mov ar.lc=saved_lc
288
(p15) shr.u ret0=ret0,64-16 // + shift back to position = swap bytes
289
br.ret.sptk.many rp
290
291
// I (Jun Nakajima) wrote an equivalent code (see below), but it was
292
// not much better than the original. So keep the original there so that
293
// someone else can challenge.
294
//
295
// shr.u word1[0]=result1[0],32
296
// zxt4 result1[0]=result1[0]
297
// ;;
298
// add result1[0]=result1[0],word1[0]
299
// ;;
300
// zxt2 result2[0]=result1[0]
301
// extr.u word1[0]=result1[0],16,16
302
// shr.u carry1=result1[0],32
303
// ;;
304
// add result2[0]=result2[0],word1[0]
305
// ;;
306
// add result2[0]=result2[0],carry1
307
// ;;
308
// extr.u ret0=result2[0],16,16
309
// ;;
310
// add ret0=ret0,result2[0]
311
// ;;
312
// zxt2 ret0=ret0
313
// mov ar.pfs=saved_pfs // restore ar.ec
314
// mov pr=saved_pr,0xffffffffffff0000
315
// ;;
316
// // if buf was odd then swap bytes
317
// mov ar.lc=saved_lc
318
//(p15) mux1 ret0=ret0,@rev // reverse word
319
// ;;
320
//(p15) shr.u ret0=ret0,64-16 // + shift back to position = swap bytes
321
// br.ret.sptk.many rp
322
323
END(do_csum)
324
325