Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/ia64/mm/discontig.c
10817 views
1
/*
2
* Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved.
3
* Copyright (c) 2001 Intel Corp.
4
* Copyright (c) 2001 Tony Luck <[email protected]>
5
* Copyright (c) 2002 NEC Corp.
6
* Copyright (c) 2002 Kimio Suganuma <[email protected]>
7
* Copyright (c) 2004 Silicon Graphics, Inc
8
* Russ Anderson <[email protected]>
9
* Jesse Barnes <[email protected]>
10
* Jack Steiner <[email protected]>
11
*/
12
13
/*
14
* Platform initialization for Discontig Memory
15
*/
16
17
#include <linux/kernel.h>
18
#include <linux/mm.h>
19
#include <linux/nmi.h>
20
#include <linux/swap.h>
21
#include <linux/bootmem.h>
22
#include <linux/acpi.h>
23
#include <linux/efi.h>
24
#include <linux/nodemask.h>
25
#include <linux/slab.h>
26
#include <asm/pgalloc.h>
27
#include <asm/tlb.h>
28
#include <asm/meminit.h>
29
#include <asm/numa.h>
30
#include <asm/sections.h>
31
32
/*
33
* Track per-node information needed to setup the boot memory allocator, the
34
* per-node areas, and the real VM.
35
*/
36
struct early_node_data {
37
struct ia64_node_data *node_data;
38
unsigned long pernode_addr;
39
unsigned long pernode_size;
40
unsigned long num_physpages;
41
#ifdef CONFIG_ZONE_DMA
42
unsigned long num_dma_physpages;
43
#endif
44
unsigned long min_pfn;
45
unsigned long max_pfn;
46
};
47
48
static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
49
static nodemask_t memory_less_mask __initdata;
50
51
pg_data_t *pgdat_list[MAX_NUMNODES];
52
53
/*
54
* To prevent cache aliasing effects, align per-node structures so that they
55
* start at addresses that are strided by node number.
56
*/
57
#define MAX_NODE_ALIGN_OFFSET (32 * 1024 * 1024)
58
#define NODEDATA_ALIGN(addr, node) \
59
((((addr) + 1024*1024-1) & ~(1024*1024-1)) + \
60
(((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
61
62
/**
63
* build_node_maps - callback to setup bootmem structs for each node
64
* @start: physical start of range
65
* @len: length of range
66
* @node: node where this range resides
67
*
68
* We allocate a struct bootmem_data for each piece of memory that we wish to
69
* treat as a virtually contiguous block (i.e. each node). Each such block
70
* must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
71
* if necessary. Any non-existent pages will simply be part of the virtual
72
* memmap. We also update min_low_pfn and max_low_pfn here as we receive
73
* memory ranges from the caller.
74
*/
75
static int __init build_node_maps(unsigned long start, unsigned long len,
76
int node)
77
{
78
unsigned long spfn, epfn, end = start + len;
79
struct bootmem_data *bdp = &bootmem_node_data[node];
80
81
epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
82
spfn = GRANULEROUNDDOWN(start) >> PAGE_SHIFT;
83
84
if (!bdp->node_low_pfn) {
85
bdp->node_min_pfn = spfn;
86
bdp->node_low_pfn = epfn;
87
} else {
88
bdp->node_min_pfn = min(spfn, bdp->node_min_pfn);
89
bdp->node_low_pfn = max(epfn, bdp->node_low_pfn);
90
}
91
92
return 0;
93
}
94
95
/**
96
* early_nr_cpus_node - return number of cpus on a given node
97
* @node: node to check
98
*
99
* Count the number of cpus on @node. We can't use nr_cpus_node() yet because
100
* acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
101
* called yet. Note that node 0 will also count all non-existent cpus.
102
*/
103
static int __meminit early_nr_cpus_node(int node)
104
{
105
int cpu, n = 0;
106
107
for_each_possible_early_cpu(cpu)
108
if (node == node_cpuid[cpu].nid)
109
n++;
110
111
return n;
112
}
113
114
/**
115
* compute_pernodesize - compute size of pernode data
116
* @node: the node id.
117
*/
118
static unsigned long __meminit compute_pernodesize(int node)
119
{
120
unsigned long pernodesize = 0, cpus;
121
122
cpus = early_nr_cpus_node(node);
123
pernodesize += PERCPU_PAGE_SIZE * cpus;
124
pernodesize += node * L1_CACHE_BYTES;
125
pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
126
pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
127
pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
128
pernodesize = PAGE_ALIGN(pernodesize);
129
return pernodesize;
130
}
131
132
/**
133
* per_cpu_node_setup - setup per-cpu areas on each node
134
* @cpu_data: per-cpu area on this node
135
* @node: node to setup
136
*
137
* Copy the static per-cpu data into the region we just set aside and then
138
* setup __per_cpu_offset for each CPU on this node. Return a pointer to
139
* the end of the area.
140
*/
141
static void *per_cpu_node_setup(void *cpu_data, int node)
142
{
143
#ifdef CONFIG_SMP
144
int cpu;
145
146
for_each_possible_early_cpu(cpu) {
147
void *src = cpu == 0 ? __cpu0_per_cpu : __phys_per_cpu_start;
148
149
if (node != node_cpuid[cpu].nid)
150
continue;
151
152
memcpy(__va(cpu_data), src, __per_cpu_end - __per_cpu_start);
153
__per_cpu_offset[cpu] = (char *)__va(cpu_data) -
154
__per_cpu_start;
155
156
/*
157
* percpu area for cpu0 is moved from the __init area
158
* which is setup by head.S and used till this point.
159
* Update ar.k3. This move is ensures that percpu
160
* area for cpu0 is on the correct node and its
161
* virtual address isn't insanely far from other
162
* percpu areas which is important for congruent
163
* percpu allocator.
164
*/
165
if (cpu == 0)
166
ia64_set_kr(IA64_KR_PER_CPU_DATA,
167
(unsigned long)cpu_data -
168
(unsigned long)__per_cpu_start);
169
170
cpu_data += PERCPU_PAGE_SIZE;
171
}
172
#endif
173
return cpu_data;
174
}
175
176
#ifdef CONFIG_SMP
177
/**
178
* setup_per_cpu_areas - setup percpu areas
179
*
180
* Arch code has already allocated and initialized percpu areas. All
181
* this function has to do is to teach the determined layout to the
182
* dynamic percpu allocator, which happens to be more complex than
183
* creating whole new ones using helpers.
184
*/
185
void __init setup_per_cpu_areas(void)
186
{
187
struct pcpu_alloc_info *ai;
188
struct pcpu_group_info *uninitialized_var(gi);
189
unsigned int *cpu_map;
190
void *base;
191
unsigned long base_offset;
192
unsigned int cpu;
193
ssize_t static_size, reserved_size, dyn_size;
194
int node, prev_node, unit, nr_units, rc;
195
196
ai = pcpu_alloc_alloc_info(MAX_NUMNODES, nr_cpu_ids);
197
if (!ai)
198
panic("failed to allocate pcpu_alloc_info");
199
cpu_map = ai->groups[0].cpu_map;
200
201
/* determine base */
202
base = (void *)ULONG_MAX;
203
for_each_possible_cpu(cpu)
204
base = min(base,
205
(void *)(__per_cpu_offset[cpu] + __per_cpu_start));
206
base_offset = (void *)__per_cpu_start - base;
207
208
/* build cpu_map, units are grouped by node */
209
unit = 0;
210
for_each_node(node)
211
for_each_possible_cpu(cpu)
212
if (node == node_cpuid[cpu].nid)
213
cpu_map[unit++] = cpu;
214
nr_units = unit;
215
216
/* set basic parameters */
217
static_size = __per_cpu_end - __per_cpu_start;
218
reserved_size = PERCPU_MODULE_RESERVE;
219
dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
220
if (dyn_size < 0)
221
panic("percpu area overflow static=%zd reserved=%zd\n",
222
static_size, reserved_size);
223
224
ai->static_size = static_size;
225
ai->reserved_size = reserved_size;
226
ai->dyn_size = dyn_size;
227
ai->unit_size = PERCPU_PAGE_SIZE;
228
ai->atom_size = PAGE_SIZE;
229
ai->alloc_size = PERCPU_PAGE_SIZE;
230
231
/*
232
* CPUs are put into groups according to node. Walk cpu_map
233
* and create new groups at node boundaries.
234
*/
235
prev_node = -1;
236
ai->nr_groups = 0;
237
for (unit = 0; unit < nr_units; unit++) {
238
cpu = cpu_map[unit];
239
node = node_cpuid[cpu].nid;
240
241
if (node == prev_node) {
242
gi->nr_units++;
243
continue;
244
}
245
prev_node = node;
246
247
gi = &ai->groups[ai->nr_groups++];
248
gi->nr_units = 1;
249
gi->base_offset = __per_cpu_offset[cpu] + base_offset;
250
gi->cpu_map = &cpu_map[unit];
251
}
252
253
rc = pcpu_setup_first_chunk(ai, base);
254
if (rc)
255
panic("failed to setup percpu area (err=%d)", rc);
256
257
pcpu_free_alloc_info(ai);
258
}
259
#endif
260
261
/**
262
* fill_pernode - initialize pernode data.
263
* @node: the node id.
264
* @pernode: physical address of pernode data
265
* @pernodesize: size of the pernode data
266
*/
267
static void __init fill_pernode(int node, unsigned long pernode,
268
unsigned long pernodesize)
269
{
270
void *cpu_data;
271
int cpus = early_nr_cpus_node(node);
272
struct bootmem_data *bdp = &bootmem_node_data[node];
273
274
mem_data[node].pernode_addr = pernode;
275
mem_data[node].pernode_size = pernodesize;
276
memset(__va(pernode), 0, pernodesize);
277
278
cpu_data = (void *)pernode;
279
pernode += PERCPU_PAGE_SIZE * cpus;
280
pernode += node * L1_CACHE_BYTES;
281
282
pgdat_list[node] = __va(pernode);
283
pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
284
285
mem_data[node].node_data = __va(pernode);
286
pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
287
288
pgdat_list[node]->bdata = bdp;
289
pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
290
291
cpu_data = per_cpu_node_setup(cpu_data, node);
292
293
return;
294
}
295
296
/**
297
* find_pernode_space - allocate memory for memory map and per-node structures
298
* @start: physical start of range
299
* @len: length of range
300
* @node: node where this range resides
301
*
302
* This routine reserves space for the per-cpu data struct, the list of
303
* pg_data_ts and the per-node data struct. Each node will have something like
304
* the following in the first chunk of addr. space large enough to hold it.
305
*
306
* ________________________
307
* | |
308
* |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
309
* | PERCPU_PAGE_SIZE * | start and length big enough
310
* | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus.
311
* |------------------------|
312
* | local pg_data_t * |
313
* |------------------------|
314
* | local ia64_node_data |
315
* |------------------------|
316
* | ??? |
317
* |________________________|
318
*
319
* Once this space has been set aside, the bootmem maps are initialized. We
320
* could probably move the allocation of the per-cpu and ia64_node_data space
321
* outside of this function and use alloc_bootmem_node(), but doing it here
322
* is straightforward and we get the alignments we want so...
323
*/
324
static int __init find_pernode_space(unsigned long start, unsigned long len,
325
int node)
326
{
327
unsigned long spfn, epfn;
328
unsigned long pernodesize = 0, pernode, pages, mapsize;
329
struct bootmem_data *bdp = &bootmem_node_data[node];
330
331
spfn = start >> PAGE_SHIFT;
332
epfn = (start + len) >> PAGE_SHIFT;
333
334
pages = bdp->node_low_pfn - bdp->node_min_pfn;
335
mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
336
337
/*
338
* Make sure this memory falls within this node's usable memory
339
* since we may have thrown some away in build_maps().
340
*/
341
if (spfn < bdp->node_min_pfn || epfn > bdp->node_low_pfn)
342
return 0;
343
344
/* Don't setup this node's local space twice... */
345
if (mem_data[node].pernode_addr)
346
return 0;
347
348
/*
349
* Calculate total size needed, incl. what's necessary
350
* for good alignment and alias prevention.
351
*/
352
pernodesize = compute_pernodesize(node);
353
pernode = NODEDATA_ALIGN(start, node);
354
355
/* Is this range big enough for what we want to store here? */
356
if (start + len > (pernode + pernodesize + mapsize))
357
fill_pernode(node, pernode, pernodesize);
358
359
return 0;
360
}
361
362
/**
363
* free_node_bootmem - free bootmem allocator memory for use
364
* @start: physical start of range
365
* @len: length of range
366
* @node: node where this range resides
367
*
368
* Simply calls the bootmem allocator to free the specified ranged from
369
* the given pg_data_t's bdata struct. After this function has been called
370
* for all the entries in the EFI memory map, the bootmem allocator will
371
* be ready to service allocation requests.
372
*/
373
static int __init free_node_bootmem(unsigned long start, unsigned long len,
374
int node)
375
{
376
free_bootmem_node(pgdat_list[node], start, len);
377
378
return 0;
379
}
380
381
/**
382
* reserve_pernode_space - reserve memory for per-node space
383
*
384
* Reserve the space used by the bootmem maps & per-node space in the boot
385
* allocator so that when we actually create the real mem maps we don't
386
* use their memory.
387
*/
388
static void __init reserve_pernode_space(void)
389
{
390
unsigned long base, size, pages;
391
struct bootmem_data *bdp;
392
int node;
393
394
for_each_online_node(node) {
395
pg_data_t *pdp = pgdat_list[node];
396
397
if (node_isset(node, memory_less_mask))
398
continue;
399
400
bdp = pdp->bdata;
401
402
/* First the bootmem_map itself */
403
pages = bdp->node_low_pfn - bdp->node_min_pfn;
404
size = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
405
base = __pa(bdp->node_bootmem_map);
406
reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT);
407
408
/* Now the per-node space */
409
size = mem_data[node].pernode_size;
410
base = __pa(mem_data[node].pernode_addr);
411
reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT);
412
}
413
}
414
415
static void __meminit scatter_node_data(void)
416
{
417
pg_data_t **dst;
418
int node;
419
420
/*
421
* for_each_online_node() can't be used at here.
422
* node_online_map is not set for hot-added nodes at this time,
423
* because we are halfway through initialization of the new node's
424
* structures. If for_each_online_node() is used, a new node's
425
* pg_data_ptrs will be not initialized. Instead of using it,
426
* pgdat_list[] is checked.
427
*/
428
for_each_node(node) {
429
if (pgdat_list[node]) {
430
dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs;
431
memcpy(dst, pgdat_list, sizeof(pgdat_list));
432
}
433
}
434
}
435
436
/**
437
* initialize_pernode_data - fixup per-cpu & per-node pointers
438
*
439
* Each node's per-node area has a copy of the global pg_data_t list, so
440
* we copy that to each node here, as well as setting the per-cpu pointer
441
* to the local node data structure. The active_cpus field of the per-node
442
* structure gets setup by the platform_cpu_init() function later.
443
*/
444
static void __init initialize_pernode_data(void)
445
{
446
int cpu, node;
447
448
scatter_node_data();
449
450
#ifdef CONFIG_SMP
451
/* Set the node_data pointer for each per-cpu struct */
452
for_each_possible_early_cpu(cpu) {
453
node = node_cpuid[cpu].nid;
454
per_cpu(ia64_cpu_info, cpu).node_data =
455
mem_data[node].node_data;
456
}
457
#else
458
{
459
struct cpuinfo_ia64 *cpu0_cpu_info;
460
cpu = 0;
461
node = node_cpuid[cpu].nid;
462
cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
463
((char *)&ia64_cpu_info - __per_cpu_start));
464
cpu0_cpu_info->node_data = mem_data[node].node_data;
465
}
466
#endif /* CONFIG_SMP */
467
}
468
469
/**
470
* memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
471
* node but fall back to any other node when __alloc_bootmem_node fails
472
* for best.
473
* @nid: node id
474
* @pernodesize: size of this node's pernode data
475
*/
476
static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize)
477
{
478
void *ptr = NULL;
479
u8 best = 0xff;
480
int bestnode = -1, node, anynode = 0;
481
482
for_each_online_node(node) {
483
if (node_isset(node, memory_less_mask))
484
continue;
485
else if (node_distance(nid, node) < best) {
486
best = node_distance(nid, node);
487
bestnode = node;
488
}
489
anynode = node;
490
}
491
492
if (bestnode == -1)
493
bestnode = anynode;
494
495
ptr = __alloc_bootmem_node(pgdat_list[bestnode], pernodesize,
496
PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
497
498
return ptr;
499
}
500
501
/**
502
* memory_less_nodes - allocate and initialize CPU only nodes pernode
503
* information.
504
*/
505
static void __init memory_less_nodes(void)
506
{
507
unsigned long pernodesize;
508
void *pernode;
509
int node;
510
511
for_each_node_mask(node, memory_less_mask) {
512
pernodesize = compute_pernodesize(node);
513
pernode = memory_less_node_alloc(node, pernodesize);
514
fill_pernode(node, __pa(pernode), pernodesize);
515
}
516
517
return;
518
}
519
520
/**
521
* find_memory - walk the EFI memory map and setup the bootmem allocator
522
*
523
* Called early in boot to setup the bootmem allocator, and to
524
* allocate the per-cpu and per-node structures.
525
*/
526
void __init find_memory(void)
527
{
528
int node;
529
530
reserve_memory();
531
532
if (num_online_nodes() == 0) {
533
printk(KERN_ERR "node info missing!\n");
534
node_set_online(0);
535
}
536
537
nodes_or(memory_less_mask, memory_less_mask, node_online_map);
538
min_low_pfn = -1;
539
max_low_pfn = 0;
540
541
/* These actually end up getting called by call_pernode_memory() */
542
efi_memmap_walk(filter_rsvd_memory, build_node_maps);
543
efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
544
efi_memmap_walk(find_max_min_low_pfn, NULL);
545
546
for_each_online_node(node)
547
if (bootmem_node_data[node].node_low_pfn) {
548
node_clear(node, memory_less_mask);
549
mem_data[node].min_pfn = ~0UL;
550
}
551
552
efi_memmap_walk(filter_memory, register_active_ranges);
553
554
/*
555
* Initialize the boot memory maps in reverse order since that's
556
* what the bootmem allocator expects
557
*/
558
for (node = MAX_NUMNODES - 1; node >= 0; node--) {
559
unsigned long pernode, pernodesize, map;
560
struct bootmem_data *bdp;
561
562
if (!node_online(node))
563
continue;
564
else if (node_isset(node, memory_less_mask))
565
continue;
566
567
bdp = &bootmem_node_data[node];
568
pernode = mem_data[node].pernode_addr;
569
pernodesize = mem_data[node].pernode_size;
570
map = pernode + pernodesize;
571
572
init_bootmem_node(pgdat_list[node],
573
map>>PAGE_SHIFT,
574
bdp->node_min_pfn,
575
bdp->node_low_pfn);
576
}
577
578
efi_memmap_walk(filter_rsvd_memory, free_node_bootmem);
579
580
reserve_pernode_space();
581
memory_less_nodes();
582
initialize_pernode_data();
583
584
max_pfn = max_low_pfn;
585
586
find_initrd();
587
}
588
589
#ifdef CONFIG_SMP
590
/**
591
* per_cpu_init - setup per-cpu variables
592
*
593
* find_pernode_space() does most of this already, we just need to set
594
* local_per_cpu_offset
595
*/
596
void __cpuinit *per_cpu_init(void)
597
{
598
int cpu;
599
static int first_time = 1;
600
601
if (first_time) {
602
first_time = 0;
603
for_each_possible_early_cpu(cpu)
604
per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
605
}
606
607
return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
608
}
609
#endif /* CONFIG_SMP */
610
611
/**
612
* show_mem - give short summary of memory stats
613
*
614
* Shows a simple page count of reserved and used pages in the system.
615
* For discontig machines, it does this on a per-pgdat basis.
616
*/
617
void show_mem(unsigned int filter)
618
{
619
int i, total_reserved = 0;
620
int total_shared = 0, total_cached = 0;
621
unsigned long total_present = 0;
622
pg_data_t *pgdat;
623
624
printk(KERN_INFO "Mem-info:\n");
625
show_free_areas(filter);
626
printk(KERN_INFO "Node memory in pages:\n");
627
for_each_online_pgdat(pgdat) {
628
unsigned long present;
629
unsigned long flags;
630
int shared = 0, cached = 0, reserved = 0;
631
int nid = pgdat->node_id;
632
633
if (skip_free_areas_node(filter, nid))
634
continue;
635
pgdat_resize_lock(pgdat, &flags);
636
present = pgdat->node_present_pages;
637
for(i = 0; i < pgdat->node_spanned_pages; i++) {
638
struct page *page;
639
if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
640
touch_nmi_watchdog();
641
if (pfn_valid(pgdat->node_start_pfn + i))
642
page = pfn_to_page(pgdat->node_start_pfn + i);
643
else {
644
i = vmemmap_find_next_valid_pfn(nid, i) - 1;
645
continue;
646
}
647
if (PageReserved(page))
648
reserved++;
649
else if (PageSwapCache(page))
650
cached++;
651
else if (page_count(page))
652
shared += page_count(page)-1;
653
}
654
pgdat_resize_unlock(pgdat, &flags);
655
total_present += present;
656
total_reserved += reserved;
657
total_cached += cached;
658
total_shared += shared;
659
printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, "
660
"shrd: %10d, swpd: %10d\n", nid,
661
present, reserved, shared, cached);
662
}
663
printk(KERN_INFO "%ld pages of RAM\n", total_present);
664
printk(KERN_INFO "%d reserved pages\n", total_reserved);
665
printk(KERN_INFO "%d pages shared\n", total_shared);
666
printk(KERN_INFO "%d pages swap cached\n", total_cached);
667
printk(KERN_INFO "Total of %ld pages in page table cache\n",
668
quicklist_total_size());
669
printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
670
}
671
672
/**
673
* call_pernode_memory - use SRAT to call callback functions with node info
674
* @start: physical start of range
675
* @len: length of range
676
* @arg: function to call for each range
677
*
678
* efi_memmap_walk() knows nothing about layout of memory across nodes. Find
679
* out to which node a block of memory belongs. Ignore memory that we cannot
680
* identify, and split blocks that run across multiple nodes.
681
*
682
* Take this opportunity to round the start address up and the end address
683
* down to page boundaries.
684
*/
685
void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
686
{
687
unsigned long rs, re, end = start + len;
688
void (*func)(unsigned long, unsigned long, int);
689
int i;
690
691
start = PAGE_ALIGN(start);
692
end &= PAGE_MASK;
693
if (start >= end)
694
return;
695
696
func = arg;
697
698
if (!num_node_memblks) {
699
/* No SRAT table, so assume one node (node 0) */
700
if (start < end)
701
(*func)(start, end - start, 0);
702
return;
703
}
704
705
for (i = 0; i < num_node_memblks; i++) {
706
rs = max(start, node_memblk[i].start_paddr);
707
re = min(end, node_memblk[i].start_paddr +
708
node_memblk[i].size);
709
710
if (rs < re)
711
(*func)(rs, re - rs, node_memblk[i].nid);
712
713
if (re == end)
714
break;
715
}
716
}
717
718
/**
719
* count_node_pages - callback to build per-node memory info structures
720
* @start: physical start of range
721
* @len: length of range
722
* @node: node where this range resides
723
*
724
* Each node has it's own number of physical pages, DMAable pages, start, and
725
* end page frame number. This routine will be called by call_pernode_memory()
726
* for each piece of usable memory and will setup these values for each node.
727
* Very similar to build_maps().
728
*/
729
static __init int count_node_pages(unsigned long start, unsigned long len, int node)
730
{
731
unsigned long end = start + len;
732
733
mem_data[node].num_physpages += len >> PAGE_SHIFT;
734
#ifdef CONFIG_ZONE_DMA
735
if (start <= __pa(MAX_DMA_ADDRESS))
736
mem_data[node].num_dma_physpages +=
737
(min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT;
738
#endif
739
start = GRANULEROUNDDOWN(start);
740
end = GRANULEROUNDUP(end);
741
mem_data[node].max_pfn = max(mem_data[node].max_pfn,
742
end >> PAGE_SHIFT);
743
mem_data[node].min_pfn = min(mem_data[node].min_pfn,
744
start >> PAGE_SHIFT);
745
746
return 0;
747
}
748
749
/**
750
* paging_init - setup page tables
751
*
752
* paging_init() sets up the page tables for each node of the system and frees
753
* the bootmem allocator memory for general use.
754
*/
755
void __init paging_init(void)
756
{
757
unsigned long max_dma;
758
unsigned long pfn_offset = 0;
759
unsigned long max_pfn = 0;
760
int node;
761
unsigned long max_zone_pfns[MAX_NR_ZONES];
762
763
max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
764
765
efi_memmap_walk(filter_rsvd_memory, count_node_pages);
766
767
sparse_memory_present_with_active_regions(MAX_NUMNODES);
768
sparse_init();
769
770
#ifdef CONFIG_VIRTUAL_MEM_MAP
771
VMALLOC_END -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
772
sizeof(struct page));
773
vmem_map = (struct page *) VMALLOC_END;
774
efi_memmap_walk(create_mem_map_page_table, NULL);
775
printk("Virtual mem_map starts at 0x%p\n", vmem_map);
776
#endif
777
778
for_each_online_node(node) {
779
num_physpages += mem_data[node].num_physpages;
780
pfn_offset = mem_data[node].min_pfn;
781
782
#ifdef CONFIG_VIRTUAL_MEM_MAP
783
NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset;
784
#endif
785
if (mem_data[node].max_pfn > max_pfn)
786
max_pfn = mem_data[node].max_pfn;
787
}
788
789
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
790
#ifdef CONFIG_ZONE_DMA
791
max_zone_pfns[ZONE_DMA] = max_dma;
792
#endif
793
max_zone_pfns[ZONE_NORMAL] = max_pfn;
794
free_area_init_nodes(max_zone_pfns);
795
796
zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
797
}
798
799
#ifdef CONFIG_MEMORY_HOTPLUG
800
pg_data_t *arch_alloc_nodedata(int nid)
801
{
802
unsigned long size = compute_pernodesize(nid);
803
804
return kzalloc(size, GFP_KERNEL);
805
}
806
807
void arch_free_nodedata(pg_data_t *pgdat)
808
{
809
kfree(pgdat);
810
}
811
812
void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat)
813
{
814
pgdat_list[update_node] = update_pgdat;
815
scatter_node_data();
816
}
817
#endif
818
819
#ifdef CONFIG_SPARSEMEM_VMEMMAP
820
int __meminit vmemmap_populate(struct page *start_page,
821
unsigned long size, int node)
822
{
823
return vmemmap_populate_basepages(start_page, size, node);
824
}
825
#endif
826
827