Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/ia64/mm/init.c
10817 views
1
/*
2
* Initialize MMU support.
3
*
4
* Copyright (C) 1998-2003 Hewlett-Packard Co
5
* David Mosberger-Tang <[email protected]>
6
*/
7
#include <linux/kernel.h>
8
#include <linux/init.h>
9
10
#include <linux/bootmem.h>
11
#include <linux/efi.h>
12
#include <linux/elf.h>
13
#include <linux/mm.h>
14
#include <linux/mmzone.h>
15
#include <linux/module.h>
16
#include <linux/personality.h>
17
#include <linux/reboot.h>
18
#include <linux/slab.h>
19
#include <linux/swap.h>
20
#include <linux/proc_fs.h>
21
#include <linux/bitops.h>
22
#include <linux/kexec.h>
23
24
#include <asm/dma.h>
25
#include <asm/io.h>
26
#include <asm/machvec.h>
27
#include <asm/numa.h>
28
#include <asm/patch.h>
29
#include <asm/pgalloc.h>
30
#include <asm/sal.h>
31
#include <asm/sections.h>
32
#include <asm/system.h>
33
#include <asm/tlb.h>
34
#include <asm/uaccess.h>
35
#include <asm/unistd.h>
36
#include <asm/mca.h>
37
#include <asm/paravirt.h>
38
39
extern void ia64_tlb_init (void);
40
41
unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
42
43
#ifdef CONFIG_VIRTUAL_MEM_MAP
44
unsigned long VMALLOC_END = VMALLOC_END_INIT;
45
EXPORT_SYMBOL(VMALLOC_END);
46
struct page *vmem_map;
47
EXPORT_SYMBOL(vmem_map);
48
#endif
49
50
struct page *zero_page_memmap_ptr; /* map entry for zero page */
51
EXPORT_SYMBOL(zero_page_memmap_ptr);
52
53
void
54
__ia64_sync_icache_dcache (pte_t pte)
55
{
56
unsigned long addr;
57
struct page *page;
58
59
page = pte_page(pte);
60
addr = (unsigned long) page_address(page);
61
62
if (test_bit(PG_arch_1, &page->flags))
63
return; /* i-cache is already coherent with d-cache */
64
65
flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page)));
66
set_bit(PG_arch_1, &page->flags); /* mark page as clean */
67
}
68
69
/*
70
* Since DMA is i-cache coherent, any (complete) pages that were written via
71
* DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
72
* flush them when they get mapped into an executable vm-area.
73
*/
74
void
75
dma_mark_clean(void *addr, size_t size)
76
{
77
unsigned long pg_addr, end;
78
79
pg_addr = PAGE_ALIGN((unsigned long) addr);
80
end = (unsigned long) addr + size;
81
while (pg_addr + PAGE_SIZE <= end) {
82
struct page *page = virt_to_page(pg_addr);
83
set_bit(PG_arch_1, &page->flags);
84
pg_addr += PAGE_SIZE;
85
}
86
}
87
88
inline void
89
ia64_set_rbs_bot (void)
90
{
91
unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
92
93
if (stack_size > MAX_USER_STACK_SIZE)
94
stack_size = MAX_USER_STACK_SIZE;
95
current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
96
}
97
98
/*
99
* This performs some platform-dependent address space initialization.
100
* On IA-64, we want to setup the VM area for the register backing
101
* store (which grows upwards) and install the gateway page which is
102
* used for signal trampolines, etc.
103
*/
104
void
105
ia64_init_addr_space (void)
106
{
107
struct vm_area_struct *vma;
108
109
ia64_set_rbs_bot();
110
111
/*
112
* If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
113
* the problem. When the process attempts to write to the register backing store
114
* for the first time, it will get a SEGFAULT in this case.
115
*/
116
vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
117
if (vma) {
118
INIT_LIST_HEAD(&vma->anon_vma_chain);
119
vma->vm_mm = current->mm;
120
vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
121
vma->vm_end = vma->vm_start + PAGE_SIZE;
122
vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
123
vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
124
down_write(&current->mm->mmap_sem);
125
if (insert_vm_struct(current->mm, vma)) {
126
up_write(&current->mm->mmap_sem);
127
kmem_cache_free(vm_area_cachep, vma);
128
return;
129
}
130
up_write(&current->mm->mmap_sem);
131
}
132
133
/* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
134
if (!(current->personality & MMAP_PAGE_ZERO)) {
135
vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
136
if (vma) {
137
INIT_LIST_HEAD(&vma->anon_vma_chain);
138
vma->vm_mm = current->mm;
139
vma->vm_end = PAGE_SIZE;
140
vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
141
vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED;
142
down_write(&current->mm->mmap_sem);
143
if (insert_vm_struct(current->mm, vma)) {
144
up_write(&current->mm->mmap_sem);
145
kmem_cache_free(vm_area_cachep, vma);
146
return;
147
}
148
up_write(&current->mm->mmap_sem);
149
}
150
}
151
}
152
153
void
154
free_initmem (void)
155
{
156
unsigned long addr, eaddr;
157
158
addr = (unsigned long) ia64_imva(__init_begin);
159
eaddr = (unsigned long) ia64_imva(__init_end);
160
while (addr < eaddr) {
161
ClearPageReserved(virt_to_page(addr));
162
init_page_count(virt_to_page(addr));
163
free_page(addr);
164
++totalram_pages;
165
addr += PAGE_SIZE;
166
}
167
printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n",
168
(__init_end - __init_begin) >> 10);
169
}
170
171
void __init
172
free_initrd_mem (unsigned long start, unsigned long end)
173
{
174
struct page *page;
175
/*
176
* EFI uses 4KB pages while the kernel can use 4KB or bigger.
177
* Thus EFI and the kernel may have different page sizes. It is
178
* therefore possible to have the initrd share the same page as
179
* the end of the kernel (given current setup).
180
*
181
* To avoid freeing/using the wrong page (kernel sized) we:
182
* - align up the beginning of initrd
183
* - align down the end of initrd
184
*
185
* | |
186
* |=============| a000
187
* | |
188
* | |
189
* | | 9000
190
* |/////////////|
191
* |/////////////|
192
* |=============| 8000
193
* |///INITRD////|
194
* |/////////////|
195
* |/////////////| 7000
196
* | |
197
* |KKKKKKKKKKKKK|
198
* |=============| 6000
199
* |KKKKKKKKKKKKK|
200
* |KKKKKKKKKKKKK|
201
* K=kernel using 8KB pages
202
*
203
* In this example, we must free page 8000 ONLY. So we must align up
204
* initrd_start and keep initrd_end as is.
205
*/
206
start = PAGE_ALIGN(start);
207
end = end & PAGE_MASK;
208
209
if (start < end)
210
printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
211
212
for (; start < end; start += PAGE_SIZE) {
213
if (!virt_addr_valid(start))
214
continue;
215
page = virt_to_page(start);
216
ClearPageReserved(page);
217
init_page_count(page);
218
free_page(start);
219
++totalram_pages;
220
}
221
}
222
223
/*
224
* This installs a clean page in the kernel's page table.
225
*/
226
static struct page * __init
227
put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
228
{
229
pgd_t *pgd;
230
pud_t *pud;
231
pmd_t *pmd;
232
pte_t *pte;
233
234
if (!PageReserved(page))
235
printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
236
page_address(page));
237
238
pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */
239
240
{
241
pud = pud_alloc(&init_mm, pgd, address);
242
if (!pud)
243
goto out;
244
pmd = pmd_alloc(&init_mm, pud, address);
245
if (!pmd)
246
goto out;
247
pte = pte_alloc_kernel(pmd, address);
248
if (!pte)
249
goto out;
250
if (!pte_none(*pte))
251
goto out;
252
set_pte(pte, mk_pte(page, pgprot));
253
}
254
out:
255
/* no need for flush_tlb */
256
return page;
257
}
258
259
static void __init
260
setup_gate (void)
261
{
262
void *gate_section;
263
struct page *page;
264
265
/*
266
* Map the gate page twice: once read-only to export the ELF
267
* headers etc. and once execute-only page to enable
268
* privilege-promotion via "epc":
269
*/
270
gate_section = paravirt_get_gate_section();
271
page = virt_to_page(ia64_imva(gate_section));
272
put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
273
#ifdef HAVE_BUGGY_SEGREL
274
page = virt_to_page(ia64_imva(gate_section + PAGE_SIZE));
275
put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
276
#else
277
put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
278
/* Fill in the holes (if any) with read-only zero pages: */
279
{
280
unsigned long addr;
281
282
for (addr = GATE_ADDR + PAGE_SIZE;
283
addr < GATE_ADDR + PERCPU_PAGE_SIZE;
284
addr += PAGE_SIZE)
285
{
286
put_kernel_page(ZERO_PAGE(0), addr,
287
PAGE_READONLY);
288
put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
289
PAGE_READONLY);
290
}
291
}
292
#endif
293
ia64_patch_gate();
294
}
295
296
void __devinit
297
ia64_mmu_init (void *my_cpu_data)
298
{
299
unsigned long pta, impl_va_bits;
300
extern void __devinit tlb_init (void);
301
302
#ifdef CONFIG_DISABLE_VHPT
303
# define VHPT_ENABLE_BIT 0
304
#else
305
# define VHPT_ENABLE_BIT 1
306
#endif
307
308
/*
309
* Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
310
* address space. The IA-64 architecture guarantees that at least 50 bits of
311
* virtual address space are implemented but if we pick a large enough page size
312
* (e.g., 64KB), the mapped address space is big enough that it will overlap with
313
* VMLPT. I assume that once we run on machines big enough to warrant 64KB pages,
314
* IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
315
* problem in practice. Alternatively, we could truncate the top of the mapped
316
* address space to not permit mappings that would overlap with the VMLPT.
317
* --davidm 00/12/06
318
*/
319
# define pte_bits 3
320
# define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
321
/*
322
* The virtual page table has to cover the entire implemented address space within
323
* a region even though not all of this space may be mappable. The reason for
324
* this is that the Access bit and Dirty bit fault handlers perform
325
* non-speculative accesses to the virtual page table, so the address range of the
326
* virtual page table itself needs to be covered by virtual page table.
327
*/
328
# define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits)
329
# define POW2(n) (1ULL << (n))
330
331
impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
332
333
if (impl_va_bits < 51 || impl_va_bits > 61)
334
panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
335
/*
336
* mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
337
* which must fit into "vmlpt_bits - pte_bits" slots. Second half of
338
* the test makes sure that our mapped space doesn't overlap the
339
* unimplemented hole in the middle of the region.
340
*/
341
if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
342
(mapped_space_bits > impl_va_bits - 1))
343
panic("Cannot build a big enough virtual-linear page table"
344
" to cover mapped address space.\n"
345
" Try using a smaller page size.\n");
346
347
348
/* place the VMLPT at the end of each page-table mapped region: */
349
pta = POW2(61) - POW2(vmlpt_bits);
350
351
/*
352
* Set the (virtually mapped linear) page table address. Bit
353
* 8 selects between the short and long format, bits 2-7 the
354
* size of the table, and bit 0 whether the VHPT walker is
355
* enabled.
356
*/
357
ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
358
359
ia64_tlb_init();
360
361
#ifdef CONFIG_HUGETLB_PAGE
362
ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
363
ia64_srlz_d();
364
#endif
365
}
366
367
#ifdef CONFIG_VIRTUAL_MEM_MAP
368
int vmemmap_find_next_valid_pfn(int node, int i)
369
{
370
unsigned long end_address, hole_next_pfn;
371
unsigned long stop_address;
372
pg_data_t *pgdat = NODE_DATA(node);
373
374
end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
375
end_address = PAGE_ALIGN(end_address);
376
377
stop_address = (unsigned long) &vmem_map[
378
pgdat->node_start_pfn + pgdat->node_spanned_pages];
379
380
do {
381
pgd_t *pgd;
382
pud_t *pud;
383
pmd_t *pmd;
384
pte_t *pte;
385
386
pgd = pgd_offset_k(end_address);
387
if (pgd_none(*pgd)) {
388
end_address += PGDIR_SIZE;
389
continue;
390
}
391
392
pud = pud_offset(pgd, end_address);
393
if (pud_none(*pud)) {
394
end_address += PUD_SIZE;
395
continue;
396
}
397
398
pmd = pmd_offset(pud, end_address);
399
if (pmd_none(*pmd)) {
400
end_address += PMD_SIZE;
401
continue;
402
}
403
404
pte = pte_offset_kernel(pmd, end_address);
405
retry_pte:
406
if (pte_none(*pte)) {
407
end_address += PAGE_SIZE;
408
pte++;
409
if ((end_address < stop_address) &&
410
(end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
411
goto retry_pte;
412
continue;
413
}
414
/* Found next valid vmem_map page */
415
break;
416
} while (end_address < stop_address);
417
418
end_address = min(end_address, stop_address);
419
end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
420
hole_next_pfn = end_address / sizeof(struct page);
421
return hole_next_pfn - pgdat->node_start_pfn;
422
}
423
424
int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
425
{
426
unsigned long address, start_page, end_page;
427
struct page *map_start, *map_end;
428
int node;
429
pgd_t *pgd;
430
pud_t *pud;
431
pmd_t *pmd;
432
pte_t *pte;
433
434
map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
435
map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
436
437
start_page = (unsigned long) map_start & PAGE_MASK;
438
end_page = PAGE_ALIGN((unsigned long) map_end);
439
node = paddr_to_nid(__pa(start));
440
441
for (address = start_page; address < end_page; address += PAGE_SIZE) {
442
pgd = pgd_offset_k(address);
443
if (pgd_none(*pgd))
444
pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
445
pud = pud_offset(pgd, address);
446
447
if (pud_none(*pud))
448
pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
449
pmd = pmd_offset(pud, address);
450
451
if (pmd_none(*pmd))
452
pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
453
pte = pte_offset_kernel(pmd, address);
454
455
if (pte_none(*pte))
456
set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
457
PAGE_KERNEL));
458
}
459
return 0;
460
}
461
462
struct memmap_init_callback_data {
463
struct page *start;
464
struct page *end;
465
int nid;
466
unsigned long zone;
467
};
468
469
static int __meminit
470
virtual_memmap_init(u64 start, u64 end, void *arg)
471
{
472
struct memmap_init_callback_data *args;
473
struct page *map_start, *map_end;
474
475
args = (struct memmap_init_callback_data *) arg;
476
map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
477
map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
478
479
if (map_start < args->start)
480
map_start = args->start;
481
if (map_end > args->end)
482
map_end = args->end;
483
484
/*
485
* We have to initialize "out of bounds" struct page elements that fit completely
486
* on the same pages that were allocated for the "in bounds" elements because they
487
* may be referenced later (and found to be "reserved").
488
*/
489
map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
490
map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
491
/ sizeof(struct page));
492
493
if (map_start < map_end)
494
memmap_init_zone((unsigned long)(map_end - map_start),
495
args->nid, args->zone, page_to_pfn(map_start),
496
MEMMAP_EARLY);
497
return 0;
498
}
499
500
void __meminit
501
memmap_init (unsigned long size, int nid, unsigned long zone,
502
unsigned long start_pfn)
503
{
504
if (!vmem_map)
505
memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
506
else {
507
struct page *start;
508
struct memmap_init_callback_data args;
509
510
start = pfn_to_page(start_pfn);
511
args.start = start;
512
args.end = start + size;
513
args.nid = nid;
514
args.zone = zone;
515
516
efi_memmap_walk(virtual_memmap_init, &args);
517
}
518
}
519
520
int
521
ia64_pfn_valid (unsigned long pfn)
522
{
523
char byte;
524
struct page *pg = pfn_to_page(pfn);
525
526
return (__get_user(byte, (char __user *) pg) == 0)
527
&& ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
528
|| (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
529
}
530
EXPORT_SYMBOL(ia64_pfn_valid);
531
532
int __init find_largest_hole(u64 start, u64 end, void *arg)
533
{
534
u64 *max_gap = arg;
535
536
static u64 last_end = PAGE_OFFSET;
537
538
/* NOTE: this algorithm assumes efi memmap table is ordered */
539
540
if (*max_gap < (start - last_end))
541
*max_gap = start - last_end;
542
last_end = end;
543
return 0;
544
}
545
546
#endif /* CONFIG_VIRTUAL_MEM_MAP */
547
548
int __init register_active_ranges(u64 start, u64 len, int nid)
549
{
550
u64 end = start + len;
551
552
#ifdef CONFIG_KEXEC
553
if (start > crashk_res.start && start < crashk_res.end)
554
start = crashk_res.end;
555
if (end > crashk_res.start && end < crashk_res.end)
556
end = crashk_res.start;
557
#endif
558
559
if (start < end)
560
add_active_range(nid, __pa(start) >> PAGE_SHIFT,
561
__pa(end) >> PAGE_SHIFT);
562
return 0;
563
}
564
565
static int __init
566
count_reserved_pages(u64 start, u64 end, void *arg)
567
{
568
unsigned long num_reserved = 0;
569
unsigned long *count = arg;
570
571
for (; start < end; start += PAGE_SIZE)
572
if (PageReserved(virt_to_page(start)))
573
++num_reserved;
574
*count += num_reserved;
575
return 0;
576
}
577
578
int
579
find_max_min_low_pfn (u64 start, u64 end, void *arg)
580
{
581
unsigned long pfn_start, pfn_end;
582
#ifdef CONFIG_FLATMEM
583
pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
584
pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
585
#else
586
pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
587
pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
588
#endif
589
min_low_pfn = min(min_low_pfn, pfn_start);
590
max_low_pfn = max(max_low_pfn, pfn_end);
591
return 0;
592
}
593
594
/*
595
* Boot command-line option "nolwsys" can be used to disable the use of any light-weight
596
* system call handler. When this option is in effect, all fsyscalls will end up bubbling
597
* down into the kernel and calling the normal (heavy-weight) syscall handler. This is
598
* useful for performance testing, but conceivably could also come in handy for debugging
599
* purposes.
600
*/
601
602
static int nolwsys __initdata;
603
604
static int __init
605
nolwsys_setup (char *s)
606
{
607
nolwsys = 1;
608
return 1;
609
}
610
611
__setup("nolwsys", nolwsys_setup);
612
613
void __init
614
mem_init (void)
615
{
616
long reserved_pages, codesize, datasize, initsize;
617
pg_data_t *pgdat;
618
int i;
619
620
BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
621
BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
622
BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
623
624
#ifdef CONFIG_PCI
625
/*
626
* This needs to be called _after_ the command line has been parsed but _before_
627
* any drivers that may need the PCI DMA interface are initialized or bootmem has
628
* been freed.
629
*/
630
platform_dma_init();
631
#endif
632
633
#ifdef CONFIG_FLATMEM
634
BUG_ON(!mem_map);
635
max_mapnr = max_low_pfn;
636
#endif
637
638
high_memory = __va(max_low_pfn * PAGE_SIZE);
639
640
for_each_online_pgdat(pgdat)
641
if (pgdat->bdata->node_bootmem_map)
642
totalram_pages += free_all_bootmem_node(pgdat);
643
644
reserved_pages = 0;
645
efi_memmap_walk(count_reserved_pages, &reserved_pages);
646
647
codesize = (unsigned long) _etext - (unsigned long) _stext;
648
datasize = (unsigned long) _edata - (unsigned long) _etext;
649
initsize = (unsigned long) __init_end - (unsigned long) __init_begin;
650
651
printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, "
652
"%luk data, %luk init)\n", nr_free_pages() << (PAGE_SHIFT - 10),
653
num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
654
reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
655
656
657
/*
658
* For fsyscall entrpoints with no light-weight handler, use the ordinary
659
* (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
660
* code can tell them apart.
661
*/
662
for (i = 0; i < NR_syscalls; ++i) {
663
extern unsigned long sys_call_table[NR_syscalls];
664
unsigned long *fsyscall_table = paravirt_get_fsyscall_table();
665
666
if (!fsyscall_table[i] || nolwsys)
667
fsyscall_table[i] = sys_call_table[i] | 1;
668
}
669
setup_gate();
670
}
671
672
#ifdef CONFIG_MEMORY_HOTPLUG
673
int arch_add_memory(int nid, u64 start, u64 size)
674
{
675
pg_data_t *pgdat;
676
struct zone *zone;
677
unsigned long start_pfn = start >> PAGE_SHIFT;
678
unsigned long nr_pages = size >> PAGE_SHIFT;
679
int ret;
680
681
pgdat = NODE_DATA(nid);
682
683
zone = pgdat->node_zones + ZONE_NORMAL;
684
ret = __add_pages(nid, zone, start_pfn, nr_pages);
685
686
if (ret)
687
printk("%s: Problem encountered in __add_pages() as ret=%d\n",
688
__func__, ret);
689
690
return ret;
691
}
692
#endif
693
694
/*
695
* Even when CONFIG_IA32_SUPPORT is not enabled it is
696
* useful to have the Linux/x86 domain registered to
697
* avoid an attempted module load when emulators call
698
* personality(PER_LINUX32). This saves several milliseconds
699
* on each such call.
700
*/
701
static struct exec_domain ia32_exec_domain;
702
703
static int __init
704
per_linux32_init(void)
705
{
706
ia32_exec_domain.name = "Linux/x86";
707
ia32_exec_domain.handler = NULL;
708
ia32_exec_domain.pers_low = PER_LINUX32;
709
ia32_exec_domain.pers_high = PER_LINUX32;
710
ia32_exec_domain.signal_map = default_exec_domain.signal_map;
711
ia32_exec_domain.signal_invmap = default_exec_domain.signal_invmap;
712
register_exec_domain(&ia32_exec_domain);
713
714
return 0;
715
}
716
717
__initcall(per_linux32_init);
718
719