Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/ia64/pci/pci.c
10817 views
1
/*
2
* pci.c - Low-Level PCI Access in IA-64
3
*
4
* Derived from bios32.c of i386 tree.
5
*
6
* (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
7
* David Mosberger-Tang <[email protected]>
8
* Bjorn Helgaas <[email protected]>
9
* Copyright (C) 2004 Silicon Graphics, Inc.
10
*
11
* Note: Above list of copyright holders is incomplete...
12
*/
13
14
#include <linux/acpi.h>
15
#include <linux/types.h>
16
#include <linux/kernel.h>
17
#include <linux/pci.h>
18
#include <linux/init.h>
19
#include <linux/ioport.h>
20
#include <linux/slab.h>
21
#include <linux/spinlock.h>
22
#include <linux/bootmem.h>
23
24
#include <asm/machvec.h>
25
#include <asm/page.h>
26
#include <asm/system.h>
27
#include <asm/io.h>
28
#include <asm/sal.h>
29
#include <asm/smp.h>
30
#include <asm/irq.h>
31
#include <asm/hw_irq.h>
32
33
/*
34
* Low-level SAL-based PCI configuration access functions. Note that SAL
35
* calls are already serialized (via sal_lock), so we don't need another
36
* synchronization mechanism here.
37
*/
38
39
#define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \
40
(((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
41
42
/* SAL 3.2 adds support for extended config space. */
43
44
#define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \
45
(((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
46
47
int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn,
48
int reg, int len, u32 *value)
49
{
50
u64 addr, data = 0;
51
int mode, result;
52
53
if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
54
return -EINVAL;
55
56
if ((seg | reg) <= 255) {
57
addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
58
mode = 0;
59
} else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
60
addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
61
mode = 1;
62
} else {
63
return -EINVAL;
64
}
65
66
result = ia64_sal_pci_config_read(addr, mode, len, &data);
67
if (result != 0)
68
return -EINVAL;
69
70
*value = (u32) data;
71
return 0;
72
}
73
74
int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn,
75
int reg, int len, u32 value)
76
{
77
u64 addr;
78
int mode, result;
79
80
if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
81
return -EINVAL;
82
83
if ((seg | reg) <= 255) {
84
addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
85
mode = 0;
86
} else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
87
addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
88
mode = 1;
89
} else {
90
return -EINVAL;
91
}
92
result = ia64_sal_pci_config_write(addr, mode, len, value);
93
if (result != 0)
94
return -EINVAL;
95
return 0;
96
}
97
98
static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
99
int size, u32 *value)
100
{
101
return raw_pci_read(pci_domain_nr(bus), bus->number,
102
devfn, where, size, value);
103
}
104
105
static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
106
int size, u32 value)
107
{
108
return raw_pci_write(pci_domain_nr(bus), bus->number,
109
devfn, where, size, value);
110
}
111
112
struct pci_ops pci_root_ops = {
113
.read = pci_read,
114
.write = pci_write,
115
};
116
117
/* Called by ACPI when it finds a new root bus. */
118
119
static struct pci_controller * __devinit
120
alloc_pci_controller (int seg)
121
{
122
struct pci_controller *controller;
123
124
controller = kzalloc(sizeof(*controller), GFP_KERNEL);
125
if (!controller)
126
return NULL;
127
128
controller->segment = seg;
129
controller->node = -1;
130
return controller;
131
}
132
133
struct pci_root_info {
134
struct acpi_device *bridge;
135
struct pci_controller *controller;
136
char *name;
137
};
138
139
static unsigned int
140
new_space (u64 phys_base, int sparse)
141
{
142
u64 mmio_base;
143
int i;
144
145
if (phys_base == 0)
146
return 0; /* legacy I/O port space */
147
148
mmio_base = (u64) ioremap(phys_base, 0);
149
for (i = 0; i < num_io_spaces; i++)
150
if (io_space[i].mmio_base == mmio_base &&
151
io_space[i].sparse == sparse)
152
return i;
153
154
if (num_io_spaces == MAX_IO_SPACES) {
155
printk(KERN_ERR "PCI: Too many IO port spaces "
156
"(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
157
return ~0;
158
}
159
160
i = num_io_spaces++;
161
io_space[i].mmio_base = mmio_base;
162
io_space[i].sparse = sparse;
163
164
return i;
165
}
166
167
static u64 __devinit
168
add_io_space (struct pci_root_info *info, struct acpi_resource_address64 *addr)
169
{
170
struct resource *resource;
171
char *name;
172
unsigned long base, min, max, base_port;
173
unsigned int sparse = 0, space_nr, len;
174
175
resource = kzalloc(sizeof(*resource), GFP_KERNEL);
176
if (!resource) {
177
printk(KERN_ERR "PCI: No memory for %s I/O port space\n",
178
info->name);
179
goto out;
180
}
181
182
len = strlen(info->name) + 32;
183
name = kzalloc(len, GFP_KERNEL);
184
if (!name) {
185
printk(KERN_ERR "PCI: No memory for %s I/O port space name\n",
186
info->name);
187
goto free_resource;
188
}
189
190
min = addr->minimum;
191
max = min + addr->address_length - 1;
192
if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION)
193
sparse = 1;
194
195
space_nr = new_space(addr->translation_offset, sparse);
196
if (space_nr == ~0)
197
goto free_name;
198
199
base = __pa(io_space[space_nr].mmio_base);
200
base_port = IO_SPACE_BASE(space_nr);
201
snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name,
202
base_port + min, base_port + max);
203
204
/*
205
* The SDM guarantees the legacy 0-64K space is sparse, but if the
206
* mapping is done by the processor (not the bridge), ACPI may not
207
* mark it as sparse.
208
*/
209
if (space_nr == 0)
210
sparse = 1;
211
212
resource->name = name;
213
resource->flags = IORESOURCE_MEM;
214
resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
215
resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
216
insert_resource(&iomem_resource, resource);
217
218
return base_port;
219
220
free_name:
221
kfree(name);
222
free_resource:
223
kfree(resource);
224
out:
225
return ~0;
226
}
227
228
static acpi_status __devinit resource_to_window(struct acpi_resource *resource,
229
struct acpi_resource_address64 *addr)
230
{
231
acpi_status status;
232
233
/*
234
* We're only interested in _CRS descriptors that are
235
* - address space descriptors for memory or I/O space
236
* - non-zero size
237
* - producers, i.e., the address space is routed downstream,
238
* not consumed by the bridge itself
239
*/
240
status = acpi_resource_to_address64(resource, addr);
241
if (ACPI_SUCCESS(status) &&
242
(addr->resource_type == ACPI_MEMORY_RANGE ||
243
addr->resource_type == ACPI_IO_RANGE) &&
244
addr->address_length &&
245
addr->producer_consumer == ACPI_PRODUCER)
246
return AE_OK;
247
248
return AE_ERROR;
249
}
250
251
static acpi_status __devinit
252
count_window (struct acpi_resource *resource, void *data)
253
{
254
unsigned int *windows = (unsigned int *) data;
255
struct acpi_resource_address64 addr;
256
acpi_status status;
257
258
status = resource_to_window(resource, &addr);
259
if (ACPI_SUCCESS(status))
260
(*windows)++;
261
262
return AE_OK;
263
}
264
265
static __devinit acpi_status add_window(struct acpi_resource *res, void *data)
266
{
267
struct pci_root_info *info = data;
268
struct pci_window *window;
269
struct acpi_resource_address64 addr;
270
acpi_status status;
271
unsigned long flags, offset = 0;
272
struct resource *root;
273
274
/* Return AE_OK for non-window resources to keep scanning for more */
275
status = resource_to_window(res, &addr);
276
if (!ACPI_SUCCESS(status))
277
return AE_OK;
278
279
if (addr.resource_type == ACPI_MEMORY_RANGE) {
280
flags = IORESOURCE_MEM;
281
root = &iomem_resource;
282
offset = addr.translation_offset;
283
} else if (addr.resource_type == ACPI_IO_RANGE) {
284
flags = IORESOURCE_IO;
285
root = &ioport_resource;
286
offset = add_io_space(info, &addr);
287
if (offset == ~0)
288
return AE_OK;
289
} else
290
return AE_OK;
291
292
window = &info->controller->window[info->controller->windows++];
293
window->resource.name = info->name;
294
window->resource.flags = flags;
295
window->resource.start = addr.minimum + offset;
296
window->resource.end = window->resource.start + addr.address_length - 1;
297
window->resource.child = NULL;
298
window->offset = offset;
299
300
if (insert_resource(root, &window->resource)) {
301
dev_err(&info->bridge->dev,
302
"can't allocate host bridge window %pR\n",
303
&window->resource);
304
} else {
305
if (offset)
306
dev_info(&info->bridge->dev, "host bridge window %pR "
307
"(PCI address [%#llx-%#llx])\n",
308
&window->resource,
309
window->resource.start - offset,
310
window->resource.end - offset);
311
else
312
dev_info(&info->bridge->dev,
313
"host bridge window %pR\n",
314
&window->resource);
315
}
316
317
return AE_OK;
318
}
319
320
static void __devinit
321
pcibios_setup_root_windows(struct pci_bus *bus, struct pci_controller *ctrl)
322
{
323
int i;
324
325
pci_bus_remove_resources(bus);
326
for (i = 0; i < ctrl->windows; i++) {
327
struct resource *res = &ctrl->window[i].resource;
328
/* HP's firmware has a hack to work around a Windows bug.
329
* Ignore these tiny memory ranges */
330
if ((res->flags & IORESOURCE_MEM) &&
331
(res->end - res->start < 16))
332
continue;
333
pci_bus_add_resource(bus, res, 0);
334
}
335
}
336
337
struct pci_bus * __devinit
338
pci_acpi_scan_root(struct acpi_pci_root *root)
339
{
340
struct acpi_device *device = root->device;
341
int domain = root->segment;
342
int bus = root->secondary.start;
343
struct pci_controller *controller;
344
unsigned int windows = 0;
345
struct pci_bus *pbus;
346
char *name;
347
int pxm;
348
349
controller = alloc_pci_controller(domain);
350
if (!controller)
351
goto out1;
352
353
controller->acpi_handle = device->handle;
354
355
pxm = acpi_get_pxm(controller->acpi_handle);
356
#ifdef CONFIG_NUMA
357
if (pxm >= 0)
358
controller->node = pxm_to_node(pxm);
359
#endif
360
361
acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
362
&windows);
363
if (windows) {
364
struct pci_root_info info;
365
366
controller->window =
367
kmalloc_node(sizeof(*controller->window) * windows,
368
GFP_KERNEL, controller->node);
369
if (!controller->window)
370
goto out2;
371
372
name = kmalloc(16, GFP_KERNEL);
373
if (!name)
374
goto out3;
375
376
sprintf(name, "PCI Bus %04x:%02x", domain, bus);
377
info.bridge = device;
378
info.controller = controller;
379
info.name = name;
380
acpi_walk_resources(device->handle, METHOD_NAME__CRS,
381
add_window, &info);
382
}
383
/*
384
* See arch/x86/pci/acpi.c.
385
* The desired pci bus might already be scanned in a quirk. We
386
* should handle the case here, but it appears that IA64 hasn't
387
* such quirk. So we just ignore the case now.
388
*/
389
pbus = pci_scan_bus_parented(NULL, bus, &pci_root_ops, controller);
390
391
return pbus;
392
393
out3:
394
kfree(controller->window);
395
out2:
396
kfree(controller);
397
out1:
398
return NULL;
399
}
400
401
void pcibios_resource_to_bus(struct pci_dev *dev,
402
struct pci_bus_region *region, struct resource *res)
403
{
404
struct pci_controller *controller = PCI_CONTROLLER(dev);
405
unsigned long offset = 0;
406
int i;
407
408
for (i = 0; i < controller->windows; i++) {
409
struct pci_window *window = &controller->window[i];
410
if (!(window->resource.flags & res->flags))
411
continue;
412
if (window->resource.start > res->start)
413
continue;
414
if (window->resource.end < res->end)
415
continue;
416
offset = window->offset;
417
break;
418
}
419
420
region->start = res->start - offset;
421
region->end = res->end - offset;
422
}
423
EXPORT_SYMBOL(pcibios_resource_to_bus);
424
425
void pcibios_bus_to_resource(struct pci_dev *dev,
426
struct resource *res, struct pci_bus_region *region)
427
{
428
struct pci_controller *controller = PCI_CONTROLLER(dev);
429
unsigned long offset = 0;
430
int i;
431
432
for (i = 0; i < controller->windows; i++) {
433
struct pci_window *window = &controller->window[i];
434
if (!(window->resource.flags & res->flags))
435
continue;
436
if (window->resource.start - window->offset > region->start)
437
continue;
438
if (window->resource.end - window->offset < region->end)
439
continue;
440
offset = window->offset;
441
break;
442
}
443
444
res->start = region->start + offset;
445
res->end = region->end + offset;
446
}
447
EXPORT_SYMBOL(pcibios_bus_to_resource);
448
449
static int __devinit is_valid_resource(struct pci_dev *dev, int idx)
450
{
451
unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM;
452
struct resource *devr = &dev->resource[idx], *busr;
453
454
if (!dev->bus)
455
return 0;
456
457
pci_bus_for_each_resource(dev->bus, busr, i) {
458
if (!busr || ((busr->flags ^ devr->flags) & type_mask))
459
continue;
460
if ((devr->start) && (devr->start >= busr->start) &&
461
(devr->end <= busr->end))
462
return 1;
463
}
464
return 0;
465
}
466
467
static void __devinit
468
pcibios_fixup_resources(struct pci_dev *dev, int start, int limit)
469
{
470
struct pci_bus_region region;
471
int i;
472
473
for (i = start; i < limit; i++) {
474
if (!dev->resource[i].flags)
475
continue;
476
region.start = dev->resource[i].start;
477
region.end = dev->resource[i].end;
478
pcibios_bus_to_resource(dev, &dev->resource[i], &region);
479
if ((is_valid_resource(dev, i)))
480
pci_claim_resource(dev, i);
481
}
482
}
483
484
void __devinit pcibios_fixup_device_resources(struct pci_dev *dev)
485
{
486
pcibios_fixup_resources(dev, 0, PCI_BRIDGE_RESOURCES);
487
}
488
EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
489
490
static void __devinit pcibios_fixup_bridge_resources(struct pci_dev *dev)
491
{
492
pcibios_fixup_resources(dev, PCI_BRIDGE_RESOURCES, PCI_NUM_RESOURCES);
493
}
494
495
/*
496
* Called after each bus is probed, but before its children are examined.
497
*/
498
void __devinit
499
pcibios_fixup_bus (struct pci_bus *b)
500
{
501
struct pci_dev *dev;
502
503
if (b->self) {
504
pci_read_bridge_bases(b);
505
pcibios_fixup_bridge_resources(b->self);
506
} else {
507
pcibios_setup_root_windows(b, b->sysdata);
508
}
509
list_for_each_entry(dev, &b->devices, bus_list)
510
pcibios_fixup_device_resources(dev);
511
platform_pci_fixup_bus(b);
512
513
return;
514
}
515
516
void __devinit
517
pcibios_update_irq (struct pci_dev *dev, int irq)
518
{
519
pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
520
521
/* ??? FIXME -- record old value for shutdown. */
522
}
523
524
int
525
pcibios_enable_device (struct pci_dev *dev, int mask)
526
{
527
int ret;
528
529
ret = pci_enable_resources(dev, mask);
530
if (ret < 0)
531
return ret;
532
533
if (!dev->msi_enabled)
534
return acpi_pci_irq_enable(dev);
535
return 0;
536
}
537
538
void
539
pcibios_disable_device (struct pci_dev *dev)
540
{
541
BUG_ON(atomic_read(&dev->enable_cnt));
542
if (!dev->msi_enabled)
543
acpi_pci_irq_disable(dev);
544
}
545
546
resource_size_t
547
pcibios_align_resource (void *data, const struct resource *res,
548
resource_size_t size, resource_size_t align)
549
{
550
return res->start;
551
}
552
553
/*
554
* PCI BIOS setup, always defaults to SAL interface
555
*/
556
char * __init
557
pcibios_setup (char *str)
558
{
559
return str;
560
}
561
562
int
563
pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
564
enum pci_mmap_state mmap_state, int write_combine)
565
{
566
unsigned long size = vma->vm_end - vma->vm_start;
567
pgprot_t prot;
568
569
/*
570
* I/O space cannot be accessed via normal processor loads and
571
* stores on this platform.
572
*/
573
if (mmap_state == pci_mmap_io)
574
/*
575
* XXX we could relax this for I/O spaces for which ACPI
576
* indicates that the space is 1-to-1 mapped. But at the
577
* moment, we don't support multiple PCI address spaces and
578
* the legacy I/O space is not 1-to-1 mapped, so this is moot.
579
*/
580
return -EINVAL;
581
582
if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
583
return -EINVAL;
584
585
prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
586
vma->vm_page_prot);
587
588
/*
589
* If the user requested WC, the kernel uses UC or WC for this region,
590
* and the chipset supports WC, we can use WC. Otherwise, we have to
591
* use the same attribute the kernel uses.
592
*/
593
if (write_combine &&
594
((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC ||
595
(pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) &&
596
efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start))
597
vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
598
else
599
vma->vm_page_prot = prot;
600
601
if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
602
vma->vm_end - vma->vm_start, vma->vm_page_prot))
603
return -EAGAIN;
604
605
return 0;
606
}
607
608
/**
609
* ia64_pci_get_legacy_mem - generic legacy mem routine
610
* @bus: bus to get legacy memory base address for
611
*
612
* Find the base of legacy memory for @bus. This is typically the first
613
* megabyte of bus address space for @bus or is simply 0 on platforms whose
614
* chipsets support legacy I/O and memory routing. Returns the base address
615
* or an error pointer if an error occurred.
616
*
617
* This is the ia64 generic version of this routine. Other platforms
618
* are free to override it with a machine vector.
619
*/
620
char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
621
{
622
return (char *)__IA64_UNCACHED_OFFSET;
623
}
624
625
/**
626
* pci_mmap_legacy_page_range - map legacy memory space to userland
627
* @bus: bus whose legacy space we're mapping
628
* @vma: vma passed in by mmap
629
*
630
* Map legacy memory space for this device back to userspace using a machine
631
* vector to get the base address.
632
*/
633
int
634
pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma,
635
enum pci_mmap_state mmap_state)
636
{
637
unsigned long size = vma->vm_end - vma->vm_start;
638
pgprot_t prot;
639
char *addr;
640
641
/* We only support mmap'ing of legacy memory space */
642
if (mmap_state != pci_mmap_mem)
643
return -ENOSYS;
644
645
/*
646
* Avoid attribute aliasing. See Documentation/ia64/aliasing.txt
647
* for more details.
648
*/
649
if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
650
return -EINVAL;
651
prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
652
vma->vm_page_prot);
653
654
addr = pci_get_legacy_mem(bus);
655
if (IS_ERR(addr))
656
return PTR_ERR(addr);
657
658
vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
659
vma->vm_page_prot = prot;
660
661
if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
662
size, vma->vm_page_prot))
663
return -EAGAIN;
664
665
return 0;
666
}
667
668
/**
669
* ia64_pci_legacy_read - read from legacy I/O space
670
* @bus: bus to read
671
* @port: legacy port value
672
* @val: caller allocated storage for returned value
673
* @size: number of bytes to read
674
*
675
* Simply reads @size bytes from @port and puts the result in @val.
676
*
677
* Again, this (and the write routine) are generic versions that can be
678
* overridden by the platform. This is necessary on platforms that don't
679
* support legacy I/O routing or that hard fail on legacy I/O timeouts.
680
*/
681
int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
682
{
683
int ret = size;
684
685
switch (size) {
686
case 1:
687
*val = inb(port);
688
break;
689
case 2:
690
*val = inw(port);
691
break;
692
case 4:
693
*val = inl(port);
694
break;
695
default:
696
ret = -EINVAL;
697
break;
698
}
699
700
return ret;
701
}
702
703
/**
704
* ia64_pci_legacy_write - perform a legacy I/O write
705
* @bus: bus pointer
706
* @port: port to write
707
* @val: value to write
708
* @size: number of bytes to write from @val
709
*
710
* Simply writes @size bytes of @val to @port.
711
*/
712
int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
713
{
714
int ret = size;
715
716
switch (size) {
717
case 1:
718
outb(val, port);
719
break;
720
case 2:
721
outw(val, port);
722
break;
723
case 4:
724
outl(val, port);
725
break;
726
default:
727
ret = -EINVAL;
728
break;
729
}
730
731
return ret;
732
}
733
734
/**
735
* set_pci_cacheline_size - determine cacheline size for PCI devices
736
*
737
* We want to use the line-size of the outer-most cache. We assume
738
* that this line-size is the same for all CPUs.
739
*
740
* Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
741
*/
742
static void __init set_pci_dfl_cacheline_size(void)
743
{
744
unsigned long levels, unique_caches;
745
long status;
746
pal_cache_config_info_t cci;
747
748
status = ia64_pal_cache_summary(&levels, &unique_caches);
749
if (status != 0) {
750
printk(KERN_ERR "%s: ia64_pal_cache_summary() failed "
751
"(status=%ld)\n", __func__, status);
752
return;
753
}
754
755
status = ia64_pal_cache_config_info(levels - 1,
756
/* cache_type (data_or_unified)= */ 2, &cci);
757
if (status != 0) {
758
printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed "
759
"(status=%ld)\n", __func__, status);
760
return;
761
}
762
pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4;
763
}
764
765
u64 ia64_dma_get_required_mask(struct device *dev)
766
{
767
u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
768
u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
769
u64 mask;
770
771
if (!high_totalram) {
772
/* convert to mask just covering totalram */
773
low_totalram = (1 << (fls(low_totalram) - 1));
774
low_totalram += low_totalram - 1;
775
mask = low_totalram;
776
} else {
777
high_totalram = (1 << (fls(high_totalram) - 1));
778
high_totalram += high_totalram - 1;
779
mask = (((u64)high_totalram) << 32) + 0xffffffff;
780
}
781
return mask;
782
}
783
EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask);
784
785
u64 dma_get_required_mask(struct device *dev)
786
{
787
return platform_dma_get_required_mask(dev);
788
}
789
EXPORT_SYMBOL_GPL(dma_get_required_mask);
790
791
static int __init pcibios_init(void)
792
{
793
set_pci_dfl_cacheline_size();
794
return 0;
795
}
796
797
subsys_initcall(pcibios_init);
798
799