Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/ia64/sn/kernel/bte.c
10819 views
1
/*
2
* This file is subject to the terms and conditions of the GNU General Public
3
* License. See the file "COPYING" in the main directory of this archive
4
* for more details.
5
*
6
* Copyright (c) 2000-2007 Silicon Graphics, Inc. All Rights Reserved.
7
*/
8
9
#include <linux/module.h>
10
#include <asm/sn/nodepda.h>
11
#include <asm/sn/addrs.h>
12
#include <asm/sn/arch.h>
13
#include <asm/sn/sn_cpuid.h>
14
#include <asm/sn/pda.h>
15
#include <asm/sn/shubio.h>
16
#include <asm/nodedata.h>
17
#include <asm/delay.h>
18
19
#include <linux/bootmem.h>
20
#include <linux/string.h>
21
#include <linux/sched.h>
22
#include <linux/slab.h>
23
24
#include <asm/sn/bte.h>
25
26
#ifndef L1_CACHE_MASK
27
#define L1_CACHE_MASK (L1_CACHE_BYTES - 1)
28
#endif
29
30
/* two interfaces on two btes */
31
#define MAX_INTERFACES_TO_TRY 4
32
#define MAX_NODES_TO_TRY 2
33
34
static struct bteinfo_s *bte_if_on_node(nasid_t nasid, int interface)
35
{
36
nodepda_t *tmp_nodepda;
37
38
if (nasid_to_cnodeid(nasid) == -1)
39
return (struct bteinfo_s *)NULL;
40
41
tmp_nodepda = NODEPDA(nasid_to_cnodeid(nasid));
42
return &tmp_nodepda->bte_if[interface];
43
44
}
45
46
static inline void bte_start_transfer(struct bteinfo_s *bte, u64 len, u64 mode)
47
{
48
if (is_shub2()) {
49
BTE_CTRL_STORE(bte, (IBLS_BUSY | ((len) | (mode) << 24)));
50
} else {
51
BTE_LNSTAT_STORE(bte, len);
52
BTE_CTRL_STORE(bte, mode);
53
}
54
}
55
56
/************************************************************************
57
* Block Transfer Engine copy related functions.
58
*
59
***********************************************************************/
60
61
/*
62
* bte_copy(src, dest, len, mode, notification)
63
*
64
* Use the block transfer engine to move kernel memory from src to dest
65
* using the assigned mode.
66
*
67
* Parameters:
68
* src - physical address of the transfer source.
69
* dest - physical address of the transfer destination.
70
* len - number of bytes to transfer from source to dest.
71
* mode - hardware defined. See reference information
72
* for IBCT0/1 in the SHUB Programmers Reference
73
* notification - kernel virtual address of the notification cache
74
* line. If NULL, the default is used and
75
* the bte_copy is synchronous.
76
*
77
* NOTE: This function requires src, dest, and len to
78
* be cacheline aligned.
79
*/
80
bte_result_t bte_copy(u64 src, u64 dest, u64 len, u64 mode, void *notification)
81
{
82
u64 transfer_size;
83
u64 transfer_stat;
84
u64 notif_phys_addr;
85
struct bteinfo_s *bte;
86
bte_result_t bte_status;
87
unsigned long irq_flags;
88
unsigned long itc_end = 0;
89
int nasid_to_try[MAX_NODES_TO_TRY];
90
int my_nasid = cpuid_to_nasid(raw_smp_processor_id());
91
int bte_if_index, nasid_index;
92
int bte_first, btes_per_node = BTES_PER_NODE;
93
94
BTE_PRINTK(("bte_copy(0x%lx, 0x%lx, 0x%lx, 0x%lx, 0x%p)\n",
95
src, dest, len, mode, notification));
96
97
if (len == 0) {
98
return BTE_SUCCESS;
99
}
100
101
BUG_ON(len & L1_CACHE_MASK);
102
BUG_ON(src & L1_CACHE_MASK);
103
BUG_ON(dest & L1_CACHE_MASK);
104
BUG_ON(len > BTE_MAX_XFER);
105
106
/*
107
* Start with interface corresponding to cpu number
108
*/
109
bte_first = raw_smp_processor_id() % btes_per_node;
110
111
if (mode & BTE_USE_DEST) {
112
/* try remote then local */
113
nasid_to_try[0] = NASID_GET(dest);
114
if (mode & BTE_USE_ANY) {
115
nasid_to_try[1] = my_nasid;
116
} else {
117
nasid_to_try[1] = (int)NULL;
118
}
119
} else {
120
/* try local then remote */
121
nasid_to_try[0] = my_nasid;
122
if (mode & BTE_USE_ANY) {
123
nasid_to_try[1] = NASID_GET(dest);
124
} else {
125
nasid_to_try[1] = (int)NULL;
126
}
127
}
128
129
retry_bteop:
130
do {
131
local_irq_save(irq_flags);
132
133
bte_if_index = bte_first;
134
nasid_index = 0;
135
136
/* Attempt to lock one of the BTE interfaces. */
137
while (nasid_index < MAX_NODES_TO_TRY) {
138
bte = bte_if_on_node(nasid_to_try[nasid_index],bte_if_index);
139
140
if (bte == NULL) {
141
nasid_index++;
142
continue;
143
}
144
145
if (spin_trylock(&bte->spinlock)) {
146
if (!(*bte->most_rcnt_na & BTE_WORD_AVAILABLE) ||
147
(BTE_LNSTAT_LOAD(bte) & BTE_ACTIVE)) {
148
/* Got the lock but BTE still busy */
149
spin_unlock(&bte->spinlock);
150
} else {
151
/* we got the lock and it's not busy */
152
break;
153
}
154
}
155
156
bte_if_index = (bte_if_index + 1) % btes_per_node; /* Next interface */
157
if (bte_if_index == bte_first) {
158
/*
159
* We've tried all interfaces on this node
160
*/
161
nasid_index++;
162
}
163
164
bte = NULL;
165
}
166
167
if (bte != NULL) {
168
break;
169
}
170
171
local_irq_restore(irq_flags);
172
173
if (!(mode & BTE_WACQUIRE)) {
174
return BTEFAIL_NOTAVAIL;
175
}
176
} while (1);
177
178
if (notification == NULL) {
179
/* User does not want to be notified. */
180
bte->most_rcnt_na = &bte->notify;
181
} else {
182
bte->most_rcnt_na = notification;
183
}
184
185
/* Calculate the number of cache lines to transfer. */
186
transfer_size = ((len >> L1_CACHE_SHIFT) & BTE_LEN_MASK);
187
188
/* Initialize the notification to a known value. */
189
*bte->most_rcnt_na = BTE_WORD_BUSY;
190
notif_phys_addr = (u64)bte->most_rcnt_na;
191
192
/* Set the source and destination registers */
193
BTE_PRINTKV(("IBSA = 0x%lx)\n", src));
194
BTE_SRC_STORE(bte, src);
195
BTE_PRINTKV(("IBDA = 0x%lx)\n", dest));
196
BTE_DEST_STORE(bte, dest);
197
198
/* Set the notification register */
199
BTE_PRINTKV(("IBNA = 0x%lx)\n", notif_phys_addr));
200
BTE_NOTIF_STORE(bte, notif_phys_addr);
201
202
/* Initiate the transfer */
203
BTE_PRINTK(("IBCT = 0x%lx)\n", BTE_VALID_MODE(mode)));
204
bte_start_transfer(bte, transfer_size, BTE_VALID_MODE(mode));
205
206
itc_end = ia64_get_itc() + (40000000 * local_cpu_data->cyc_per_usec);
207
208
spin_unlock_irqrestore(&bte->spinlock, irq_flags);
209
210
if (notification != NULL) {
211
return BTE_SUCCESS;
212
}
213
214
while ((transfer_stat = *bte->most_rcnt_na) == BTE_WORD_BUSY) {
215
cpu_relax();
216
if (ia64_get_itc() > itc_end) {
217
BTE_PRINTK(("BTE timeout nasid 0x%x bte%d IBLS = 0x%lx na 0x%lx\n",
218
NASID_GET(bte->bte_base_addr), bte->bte_num,
219
BTE_LNSTAT_LOAD(bte), *bte->most_rcnt_na) );
220
bte->bte_error_count++;
221
bte->bh_error = IBLS_ERROR;
222
bte_error_handler((unsigned long)NODEPDA(bte->bte_cnode));
223
*bte->most_rcnt_na = BTE_WORD_AVAILABLE;
224
goto retry_bteop;
225
}
226
}
227
228
BTE_PRINTKV((" Delay Done. IBLS = 0x%lx, most_rcnt_na = 0x%lx\n",
229
BTE_LNSTAT_LOAD(bte), *bte->most_rcnt_na));
230
231
if (transfer_stat & IBLS_ERROR) {
232
bte_status = BTE_GET_ERROR_STATUS(transfer_stat);
233
} else {
234
bte_status = BTE_SUCCESS;
235
}
236
*bte->most_rcnt_na = BTE_WORD_AVAILABLE;
237
238
BTE_PRINTK(("Returning status is 0x%lx and most_rcnt_na is 0x%lx\n",
239
BTE_LNSTAT_LOAD(bte), *bte->most_rcnt_na));
240
241
return bte_status;
242
}
243
244
EXPORT_SYMBOL(bte_copy);
245
246
/*
247
* bte_unaligned_copy(src, dest, len, mode)
248
*
249
* use the block transfer engine to move kernel
250
* memory from src to dest using the assigned mode.
251
*
252
* Parameters:
253
* src - physical address of the transfer source.
254
* dest - physical address of the transfer destination.
255
* len - number of bytes to transfer from source to dest.
256
* mode - hardware defined. See reference information
257
* for IBCT0/1 in the SGI documentation.
258
*
259
* NOTE: If the source, dest, and len are all cache line aligned,
260
* then it would be _FAR_ preferable to use bte_copy instead.
261
*/
262
bte_result_t bte_unaligned_copy(u64 src, u64 dest, u64 len, u64 mode)
263
{
264
int destFirstCacheOffset;
265
u64 headBteSource;
266
u64 headBteLen;
267
u64 headBcopySrcOffset;
268
u64 headBcopyDest;
269
u64 headBcopyLen;
270
u64 footBteSource;
271
u64 footBteLen;
272
u64 footBcopyDest;
273
u64 footBcopyLen;
274
bte_result_t rv;
275
char *bteBlock, *bteBlock_unaligned;
276
277
if (len == 0) {
278
return BTE_SUCCESS;
279
}
280
281
/* temporary buffer used during unaligned transfers */
282
bteBlock_unaligned = kmalloc(len + 3 * L1_CACHE_BYTES, GFP_KERNEL);
283
if (bteBlock_unaligned == NULL) {
284
return BTEFAIL_NOTAVAIL;
285
}
286
bteBlock = (char *)L1_CACHE_ALIGN((u64) bteBlock_unaligned);
287
288
headBcopySrcOffset = src & L1_CACHE_MASK;
289
destFirstCacheOffset = dest & L1_CACHE_MASK;
290
291
/*
292
* At this point, the transfer is broken into
293
* (up to) three sections. The first section is
294
* from the start address to the first physical
295
* cache line, the second is from the first physical
296
* cache line to the last complete cache line,
297
* and the third is from the last cache line to the
298
* end of the buffer. The first and third sections
299
* are handled by bte copying into a temporary buffer
300
* and then bcopy'ing the necessary section into the
301
* final location. The middle section is handled with
302
* a standard bte copy.
303
*
304
* One nasty exception to the above rule is when the
305
* source and destination are not symmetrically
306
* mis-aligned. If the source offset from the first
307
* cache line is different from the destination offset,
308
* we make the first section be the entire transfer
309
* and the bcopy the entire block into place.
310
*/
311
if (headBcopySrcOffset == destFirstCacheOffset) {
312
313
/*
314
* Both the source and destination are the same
315
* distance from a cache line boundary so we can
316
* use the bte to transfer the bulk of the
317
* data.
318
*/
319
headBteSource = src & ~L1_CACHE_MASK;
320
headBcopyDest = dest;
321
if (headBcopySrcOffset) {
322
headBcopyLen =
323
(len >
324
(L1_CACHE_BYTES -
325
headBcopySrcOffset) ? L1_CACHE_BYTES
326
- headBcopySrcOffset : len);
327
headBteLen = L1_CACHE_BYTES;
328
} else {
329
headBcopyLen = 0;
330
headBteLen = 0;
331
}
332
333
if (len > headBcopyLen) {
334
footBcopyLen = (len - headBcopyLen) & L1_CACHE_MASK;
335
footBteLen = L1_CACHE_BYTES;
336
337
footBteSource = src + len - footBcopyLen;
338
footBcopyDest = dest + len - footBcopyLen;
339
340
if (footBcopyDest == (headBcopyDest + headBcopyLen)) {
341
/*
342
* We have two contiguous bcopy
343
* blocks. Merge them.
344
*/
345
headBcopyLen += footBcopyLen;
346
headBteLen += footBteLen;
347
} else if (footBcopyLen > 0) {
348
rv = bte_copy(footBteSource,
349
ia64_tpa((unsigned long)bteBlock),
350
footBteLen, mode, NULL);
351
if (rv != BTE_SUCCESS) {
352
kfree(bteBlock_unaligned);
353
return rv;
354
}
355
356
memcpy(__va(footBcopyDest),
357
(char *)bteBlock, footBcopyLen);
358
}
359
} else {
360
footBcopyLen = 0;
361
footBteLen = 0;
362
}
363
364
if (len > (headBcopyLen + footBcopyLen)) {
365
/* now transfer the middle. */
366
rv = bte_copy((src + headBcopyLen),
367
(dest +
368
headBcopyLen),
369
(len - headBcopyLen -
370
footBcopyLen), mode, NULL);
371
if (rv != BTE_SUCCESS) {
372
kfree(bteBlock_unaligned);
373
return rv;
374
}
375
376
}
377
} else {
378
379
/*
380
* The transfer is not symmetric, we will
381
* allocate a buffer large enough for all the
382
* data, bte_copy into that buffer and then
383
* bcopy to the destination.
384
*/
385
386
headBcopySrcOffset = src & L1_CACHE_MASK;
387
headBcopyDest = dest;
388
headBcopyLen = len;
389
390
headBteSource = src - headBcopySrcOffset;
391
/* Add the leading and trailing bytes from source */
392
headBteLen = L1_CACHE_ALIGN(len + headBcopySrcOffset);
393
}
394
395
if (headBcopyLen > 0) {
396
rv = bte_copy(headBteSource,
397
ia64_tpa((unsigned long)bteBlock), headBteLen,
398
mode, NULL);
399
if (rv != BTE_SUCCESS) {
400
kfree(bteBlock_unaligned);
401
return rv;
402
}
403
404
memcpy(__va(headBcopyDest), ((char *)bteBlock +
405
headBcopySrcOffset), headBcopyLen);
406
}
407
kfree(bteBlock_unaligned);
408
return BTE_SUCCESS;
409
}
410
411
EXPORT_SYMBOL(bte_unaligned_copy);
412
413
/************************************************************************
414
* Block Transfer Engine initialization functions.
415
*
416
***********************************************************************/
417
418
/*
419
* bte_init_node(nodepda, cnode)
420
*
421
* Initialize the nodepda structure with BTE base addresses and
422
* spinlocks.
423
*/
424
void bte_init_node(nodepda_t * mynodepda, cnodeid_t cnode)
425
{
426
int i;
427
428
/*
429
* Indicate that all the block transfer engines on this node
430
* are available.
431
*/
432
433
/*
434
* Allocate one bte_recover_t structure per node. It holds
435
* the recovery lock for node. All the bte interface structures
436
* will point at this one bte_recover structure to get the lock.
437
*/
438
spin_lock_init(&mynodepda->bte_recovery_lock);
439
init_timer(&mynodepda->bte_recovery_timer);
440
mynodepda->bte_recovery_timer.function = bte_error_handler;
441
mynodepda->bte_recovery_timer.data = (unsigned long)mynodepda;
442
443
for (i = 0; i < BTES_PER_NODE; i++) {
444
u64 *base_addr;
445
446
/* Which link status register should we use? */
447
base_addr = (u64 *)
448
REMOTE_HUB_ADDR(cnodeid_to_nasid(cnode), BTE_BASE_ADDR(i));
449
mynodepda->bte_if[i].bte_base_addr = base_addr;
450
mynodepda->bte_if[i].bte_source_addr = BTE_SOURCE_ADDR(base_addr);
451
mynodepda->bte_if[i].bte_destination_addr = BTE_DEST_ADDR(base_addr);
452
mynodepda->bte_if[i].bte_control_addr = BTE_CTRL_ADDR(base_addr);
453
mynodepda->bte_if[i].bte_notify_addr = BTE_NOTIF_ADDR(base_addr);
454
455
/*
456
* Initialize the notification and spinlock
457
* so the first transfer can occur.
458
*/
459
mynodepda->bte_if[i].most_rcnt_na =
460
&(mynodepda->bte_if[i].notify);
461
mynodepda->bte_if[i].notify = BTE_WORD_AVAILABLE;
462
spin_lock_init(&mynodepda->bte_if[i].spinlock);
463
464
mynodepda->bte_if[i].bte_cnode = cnode;
465
mynodepda->bte_if[i].bte_error_count = 0;
466
mynodepda->bte_if[i].bte_num = i;
467
mynodepda->bte_if[i].cleanup_active = 0;
468
mynodepda->bte_if[i].bh_error = 0;
469
}
470
471
}
472
473