Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/ia64/sn/kernel/irq.c
10819 views
1
/*
2
* Platform dependent support for SGI SN
3
*
4
* This file is subject to the terms and conditions of the GNU General Public
5
* License. See the file "COPYING" in the main directory of this archive
6
* for more details.
7
*
8
* Copyright (c) 2000-2008 Silicon Graphics, Inc. All Rights Reserved.
9
*/
10
11
#include <linux/irq.h>
12
#include <linux/spinlock.h>
13
#include <linux/init.h>
14
#include <linux/rculist.h>
15
#include <linux/slab.h>
16
#include <asm/sn/addrs.h>
17
#include <asm/sn/arch.h>
18
#include <asm/sn/intr.h>
19
#include <asm/sn/pcibr_provider.h>
20
#include <asm/sn/pcibus_provider_defs.h>
21
#include <asm/sn/pcidev.h>
22
#include <asm/sn/shub_mmr.h>
23
#include <asm/sn/sn_sal.h>
24
#include <asm/sn/sn_feature_sets.h>
25
26
static void register_intr_pda(struct sn_irq_info *sn_irq_info);
27
static void unregister_intr_pda(struct sn_irq_info *sn_irq_info);
28
29
extern int sn_ioif_inited;
30
struct list_head **sn_irq_lh;
31
static DEFINE_SPINLOCK(sn_irq_info_lock); /* non-IRQ lock */
32
33
u64 sn_intr_alloc(nasid_t local_nasid, int local_widget,
34
struct sn_irq_info *sn_irq_info,
35
int req_irq, nasid_t req_nasid,
36
int req_slice)
37
{
38
struct ia64_sal_retval ret_stuff;
39
ret_stuff.status = 0;
40
ret_stuff.v0 = 0;
41
42
SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
43
(u64) SAL_INTR_ALLOC, (u64) local_nasid,
44
(u64) local_widget, __pa(sn_irq_info), (u64) req_irq,
45
(u64) req_nasid, (u64) req_slice);
46
47
return ret_stuff.status;
48
}
49
50
void sn_intr_free(nasid_t local_nasid, int local_widget,
51
struct sn_irq_info *sn_irq_info)
52
{
53
struct ia64_sal_retval ret_stuff;
54
ret_stuff.status = 0;
55
ret_stuff.v0 = 0;
56
57
SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
58
(u64) SAL_INTR_FREE, (u64) local_nasid,
59
(u64) local_widget, (u64) sn_irq_info->irq_irq,
60
(u64) sn_irq_info->irq_cookie, 0, 0);
61
}
62
63
u64 sn_intr_redirect(nasid_t local_nasid, int local_widget,
64
struct sn_irq_info *sn_irq_info,
65
nasid_t req_nasid, int req_slice)
66
{
67
struct ia64_sal_retval ret_stuff;
68
ret_stuff.status = 0;
69
ret_stuff.v0 = 0;
70
71
SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
72
(u64) SAL_INTR_REDIRECT, (u64) local_nasid,
73
(u64) local_widget, __pa(sn_irq_info),
74
(u64) req_nasid, (u64) req_slice, 0);
75
76
return ret_stuff.status;
77
}
78
79
static unsigned int sn_startup_irq(struct irq_data *data)
80
{
81
return 0;
82
}
83
84
static void sn_shutdown_irq(struct irq_data *data)
85
{
86
}
87
88
extern void ia64_mca_register_cpev(int);
89
90
static void sn_disable_irq(struct irq_data *data)
91
{
92
if (data->irq == local_vector_to_irq(IA64_CPE_VECTOR))
93
ia64_mca_register_cpev(0);
94
}
95
96
static void sn_enable_irq(struct irq_data *data)
97
{
98
if (data->irq == local_vector_to_irq(IA64_CPE_VECTOR))
99
ia64_mca_register_cpev(data->irq);
100
}
101
102
static void sn_ack_irq(struct irq_data *data)
103
{
104
u64 event_occurred, mask;
105
unsigned int irq = data->irq & 0xff;
106
107
event_occurred = HUB_L((u64*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED));
108
mask = event_occurred & SH_ALL_INT_MASK;
109
HUB_S((u64*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS), mask);
110
__set_bit(irq, (volatile void *)pda->sn_in_service_ivecs);
111
112
irq_move_irq(data);
113
}
114
115
static void sn_irq_info_free(struct rcu_head *head);
116
117
struct sn_irq_info *sn_retarget_vector(struct sn_irq_info *sn_irq_info,
118
nasid_t nasid, int slice)
119
{
120
int vector;
121
int cpuid;
122
#ifdef CONFIG_SMP
123
int cpuphys;
124
#endif
125
int64_t bridge;
126
int local_widget, status;
127
nasid_t local_nasid;
128
struct sn_irq_info *new_irq_info;
129
struct sn_pcibus_provider *pci_provider;
130
131
bridge = (u64) sn_irq_info->irq_bridge;
132
if (!bridge) {
133
return NULL; /* irq is not a device interrupt */
134
}
135
136
local_nasid = NASID_GET(bridge);
137
138
if (local_nasid & 1)
139
local_widget = TIO_SWIN_WIDGETNUM(bridge);
140
else
141
local_widget = SWIN_WIDGETNUM(bridge);
142
vector = sn_irq_info->irq_irq;
143
144
/* Make use of SAL_INTR_REDIRECT if PROM supports it */
145
status = sn_intr_redirect(local_nasid, local_widget, sn_irq_info, nasid, slice);
146
if (!status) {
147
new_irq_info = sn_irq_info;
148
goto finish_up;
149
}
150
151
/*
152
* PROM does not support SAL_INTR_REDIRECT, or it failed.
153
* Revert to old method.
154
*/
155
new_irq_info = kmalloc(sizeof(struct sn_irq_info), GFP_ATOMIC);
156
if (new_irq_info == NULL)
157
return NULL;
158
159
memcpy(new_irq_info, sn_irq_info, sizeof(struct sn_irq_info));
160
161
/* Free the old PROM new_irq_info structure */
162
sn_intr_free(local_nasid, local_widget, new_irq_info);
163
unregister_intr_pda(new_irq_info);
164
165
/* allocate a new PROM new_irq_info struct */
166
status = sn_intr_alloc(local_nasid, local_widget,
167
new_irq_info, vector,
168
nasid, slice);
169
170
/* SAL call failed */
171
if (status) {
172
kfree(new_irq_info);
173
return NULL;
174
}
175
176
register_intr_pda(new_irq_info);
177
spin_lock(&sn_irq_info_lock);
178
list_replace_rcu(&sn_irq_info->list, &new_irq_info->list);
179
spin_unlock(&sn_irq_info_lock);
180
call_rcu(&sn_irq_info->rcu, sn_irq_info_free);
181
182
183
finish_up:
184
/* Update kernels new_irq_info with new target info */
185
cpuid = nasid_slice_to_cpuid(new_irq_info->irq_nasid,
186
new_irq_info->irq_slice);
187
new_irq_info->irq_cpuid = cpuid;
188
189
pci_provider = sn_pci_provider[new_irq_info->irq_bridge_type];
190
191
/*
192
* If this represents a line interrupt, target it. If it's
193
* an msi (irq_int_bit < 0), it's already targeted.
194
*/
195
if (new_irq_info->irq_int_bit >= 0 &&
196
pci_provider && pci_provider->target_interrupt)
197
(pci_provider->target_interrupt)(new_irq_info);
198
199
#ifdef CONFIG_SMP
200
cpuphys = cpu_physical_id(cpuid);
201
set_irq_affinity_info((vector & 0xff), cpuphys, 0);
202
#endif
203
204
return new_irq_info;
205
}
206
207
static int sn_set_affinity_irq(struct irq_data *data,
208
const struct cpumask *mask, bool force)
209
{
210
struct sn_irq_info *sn_irq_info, *sn_irq_info_safe;
211
unsigned int irq = data->irq;
212
nasid_t nasid;
213
int slice;
214
215
nasid = cpuid_to_nasid(cpumask_first(mask));
216
slice = cpuid_to_slice(cpumask_first(mask));
217
218
list_for_each_entry_safe(sn_irq_info, sn_irq_info_safe,
219
sn_irq_lh[irq], list)
220
(void)sn_retarget_vector(sn_irq_info, nasid, slice);
221
222
return 0;
223
}
224
225
#ifdef CONFIG_SMP
226
void sn_set_err_irq_affinity(unsigned int irq)
227
{
228
/*
229
* On systems which support CPU disabling (SHub2), all error interrupts
230
* are targeted at the boot CPU.
231
*/
232
if (is_shub2() && sn_prom_feature_available(PRF_CPU_DISABLE_SUPPORT))
233
set_irq_affinity_info(irq, cpu_physical_id(0), 0);
234
}
235
#else
236
void sn_set_err_irq_affinity(unsigned int irq) { }
237
#endif
238
239
static void
240
sn_mask_irq(struct irq_data *data)
241
{
242
}
243
244
static void
245
sn_unmask_irq(struct irq_data *data)
246
{
247
}
248
249
struct irq_chip irq_type_sn = {
250
.name = "SN hub",
251
.irq_startup = sn_startup_irq,
252
.irq_shutdown = sn_shutdown_irq,
253
.irq_enable = sn_enable_irq,
254
.irq_disable = sn_disable_irq,
255
.irq_ack = sn_ack_irq,
256
.irq_mask = sn_mask_irq,
257
.irq_unmask = sn_unmask_irq,
258
.irq_set_affinity = sn_set_affinity_irq
259
};
260
261
ia64_vector sn_irq_to_vector(int irq)
262
{
263
if (irq >= IA64_NUM_VECTORS)
264
return 0;
265
return (ia64_vector)irq;
266
}
267
268
unsigned int sn_local_vector_to_irq(u8 vector)
269
{
270
return (CPU_VECTOR_TO_IRQ(smp_processor_id(), vector));
271
}
272
273
void sn_irq_init(void)
274
{
275
int i;
276
277
ia64_first_device_vector = IA64_SN2_FIRST_DEVICE_VECTOR;
278
ia64_last_device_vector = IA64_SN2_LAST_DEVICE_VECTOR;
279
280
for (i = 0; i < NR_IRQS; i++) {
281
if (irq_get_chip(i) == &no_irq_chip)
282
irq_set_chip(i, &irq_type_sn);
283
}
284
}
285
286
static void register_intr_pda(struct sn_irq_info *sn_irq_info)
287
{
288
int irq = sn_irq_info->irq_irq;
289
int cpu = sn_irq_info->irq_cpuid;
290
291
if (pdacpu(cpu)->sn_last_irq < irq) {
292
pdacpu(cpu)->sn_last_irq = irq;
293
}
294
295
if (pdacpu(cpu)->sn_first_irq == 0 || pdacpu(cpu)->sn_first_irq > irq)
296
pdacpu(cpu)->sn_first_irq = irq;
297
}
298
299
static void unregister_intr_pda(struct sn_irq_info *sn_irq_info)
300
{
301
int irq = sn_irq_info->irq_irq;
302
int cpu = sn_irq_info->irq_cpuid;
303
struct sn_irq_info *tmp_irq_info;
304
int i, foundmatch;
305
306
rcu_read_lock();
307
if (pdacpu(cpu)->sn_last_irq == irq) {
308
foundmatch = 0;
309
for (i = pdacpu(cpu)->sn_last_irq - 1;
310
i && !foundmatch; i--) {
311
list_for_each_entry_rcu(tmp_irq_info,
312
sn_irq_lh[i],
313
list) {
314
if (tmp_irq_info->irq_cpuid == cpu) {
315
foundmatch = 1;
316
break;
317
}
318
}
319
}
320
pdacpu(cpu)->sn_last_irq = i;
321
}
322
323
if (pdacpu(cpu)->sn_first_irq == irq) {
324
foundmatch = 0;
325
for (i = pdacpu(cpu)->sn_first_irq + 1;
326
i < NR_IRQS && !foundmatch; i++) {
327
list_for_each_entry_rcu(tmp_irq_info,
328
sn_irq_lh[i],
329
list) {
330
if (tmp_irq_info->irq_cpuid == cpu) {
331
foundmatch = 1;
332
break;
333
}
334
}
335
}
336
pdacpu(cpu)->sn_first_irq = ((i == NR_IRQS) ? 0 : i);
337
}
338
rcu_read_unlock();
339
}
340
341
static void sn_irq_info_free(struct rcu_head *head)
342
{
343
struct sn_irq_info *sn_irq_info;
344
345
sn_irq_info = container_of(head, struct sn_irq_info, rcu);
346
kfree(sn_irq_info);
347
}
348
349
void sn_irq_fixup(struct pci_dev *pci_dev, struct sn_irq_info *sn_irq_info)
350
{
351
nasid_t nasid = sn_irq_info->irq_nasid;
352
int slice = sn_irq_info->irq_slice;
353
int cpu = nasid_slice_to_cpuid(nasid, slice);
354
#ifdef CONFIG_SMP
355
int cpuphys;
356
#endif
357
358
pci_dev_get(pci_dev);
359
sn_irq_info->irq_cpuid = cpu;
360
sn_irq_info->irq_pciioinfo = SN_PCIDEV_INFO(pci_dev);
361
362
/* link it into the sn_irq[irq] list */
363
spin_lock(&sn_irq_info_lock);
364
list_add_rcu(&sn_irq_info->list, sn_irq_lh[sn_irq_info->irq_irq]);
365
reserve_irq_vector(sn_irq_info->irq_irq);
366
spin_unlock(&sn_irq_info_lock);
367
368
register_intr_pda(sn_irq_info);
369
#ifdef CONFIG_SMP
370
cpuphys = cpu_physical_id(cpu);
371
set_irq_affinity_info(sn_irq_info->irq_irq, cpuphys, 0);
372
/*
373
* Affinity was set by the PROM, prevent it from
374
* being reset by the request_irq() path.
375
*/
376
irqd_mark_affinity_was_set(irq_get_irq_data(sn_irq_info->irq_irq));
377
#endif
378
}
379
380
void sn_irq_unfixup(struct pci_dev *pci_dev)
381
{
382
struct sn_irq_info *sn_irq_info;
383
384
/* Only cleanup IRQ stuff if this device has a host bus context */
385
if (!SN_PCIDEV_BUSSOFT(pci_dev))
386
return;
387
388
sn_irq_info = SN_PCIDEV_INFO(pci_dev)->pdi_sn_irq_info;
389
if (!sn_irq_info)
390
return;
391
if (!sn_irq_info->irq_irq) {
392
kfree(sn_irq_info);
393
return;
394
}
395
396
unregister_intr_pda(sn_irq_info);
397
spin_lock(&sn_irq_info_lock);
398
list_del_rcu(&sn_irq_info->list);
399
spin_unlock(&sn_irq_info_lock);
400
if (list_empty(sn_irq_lh[sn_irq_info->irq_irq]))
401
free_irq_vector(sn_irq_info->irq_irq);
402
call_rcu(&sn_irq_info->rcu, sn_irq_info_free);
403
pci_dev_put(pci_dev);
404
405
}
406
407
static inline void
408
sn_call_force_intr_provider(struct sn_irq_info *sn_irq_info)
409
{
410
struct sn_pcibus_provider *pci_provider;
411
412
pci_provider = sn_pci_provider[sn_irq_info->irq_bridge_type];
413
414
/* Don't force an interrupt if the irq has been disabled */
415
if (!irqd_irq_disabled(irq_get_irq_data(sn_irq_info->irq_irq)) &&
416
pci_provider && pci_provider->force_interrupt)
417
(*pci_provider->force_interrupt)(sn_irq_info);
418
}
419
420
/*
421
* Check for lost interrupts. If the PIC int_status reg. says that
422
* an interrupt has been sent, but not handled, and the interrupt
423
* is not pending in either the cpu irr regs or in the soft irr regs,
424
* and the interrupt is not in service, then the interrupt may have
425
* been lost. Force an interrupt on that pin. It is possible that
426
* the interrupt is in flight, so we may generate a spurious interrupt,
427
* but we should never miss a real lost interrupt.
428
*/
429
static void sn_check_intr(int irq, struct sn_irq_info *sn_irq_info)
430
{
431
u64 regval;
432
struct pcidev_info *pcidev_info;
433
struct pcibus_info *pcibus_info;
434
435
/*
436
* Bridge types attached to TIO (anything but PIC) do not need this WAR
437
* since they do not target Shub II interrupt registers. If that
438
* ever changes, this check needs to accommodate.
439
*/
440
if (sn_irq_info->irq_bridge_type != PCIIO_ASIC_TYPE_PIC)
441
return;
442
443
pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
444
if (!pcidev_info)
445
return;
446
447
pcibus_info =
448
(struct pcibus_info *)pcidev_info->pdi_host_pcidev_info->
449
pdi_pcibus_info;
450
regval = pcireg_intr_status_get(pcibus_info);
451
452
if (!ia64_get_irr(irq_to_vector(irq))) {
453
if (!test_bit(irq, pda->sn_in_service_ivecs)) {
454
regval &= 0xff;
455
if (sn_irq_info->irq_int_bit & regval &
456
sn_irq_info->irq_last_intr) {
457
regval &= ~(sn_irq_info->irq_int_bit & regval);
458
sn_call_force_intr_provider(sn_irq_info);
459
}
460
}
461
}
462
sn_irq_info->irq_last_intr = regval;
463
}
464
465
void sn_lb_int_war_check(void)
466
{
467
struct sn_irq_info *sn_irq_info;
468
int i;
469
470
if (!sn_ioif_inited || pda->sn_first_irq == 0)
471
return;
472
473
rcu_read_lock();
474
for (i = pda->sn_first_irq; i <= pda->sn_last_irq; i++) {
475
list_for_each_entry_rcu(sn_irq_info, sn_irq_lh[i], list) {
476
sn_check_intr(i, sn_irq_info);
477
}
478
}
479
rcu_read_unlock();
480
}
481
482
void __init sn_irq_lh_init(void)
483
{
484
int i;
485
486
sn_irq_lh = kmalloc(sizeof(struct list_head *) * NR_IRQS, GFP_KERNEL);
487
if (!sn_irq_lh)
488
panic("SN PCI INIT: Failed to allocate memory for PCI init\n");
489
490
for (i = 0; i < NR_IRQS; i++) {
491
sn_irq_lh[i] = kmalloc(sizeof(struct list_head), GFP_KERNEL);
492
if (!sn_irq_lh[i])
493
panic("SN PCI INIT: Failed IRQ memory allocation\n");
494
495
INIT_LIST_HEAD(sn_irq_lh[i]);
496
}
497
}
498
499