Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/ia64/sn/kernel/setup.c
10819 views
1
/*
2
* This file is subject to the terms and conditions of the GNU General Public
3
* License. See the file "COPYING" in the main directory of this archive
4
* for more details.
5
*
6
* Copyright (C) 1999,2001-2006 Silicon Graphics, Inc. All rights reserved.
7
*/
8
9
#include <linux/module.h>
10
#include <linux/init.h>
11
#include <linux/delay.h>
12
#include <linux/kernel.h>
13
#include <linux/kdev_t.h>
14
#include <linux/string.h>
15
#include <linux/screen_info.h>
16
#include <linux/console.h>
17
#include <linux/timex.h>
18
#include <linux/sched.h>
19
#include <linux/ioport.h>
20
#include <linux/mm.h>
21
#include <linux/serial.h>
22
#include <linux/irq.h>
23
#include <linux/bootmem.h>
24
#include <linux/mmzone.h>
25
#include <linux/interrupt.h>
26
#include <linux/acpi.h>
27
#include <linux/compiler.h>
28
#include <linux/root_dev.h>
29
#include <linux/nodemask.h>
30
#include <linux/pm.h>
31
#include <linux/efi.h>
32
33
#include <asm/io.h>
34
#include <asm/sal.h>
35
#include <asm/machvec.h>
36
#include <asm/system.h>
37
#include <asm/processor.h>
38
#include <asm/vga.h>
39
#include <asm/sn/arch.h>
40
#include <asm/sn/addrs.h>
41
#include <asm/sn/pda.h>
42
#include <asm/sn/nodepda.h>
43
#include <asm/sn/sn_cpuid.h>
44
#include <asm/sn/simulator.h>
45
#include <asm/sn/leds.h>
46
#include <asm/sn/bte.h>
47
#include <asm/sn/shub_mmr.h>
48
#include <asm/sn/clksupport.h>
49
#include <asm/sn/sn_sal.h>
50
#include <asm/sn/geo.h>
51
#include <asm/sn/sn_feature_sets.h>
52
#include "xtalk/xwidgetdev.h"
53
#include "xtalk/hubdev.h"
54
#include <asm/sn/klconfig.h>
55
56
57
DEFINE_PER_CPU(struct pda_s, pda_percpu);
58
59
#define MAX_PHYS_MEMORY (1UL << IA64_MAX_PHYS_BITS) /* Max physical address supported */
60
61
extern void bte_init_node(nodepda_t *, cnodeid_t);
62
63
extern void sn_timer_init(void);
64
extern unsigned long last_time_offset;
65
extern void (*ia64_mark_idle) (int);
66
extern void snidle(int);
67
68
unsigned long sn_rtc_cycles_per_second;
69
EXPORT_SYMBOL(sn_rtc_cycles_per_second);
70
71
DEFINE_PER_CPU(struct sn_hub_info_s, __sn_hub_info);
72
EXPORT_PER_CPU_SYMBOL(__sn_hub_info);
73
74
DEFINE_PER_CPU(short, __sn_cnodeid_to_nasid[MAX_COMPACT_NODES]);
75
EXPORT_PER_CPU_SYMBOL(__sn_cnodeid_to_nasid);
76
77
DEFINE_PER_CPU(struct nodepda_s *, __sn_nodepda);
78
EXPORT_PER_CPU_SYMBOL(__sn_nodepda);
79
80
char sn_system_serial_number_string[128];
81
EXPORT_SYMBOL(sn_system_serial_number_string);
82
u64 sn_partition_serial_number;
83
EXPORT_SYMBOL(sn_partition_serial_number);
84
u8 sn_partition_id;
85
EXPORT_SYMBOL(sn_partition_id);
86
u8 sn_system_size;
87
EXPORT_SYMBOL(sn_system_size);
88
u8 sn_sharing_domain_size;
89
EXPORT_SYMBOL(sn_sharing_domain_size);
90
u8 sn_coherency_id;
91
EXPORT_SYMBOL(sn_coherency_id);
92
u8 sn_region_size;
93
EXPORT_SYMBOL(sn_region_size);
94
int sn_prom_type; /* 0=hardware, 1=medusa/realprom, 2=medusa/fakeprom */
95
96
short physical_node_map[MAX_NUMALINK_NODES];
97
static unsigned long sn_prom_features[MAX_PROM_FEATURE_SETS];
98
99
EXPORT_SYMBOL(physical_node_map);
100
101
int num_cnodes;
102
103
static void sn_init_pdas(char **);
104
static void build_cnode_tables(void);
105
106
static nodepda_t *nodepdaindr[MAX_COMPACT_NODES];
107
108
/*
109
* The format of "screen_info" is strange, and due to early i386-setup
110
* code. This is just enough to make the console code think we're on a
111
* VGA color display.
112
*/
113
struct screen_info sn_screen_info = {
114
.orig_x = 0,
115
.orig_y = 0,
116
.orig_video_mode = 3,
117
.orig_video_cols = 80,
118
.orig_video_ega_bx = 3,
119
.orig_video_lines = 25,
120
.orig_video_isVGA = 1,
121
.orig_video_points = 16
122
};
123
124
/*
125
* This routine can only be used during init, since
126
* smp_boot_data is an init data structure.
127
* We have to use smp_boot_data.cpu_phys_id to find
128
* the physical id of the processor because the normal
129
* cpu_physical_id() relies on data structures that
130
* may not be initialized yet.
131
*/
132
133
static int __init pxm_to_nasid(int pxm)
134
{
135
int i;
136
int nid;
137
138
nid = pxm_to_node(pxm);
139
for (i = 0; i < num_node_memblks; i++) {
140
if (node_memblk[i].nid == nid) {
141
return NASID_GET(node_memblk[i].start_paddr);
142
}
143
}
144
return -1;
145
}
146
147
/**
148
* early_sn_setup - early setup routine for SN platforms
149
*
150
* Sets up an initial console to aid debugging. Intended primarily
151
* for bringup. See start_kernel() in init/main.c.
152
*/
153
154
void __init early_sn_setup(void)
155
{
156
efi_system_table_t *efi_systab;
157
efi_config_table_t *config_tables;
158
struct ia64_sal_systab *sal_systab;
159
struct ia64_sal_desc_entry_point *ep;
160
char *p;
161
int i, j;
162
163
/*
164
* Parse enough of the SAL tables to locate the SAL entry point. Since, console
165
* IO on SN2 is done via SAL calls, early_printk won't work without this.
166
*
167
* This code duplicates some of the ACPI table parsing that is in efi.c & sal.c.
168
* Any changes to those file may have to be made here as well.
169
*/
170
efi_systab = (efi_system_table_t *) __va(ia64_boot_param->efi_systab);
171
config_tables = __va(efi_systab->tables);
172
for (i = 0; i < efi_systab->nr_tables; i++) {
173
if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) ==
174
0) {
175
sal_systab = __va(config_tables[i].table);
176
p = (char *)(sal_systab + 1);
177
for (j = 0; j < sal_systab->entry_count; j++) {
178
if (*p == SAL_DESC_ENTRY_POINT) {
179
ep = (struct ia64_sal_desc_entry_point
180
*)p;
181
ia64_sal_handler_init(__va
182
(ep->sal_proc),
183
__va(ep->gp));
184
return;
185
}
186
p += SAL_DESC_SIZE(*p);
187
}
188
}
189
}
190
/* Uh-oh, SAL not available?? */
191
printk(KERN_ERR "failed to find SAL entry point\n");
192
}
193
194
extern int platform_intr_list[];
195
static int __cpuinitdata shub_1_1_found;
196
197
/*
198
* sn_check_for_wars
199
*
200
* Set flag for enabling shub specific wars
201
*/
202
203
static inline int __cpuinit is_shub_1_1(int nasid)
204
{
205
unsigned long id;
206
int rev;
207
208
if (is_shub2())
209
return 0;
210
id = REMOTE_HUB_L(nasid, SH1_SHUB_ID);
211
rev = (id & SH1_SHUB_ID_REVISION_MASK) >> SH1_SHUB_ID_REVISION_SHFT;
212
return rev <= 2;
213
}
214
215
static void __cpuinit sn_check_for_wars(void)
216
{
217
int cnode;
218
219
if (is_shub2()) {
220
/* none yet */
221
} else {
222
for_each_online_node(cnode) {
223
if (is_shub_1_1(cnodeid_to_nasid(cnode)))
224
shub_1_1_found = 1;
225
}
226
}
227
}
228
229
/*
230
* Scan the EFI PCDP table (if it exists) for an acceptable VGA console
231
* output device. If one exists, pick it and set sn_legacy_{io,mem} to
232
* reflect the bus offsets needed to address it.
233
*
234
* Since pcdp support in SN is not supported in the 2.4 kernel (or at least
235
* the one lbs is based on) just declare the needed structs here.
236
*
237
* Reference spec http://www.dig64.org/specifications/DIG64_PCDPv20.pdf
238
*
239
* Returns 0 if no acceptable vga is found, !0 otherwise.
240
*
241
* Note: This stuff is duped here because Altix requires the PCDP to
242
* locate a usable VGA device due to lack of proper ACPI support. Structures
243
* could be used from drivers/firmware/pcdp.h, but it was decided that moving
244
* this file to a more public location just for Altix use was undesirable.
245
*/
246
247
struct hcdp_uart_desc {
248
u8 pad[45];
249
};
250
251
struct pcdp {
252
u8 signature[4]; /* should be 'HCDP' */
253
u32 length;
254
u8 rev; /* should be >=3 for pcdp, <3 for hcdp */
255
u8 sum;
256
u8 oem_id[6];
257
u64 oem_tableid;
258
u32 oem_rev;
259
u32 creator_id;
260
u32 creator_rev;
261
u32 num_type0;
262
struct hcdp_uart_desc uart[0]; /* num_type0 of these */
263
/* pcdp descriptors follow */
264
} __attribute__((packed));
265
266
struct pcdp_device_desc {
267
u8 type;
268
u8 primary;
269
u16 length;
270
u16 index;
271
/* interconnect specific structure follows */
272
/* device specific structure follows that */
273
} __attribute__((packed));
274
275
struct pcdp_interface_pci {
276
u8 type; /* 1 == pci */
277
u8 reserved;
278
u16 length;
279
u8 segment;
280
u8 bus;
281
u8 dev;
282
u8 fun;
283
u16 devid;
284
u16 vendid;
285
u32 acpi_interrupt;
286
u64 mmio_tra;
287
u64 ioport_tra;
288
u8 flags;
289
u8 translation;
290
} __attribute__((packed));
291
292
struct pcdp_vga_device {
293
u8 num_eas_desc;
294
/* ACPI Extended Address Space Desc follows */
295
} __attribute__((packed));
296
297
/* from pcdp_device_desc.primary */
298
#define PCDP_PRIMARY_CONSOLE 0x01
299
300
/* from pcdp_device_desc.type */
301
#define PCDP_CONSOLE_INOUT 0x0
302
#define PCDP_CONSOLE_DEBUG 0x1
303
#define PCDP_CONSOLE_OUT 0x2
304
#define PCDP_CONSOLE_IN 0x3
305
#define PCDP_CONSOLE_TYPE_VGA 0x8
306
307
#define PCDP_CONSOLE_VGA (PCDP_CONSOLE_TYPE_VGA | PCDP_CONSOLE_OUT)
308
309
/* from pcdp_interface_pci.type */
310
#define PCDP_IF_PCI 1
311
312
/* from pcdp_interface_pci.translation */
313
#define PCDP_PCI_TRANS_IOPORT 0x02
314
#define PCDP_PCI_TRANS_MMIO 0x01
315
316
#if defined(CONFIG_VT) && defined(CONFIG_VGA_CONSOLE)
317
static void
318
sn_scan_pcdp(void)
319
{
320
u8 *bp;
321
struct pcdp *pcdp;
322
struct pcdp_device_desc device;
323
struct pcdp_interface_pci if_pci;
324
extern struct efi efi;
325
326
if (efi.hcdp == EFI_INVALID_TABLE_ADDR)
327
return; /* no hcdp/pcdp table */
328
329
pcdp = __va(efi.hcdp);
330
331
if (pcdp->rev < 3)
332
return; /* only support PCDP (rev >= 3) */
333
334
for (bp = (u8 *)&pcdp->uart[pcdp->num_type0];
335
bp < (u8 *)pcdp + pcdp->length;
336
bp += device.length) {
337
memcpy(&device, bp, sizeof(device));
338
if (! (device.primary & PCDP_PRIMARY_CONSOLE))
339
continue; /* not primary console */
340
341
if (device.type != PCDP_CONSOLE_VGA)
342
continue; /* not VGA descriptor */
343
344
memcpy(&if_pci, bp+sizeof(device), sizeof(if_pci));
345
if (if_pci.type != PCDP_IF_PCI)
346
continue; /* not PCI interconnect */
347
348
if (if_pci.translation & PCDP_PCI_TRANS_IOPORT)
349
vga_console_iobase = if_pci.ioport_tra;
350
351
if (if_pci.translation & PCDP_PCI_TRANS_MMIO)
352
vga_console_membase =
353
if_pci.mmio_tra | __IA64_UNCACHED_OFFSET;
354
355
break; /* once we find the primary, we're done */
356
}
357
}
358
#endif
359
360
static unsigned long sn2_rtc_initial;
361
362
/**
363
* sn_setup - SN platform setup routine
364
* @cmdline_p: kernel command line
365
*
366
* Handles platform setup for SN machines. This includes determining
367
* the RTC frequency (via a SAL call), initializing secondary CPUs, and
368
* setting up per-node data areas. The console is also initialized here.
369
*/
370
void __init sn_setup(char **cmdline_p)
371
{
372
long status, ticks_per_sec, drift;
373
u32 version = sn_sal_rev();
374
extern void sn_cpu_init(void);
375
376
sn2_rtc_initial = rtc_time();
377
ia64_sn_plat_set_error_handling_features(); // obsolete
378
ia64_sn_set_os_feature(OSF_MCA_SLV_TO_OS_INIT_SLV);
379
ia64_sn_set_os_feature(OSF_FEAT_LOG_SBES);
380
/*
381
* Note: The calls to notify the PROM of ACPI and PCI Segment
382
* support must be done prior to acpi_load_tables(), as
383
* an ACPI capable PROM will rebuild the DSDT as result
384
* of the call.
385
*/
386
ia64_sn_set_os_feature(OSF_PCISEGMENT_ENABLE);
387
ia64_sn_set_os_feature(OSF_ACPI_ENABLE);
388
389
/* Load the new DSDT and SSDT tables into the global table list. */
390
acpi_table_init();
391
392
#if defined(CONFIG_VT) && defined(CONFIG_VGA_CONSOLE)
393
/*
394
* Handle SN vga console.
395
*
396
* SN systems do not have enough ACPI table information
397
* being passed from prom to identify VGA adapters and the legacy
398
* addresses to access them. Until that is done, SN systems rely
399
* on the PCDP table to identify the primary VGA console if one
400
* exists.
401
*
402
* However, kernel PCDP support is optional, and even if it is built
403
* into the kernel, it will not be used if the boot cmdline contains
404
* console= directives.
405
*
406
* So, to work around this mess, we duplicate some of the PCDP code
407
* here so that the primary VGA console (as defined by PCDP) will
408
* work on SN systems even if a different console (e.g. serial) is
409
* selected on the boot line (or CONFIG_EFI_PCDP is off).
410
*/
411
412
if (! vga_console_membase)
413
sn_scan_pcdp();
414
415
/*
416
* Setup legacy IO space.
417
* vga_console_iobase maps to PCI IO Space address 0 on the
418
* bus containing the VGA console.
419
*/
420
if (vga_console_iobase) {
421
io_space[0].mmio_base =
422
(unsigned long) ioremap(vga_console_iobase, 0);
423
io_space[0].sparse = 0;
424
}
425
426
if (vga_console_membase) {
427
/* usable vga ... make tty0 the preferred default console */
428
if (!strstr(*cmdline_p, "console="))
429
add_preferred_console("tty", 0, NULL);
430
} else {
431
printk(KERN_DEBUG "SGI: Disabling VGA console\n");
432
if (!strstr(*cmdline_p, "console="))
433
add_preferred_console("ttySG", 0, NULL);
434
#ifdef CONFIG_DUMMY_CONSOLE
435
conswitchp = &dummy_con;
436
#else
437
conswitchp = NULL;
438
#endif /* CONFIG_DUMMY_CONSOLE */
439
}
440
#endif /* def(CONFIG_VT) && def(CONFIG_VGA_CONSOLE) */
441
442
MAX_DMA_ADDRESS = PAGE_OFFSET + MAX_PHYS_MEMORY;
443
444
/*
445
* Build the tables for managing cnodes.
446
*/
447
build_cnode_tables();
448
449
status =
450
ia64_sal_freq_base(SAL_FREQ_BASE_REALTIME_CLOCK, &ticks_per_sec,
451
&drift);
452
if (status != 0 || ticks_per_sec < 100000) {
453
printk(KERN_WARNING
454
"unable to determine platform RTC clock frequency, guessing.\n");
455
/* PROM gives wrong value for clock freq. so guess */
456
sn_rtc_cycles_per_second = 1000000000000UL / 30000UL;
457
} else
458
sn_rtc_cycles_per_second = ticks_per_sec;
459
460
platform_intr_list[ACPI_INTERRUPT_CPEI] = IA64_CPE_VECTOR;
461
462
printk("SGI SAL version %x.%02x\n", version >> 8, version & 0x00FF);
463
464
/*
465
* we set the default root device to /dev/hda
466
* to make simulation easy
467
*/
468
ROOT_DEV = Root_HDA1;
469
470
/*
471
* Create the PDAs and NODEPDAs for all the cpus.
472
*/
473
sn_init_pdas(cmdline_p);
474
475
ia64_mark_idle = &snidle;
476
477
/*
478
* For the bootcpu, we do this here. All other cpus will make the
479
* call as part of cpu_init in slave cpu initialization.
480
*/
481
sn_cpu_init();
482
483
#ifdef CONFIG_SMP
484
init_smp_config();
485
#endif
486
screen_info = sn_screen_info;
487
488
sn_timer_init();
489
490
/*
491
* set pm_power_off to a SAL call to allow
492
* sn machines to power off. The SAL call can be replaced
493
* by an ACPI interface call when ACPI is fully implemented
494
* for sn.
495
*/
496
pm_power_off = ia64_sn_power_down;
497
current->thread.flags |= IA64_THREAD_MIGRATION;
498
}
499
500
/**
501
* sn_init_pdas - setup node data areas
502
*
503
* One time setup for Node Data Area. Called by sn_setup().
504
*/
505
static void __init sn_init_pdas(char **cmdline_p)
506
{
507
cnodeid_t cnode;
508
509
/*
510
* Allocate & initialize the nodepda for each node.
511
*/
512
for_each_online_node(cnode) {
513
nodepdaindr[cnode] =
514
alloc_bootmem_node(NODE_DATA(cnode), sizeof(nodepda_t));
515
memset(nodepdaindr[cnode]->phys_cpuid, -1,
516
sizeof(nodepdaindr[cnode]->phys_cpuid));
517
spin_lock_init(&nodepdaindr[cnode]->ptc_lock);
518
}
519
520
/*
521
* Allocate & initialize nodepda for TIOs. For now, put them on node 0.
522
*/
523
for (cnode = num_online_nodes(); cnode < num_cnodes; cnode++)
524
nodepdaindr[cnode] =
525
alloc_bootmem_node(NODE_DATA(0), sizeof(nodepda_t));
526
527
/*
528
* Now copy the array of nodepda pointers to each nodepda.
529
*/
530
for (cnode = 0; cnode < num_cnodes; cnode++)
531
memcpy(nodepdaindr[cnode]->pernode_pdaindr, nodepdaindr,
532
sizeof(nodepdaindr));
533
534
/*
535
* Set up IO related platform-dependent nodepda fields.
536
* The following routine actually sets up the hubinfo struct
537
* in nodepda.
538
*/
539
for_each_online_node(cnode) {
540
bte_init_node(nodepdaindr[cnode], cnode);
541
}
542
543
/*
544
* Initialize the per node hubdev. This includes IO Nodes and
545
* headless/memless nodes.
546
*/
547
for (cnode = 0; cnode < num_cnodes; cnode++) {
548
hubdev_init_node(nodepdaindr[cnode], cnode);
549
}
550
}
551
552
/**
553
* sn_cpu_init - initialize per-cpu data areas
554
* @cpuid: cpuid of the caller
555
*
556
* Called during cpu initialization on each cpu as it starts.
557
* Currently, initializes the per-cpu data area for SNIA.
558
* Also sets up a few fields in the nodepda. Also known as
559
* platform_cpu_init() by the ia64 machvec code.
560
*/
561
void __cpuinit sn_cpu_init(void)
562
{
563
int cpuid;
564
int cpuphyid;
565
int nasid;
566
int subnode;
567
int slice;
568
int cnode;
569
int i;
570
static int wars_have_been_checked, set_cpu0_number;
571
572
cpuid = smp_processor_id();
573
if (cpuid == 0 && IS_MEDUSA()) {
574
if (ia64_sn_is_fake_prom())
575
sn_prom_type = 2;
576
else
577
sn_prom_type = 1;
578
printk(KERN_INFO "Running on medusa with %s PROM\n",
579
(sn_prom_type == 1) ? "real" : "fake");
580
}
581
582
memset(pda, 0, sizeof(pda));
583
if (ia64_sn_get_sn_info(0, &sn_hub_info->shub2,
584
&sn_hub_info->nasid_bitmask,
585
&sn_hub_info->nasid_shift,
586
&sn_system_size, &sn_sharing_domain_size,
587
&sn_partition_id, &sn_coherency_id,
588
&sn_region_size))
589
BUG();
590
sn_hub_info->as_shift = sn_hub_info->nasid_shift - 2;
591
592
/*
593
* Don't check status. The SAL call is not supported on all PROMs
594
* but a failure is harmless.
595
* Architecturally, cpu_init is always called twice on cpu 0. We
596
* should set cpu_number on cpu 0 once.
597
*/
598
if (cpuid == 0) {
599
if (!set_cpu0_number) {
600
(void) ia64_sn_set_cpu_number(cpuid);
601
set_cpu0_number = 1;
602
}
603
} else
604
(void) ia64_sn_set_cpu_number(cpuid);
605
606
/*
607
* The boot cpu makes this call again after platform initialization is
608
* complete.
609
*/
610
if (nodepdaindr[0] == NULL)
611
return;
612
613
for (i = 0; i < MAX_PROM_FEATURE_SETS; i++)
614
if (ia64_sn_get_prom_feature_set(i, &sn_prom_features[i]) != 0)
615
break;
616
617
cpuphyid = get_sapicid();
618
619
if (ia64_sn_get_sapic_info(cpuphyid, &nasid, &subnode, &slice))
620
BUG();
621
622
for (i=0; i < MAX_NUMNODES; i++) {
623
if (nodepdaindr[i]) {
624
nodepdaindr[i]->phys_cpuid[cpuid].nasid = nasid;
625
nodepdaindr[i]->phys_cpuid[cpuid].slice = slice;
626
nodepdaindr[i]->phys_cpuid[cpuid].subnode = subnode;
627
}
628
}
629
630
cnode = nasid_to_cnodeid(nasid);
631
632
sn_nodepda = nodepdaindr[cnode];
633
634
pda->led_address =
635
(typeof(pda->led_address)) (LED0 + (slice << LED_CPU_SHIFT));
636
pda->led_state = LED_ALWAYS_SET;
637
pda->hb_count = HZ / 2;
638
pda->hb_state = 0;
639
pda->idle_flag = 0;
640
641
if (cpuid != 0) {
642
/* copy cpu 0's sn_cnodeid_to_nasid table to this cpu's */
643
memcpy(sn_cnodeid_to_nasid,
644
(&per_cpu(__sn_cnodeid_to_nasid, 0)),
645
sizeof(__ia64_per_cpu_var(__sn_cnodeid_to_nasid)));
646
}
647
648
/*
649
* Check for WARs.
650
* Only needs to be done once, on BSP.
651
* Has to be done after loop above, because it uses this cpu's
652
* sn_cnodeid_to_nasid table which was just initialized if this
653
* isn't cpu 0.
654
* Has to be done before assignment below.
655
*/
656
if (!wars_have_been_checked) {
657
sn_check_for_wars();
658
wars_have_been_checked = 1;
659
}
660
sn_hub_info->shub_1_1_found = shub_1_1_found;
661
662
/*
663
* Set up addresses of PIO/MEM write status registers.
664
*/
665
{
666
u64 pio1[] = {SH1_PIO_WRITE_STATUS_0, 0, SH1_PIO_WRITE_STATUS_1, 0};
667
u64 pio2[] = {SH2_PIO_WRITE_STATUS_0, SH2_PIO_WRITE_STATUS_2,
668
SH2_PIO_WRITE_STATUS_1, SH2_PIO_WRITE_STATUS_3};
669
u64 *pio;
670
pio = is_shub1() ? pio1 : pio2;
671
pda->pio_write_status_addr =
672
(volatile unsigned long *)GLOBAL_MMR_ADDR(nasid, pio[slice]);
673
pda->pio_write_status_val = is_shub1() ? SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK : 0;
674
}
675
676
/*
677
* WAR addresses for SHUB 1.x.
678
*/
679
if (local_node_data->active_cpu_count++ == 0 && is_shub1()) {
680
int buddy_nasid;
681
buddy_nasid =
682
cnodeid_to_nasid(numa_node_id() ==
683
num_online_nodes() - 1 ? 0 : numa_node_id() + 1);
684
pda->pio_shub_war_cam_addr =
685
(volatile unsigned long *)GLOBAL_MMR_ADDR(nasid,
686
SH1_PI_CAM_CONTROL);
687
}
688
}
689
690
/*
691
* Build tables for converting between NASIDs and cnodes.
692
*/
693
static inline int __init board_needs_cnode(int type)
694
{
695
return (type == KLTYPE_SNIA || type == KLTYPE_TIO);
696
}
697
698
void __init build_cnode_tables(void)
699
{
700
int nasid;
701
int node;
702
lboard_t *brd;
703
704
memset(physical_node_map, -1, sizeof(physical_node_map));
705
memset(sn_cnodeid_to_nasid, -1,
706
sizeof(__ia64_per_cpu_var(__sn_cnodeid_to_nasid)));
707
708
/*
709
* First populate the tables with C/M bricks. This ensures that
710
* cnode == node for all C & M bricks.
711
*/
712
for_each_online_node(node) {
713
nasid = pxm_to_nasid(node_to_pxm(node));
714
sn_cnodeid_to_nasid[node] = nasid;
715
physical_node_map[nasid] = node;
716
}
717
718
/*
719
* num_cnodes is total number of C/M/TIO bricks. Because of the 256 node
720
* limit on the number of nodes, we can't use the generic node numbers
721
* for this. Note that num_cnodes is incremented below as TIOs or
722
* headless/memoryless nodes are discovered.
723
*/
724
num_cnodes = num_online_nodes();
725
726
/* fakeprom does not support klgraph */
727
if (IS_RUNNING_ON_FAKE_PROM())
728
return;
729
730
/* Find TIOs & headless/memoryless nodes and add them to the tables */
731
for_each_online_node(node) {
732
kl_config_hdr_t *klgraph_header;
733
nasid = cnodeid_to_nasid(node);
734
klgraph_header = ia64_sn_get_klconfig_addr(nasid);
735
BUG_ON(klgraph_header == NULL);
736
brd = NODE_OFFSET_TO_LBOARD(nasid, klgraph_header->ch_board_info);
737
while (brd) {
738
if (board_needs_cnode(brd->brd_type) && physical_node_map[brd->brd_nasid] < 0) {
739
sn_cnodeid_to_nasid[num_cnodes] = brd->brd_nasid;
740
physical_node_map[brd->brd_nasid] = num_cnodes++;
741
}
742
brd = find_lboard_next(brd);
743
}
744
}
745
}
746
747
int
748
nasid_slice_to_cpuid(int nasid, int slice)
749
{
750
long cpu;
751
752
for (cpu = 0; cpu < nr_cpu_ids; cpu++)
753
if (cpuid_to_nasid(cpu) == nasid &&
754
cpuid_to_slice(cpu) == slice)
755
return cpu;
756
757
return -1;
758
}
759
760
int sn_prom_feature_available(int id)
761
{
762
if (id >= BITS_PER_LONG * MAX_PROM_FEATURE_SETS)
763
return 0;
764
return test_bit(id, sn_prom_features);
765
}
766
767
void
768
sn_kernel_launch_event(void)
769
{
770
/* ignore status until we understand possible failure, if any*/
771
if (ia64_sn_kernel_launch_event())
772
printk(KERN_ERR "KEXEC is not supported in this PROM, Please update the PROM.\n");
773
}
774
EXPORT_SYMBOL(sn_prom_feature_available);
775
776
777