Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/ia64/sn/kernel/sn2/sn2_smp.c
17602 views
1
/*
2
* SN2 Platform specific SMP Support
3
*
4
* This file is subject to the terms and conditions of the GNU General Public
5
* License. See the file "COPYING" in the main directory of this archive
6
* for more details.
7
*
8
* Copyright (C) 2000-2006 Silicon Graphics, Inc. All rights reserved.
9
*/
10
11
#include <linux/init.h>
12
#include <linux/kernel.h>
13
#include <linux/spinlock.h>
14
#include <linux/threads.h>
15
#include <linux/sched.h>
16
#include <linux/smp.h>
17
#include <linux/interrupt.h>
18
#include <linux/irq.h>
19
#include <linux/mmzone.h>
20
#include <linux/module.h>
21
#include <linux/bitops.h>
22
#include <linux/nodemask.h>
23
#include <linux/proc_fs.h>
24
#include <linux/seq_file.h>
25
26
#include <asm/processor.h>
27
#include <asm/irq.h>
28
#include <asm/sal.h>
29
#include <asm/system.h>
30
#include <asm/delay.h>
31
#include <asm/io.h>
32
#include <asm/smp.h>
33
#include <asm/tlb.h>
34
#include <asm/numa.h>
35
#include <asm/hw_irq.h>
36
#include <asm/current.h>
37
#include <asm/sn/sn_cpuid.h>
38
#include <asm/sn/sn_sal.h>
39
#include <asm/sn/addrs.h>
40
#include <asm/sn/shub_mmr.h>
41
#include <asm/sn/nodepda.h>
42
#include <asm/sn/rw_mmr.h>
43
#include <asm/sn/sn_feature_sets.h>
44
45
DEFINE_PER_CPU(struct ptc_stats, ptcstats);
46
DECLARE_PER_CPU(struct ptc_stats, ptcstats);
47
48
static __cacheline_aligned DEFINE_SPINLOCK(sn2_global_ptc_lock);
49
50
/* 0 = old algorithm (no IPI flushes), 1 = ipi deadlock flush, 2 = ipi instead of SHUB ptc, >2 = always ipi */
51
static int sn2_flush_opt = 0;
52
53
extern unsigned long
54
sn2_ptc_deadlock_recovery_core(volatile unsigned long *, unsigned long,
55
volatile unsigned long *, unsigned long,
56
volatile unsigned long *, unsigned long);
57
void
58
sn2_ptc_deadlock_recovery(short *, short, short, int,
59
volatile unsigned long *, unsigned long,
60
volatile unsigned long *, unsigned long);
61
62
/*
63
* Note: some is the following is captured here to make degugging easier
64
* (the macros make more sense if you see the debug patch - not posted)
65
*/
66
#define sn2_ptctest 0
67
#define local_node_uses_ptc_ga(sh1) ((sh1) ? 1 : 0)
68
#define max_active_pio(sh1) ((sh1) ? 32 : 7)
69
#define reset_max_active_on_deadlock() 1
70
#define PTC_LOCK(sh1) ((sh1) ? &sn2_global_ptc_lock : &sn_nodepda->ptc_lock)
71
72
struct ptc_stats {
73
unsigned long ptc_l;
74
unsigned long change_rid;
75
unsigned long shub_ptc_flushes;
76
unsigned long nodes_flushed;
77
unsigned long deadlocks;
78
unsigned long deadlocks2;
79
unsigned long lock_itc_clocks;
80
unsigned long shub_itc_clocks;
81
unsigned long shub_itc_clocks_max;
82
unsigned long shub_ptc_flushes_not_my_mm;
83
unsigned long shub_ipi_flushes;
84
unsigned long shub_ipi_flushes_itc_clocks;
85
};
86
87
#define sn2_ptctest 0
88
89
static inline unsigned long wait_piowc(void)
90
{
91
volatile unsigned long *piows;
92
unsigned long zeroval, ws;
93
94
piows = pda->pio_write_status_addr;
95
zeroval = pda->pio_write_status_val;
96
do {
97
cpu_relax();
98
} while (((ws = *piows) & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK) != zeroval);
99
return (ws & SH_PIO_WRITE_STATUS_WRITE_DEADLOCK_MASK) != 0;
100
}
101
102
/**
103
* sn_migrate - SN-specific task migration actions
104
* @task: Task being migrated to new CPU
105
*
106
* SN2 PIO writes from separate CPUs are not guaranteed to arrive in order.
107
* Context switching user threads which have memory-mapped MMIO may cause
108
* PIOs to issue from separate CPUs, thus the PIO writes must be drained
109
* from the previous CPU's Shub before execution resumes on the new CPU.
110
*/
111
void sn_migrate(struct task_struct *task)
112
{
113
pda_t *last_pda = pdacpu(task_thread_info(task)->last_cpu);
114
volatile unsigned long *adr = last_pda->pio_write_status_addr;
115
unsigned long val = last_pda->pio_write_status_val;
116
117
/* Drain PIO writes from old CPU's Shub */
118
while (unlikely((*adr & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK)
119
!= val))
120
cpu_relax();
121
}
122
123
void sn_tlb_migrate_finish(struct mm_struct *mm)
124
{
125
/* flush_tlb_mm is inefficient if more than 1 users of mm */
126
if (mm == current->mm && mm && atomic_read(&mm->mm_users) == 1)
127
flush_tlb_mm(mm);
128
}
129
130
static void
131
sn2_ipi_flush_all_tlb(struct mm_struct *mm)
132
{
133
unsigned long itc;
134
135
itc = ia64_get_itc();
136
smp_flush_tlb_cpumask(*mm_cpumask(mm));
137
itc = ia64_get_itc() - itc;
138
__get_cpu_var(ptcstats).shub_ipi_flushes_itc_clocks += itc;
139
__get_cpu_var(ptcstats).shub_ipi_flushes++;
140
}
141
142
/**
143
* sn2_global_tlb_purge - globally purge translation cache of virtual address range
144
* @mm: mm_struct containing virtual address range
145
* @start: start of virtual address range
146
* @end: end of virtual address range
147
* @nbits: specifies number of bytes to purge per instruction (num = 1<<(nbits & 0xfc))
148
*
149
* Purges the translation caches of all processors of the given virtual address
150
* range.
151
*
152
* Note:
153
* - cpu_vm_mask is a bit mask that indicates which cpus have loaded the context.
154
* - cpu_vm_mask is converted into a nodemask of the nodes containing the
155
* cpus in cpu_vm_mask.
156
* - if only one bit is set in cpu_vm_mask & it is the current cpu & the
157
* process is purging its own virtual address range, then only the
158
* local TLB needs to be flushed. This flushing can be done using
159
* ptc.l. This is the common case & avoids the global spinlock.
160
* - if multiple cpus have loaded the context, then flushing has to be
161
* done with ptc.g/MMRs under protection of the global ptc_lock.
162
*/
163
164
void
165
sn2_global_tlb_purge(struct mm_struct *mm, unsigned long start,
166
unsigned long end, unsigned long nbits)
167
{
168
int i, ibegin, shub1, cnode, mynasid, cpu, lcpu = 0, nasid;
169
int mymm = (mm == current->active_mm && mm == current->mm);
170
int use_cpu_ptcga;
171
volatile unsigned long *ptc0, *ptc1;
172
unsigned long itc, itc2, flags, data0 = 0, data1 = 0, rr_value, old_rr = 0;
173
short nasids[MAX_NUMNODES], nix;
174
nodemask_t nodes_flushed;
175
int active, max_active, deadlock, flush_opt = sn2_flush_opt;
176
177
if (flush_opt > 2) {
178
sn2_ipi_flush_all_tlb(mm);
179
return;
180
}
181
182
nodes_clear(nodes_flushed);
183
i = 0;
184
185
for_each_cpu(cpu, mm_cpumask(mm)) {
186
cnode = cpu_to_node(cpu);
187
node_set(cnode, nodes_flushed);
188
lcpu = cpu;
189
i++;
190
}
191
192
if (i == 0)
193
return;
194
195
preempt_disable();
196
197
if (likely(i == 1 && lcpu == smp_processor_id() && mymm)) {
198
do {
199
ia64_ptcl(start, nbits << 2);
200
start += (1UL << nbits);
201
} while (start < end);
202
ia64_srlz_i();
203
__get_cpu_var(ptcstats).ptc_l++;
204
preempt_enable();
205
return;
206
}
207
208
if (atomic_read(&mm->mm_users) == 1 && mymm) {
209
flush_tlb_mm(mm);
210
__get_cpu_var(ptcstats).change_rid++;
211
preempt_enable();
212
return;
213
}
214
215
if (flush_opt == 2) {
216
sn2_ipi_flush_all_tlb(mm);
217
preempt_enable();
218
return;
219
}
220
221
itc = ia64_get_itc();
222
nix = 0;
223
for_each_node_mask(cnode, nodes_flushed)
224
nasids[nix++] = cnodeid_to_nasid(cnode);
225
226
rr_value = (mm->context << 3) | REGION_NUMBER(start);
227
228
shub1 = is_shub1();
229
if (shub1) {
230
data0 = (1UL << SH1_PTC_0_A_SHFT) |
231
(nbits << SH1_PTC_0_PS_SHFT) |
232
(rr_value << SH1_PTC_0_RID_SHFT) |
233
(1UL << SH1_PTC_0_START_SHFT);
234
ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_0);
235
ptc1 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_1);
236
} else {
237
data0 = (1UL << SH2_PTC_A_SHFT) |
238
(nbits << SH2_PTC_PS_SHFT) |
239
(1UL << SH2_PTC_START_SHFT);
240
ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH2_PTC +
241
(rr_value << SH2_PTC_RID_SHFT));
242
ptc1 = NULL;
243
}
244
245
246
mynasid = get_nasid();
247
use_cpu_ptcga = local_node_uses_ptc_ga(shub1);
248
max_active = max_active_pio(shub1);
249
250
itc = ia64_get_itc();
251
spin_lock_irqsave(PTC_LOCK(shub1), flags);
252
itc2 = ia64_get_itc();
253
254
__get_cpu_var(ptcstats).lock_itc_clocks += itc2 - itc;
255
__get_cpu_var(ptcstats).shub_ptc_flushes++;
256
__get_cpu_var(ptcstats).nodes_flushed += nix;
257
if (!mymm)
258
__get_cpu_var(ptcstats).shub_ptc_flushes_not_my_mm++;
259
260
if (use_cpu_ptcga && !mymm) {
261
old_rr = ia64_get_rr(start);
262
ia64_set_rr(start, (old_rr & 0xff) | (rr_value << 8));
263
ia64_srlz_d();
264
}
265
266
wait_piowc();
267
do {
268
if (shub1)
269
data1 = start | (1UL << SH1_PTC_1_START_SHFT);
270
else
271
data0 = (data0 & ~SH2_PTC_ADDR_MASK) | (start & SH2_PTC_ADDR_MASK);
272
deadlock = 0;
273
active = 0;
274
for (ibegin = 0, i = 0; i < nix; i++) {
275
nasid = nasids[i];
276
if (use_cpu_ptcga && unlikely(nasid == mynasid)) {
277
ia64_ptcga(start, nbits << 2);
278
ia64_srlz_i();
279
} else {
280
ptc0 = CHANGE_NASID(nasid, ptc0);
281
if (ptc1)
282
ptc1 = CHANGE_NASID(nasid, ptc1);
283
pio_atomic_phys_write_mmrs(ptc0, data0, ptc1, data1);
284
active++;
285
}
286
if (active >= max_active || i == (nix - 1)) {
287
if ((deadlock = wait_piowc())) {
288
if (flush_opt == 1)
289
goto done;
290
sn2_ptc_deadlock_recovery(nasids, ibegin, i, mynasid, ptc0, data0, ptc1, data1);
291
if (reset_max_active_on_deadlock())
292
max_active = 1;
293
}
294
active = 0;
295
ibegin = i + 1;
296
}
297
}
298
start += (1UL << nbits);
299
} while (start < end);
300
301
done:
302
itc2 = ia64_get_itc() - itc2;
303
__get_cpu_var(ptcstats).shub_itc_clocks += itc2;
304
if (itc2 > __get_cpu_var(ptcstats).shub_itc_clocks_max)
305
__get_cpu_var(ptcstats).shub_itc_clocks_max = itc2;
306
307
if (old_rr) {
308
ia64_set_rr(start, old_rr);
309
ia64_srlz_d();
310
}
311
312
spin_unlock_irqrestore(PTC_LOCK(shub1), flags);
313
314
if (flush_opt == 1 && deadlock) {
315
__get_cpu_var(ptcstats).deadlocks++;
316
sn2_ipi_flush_all_tlb(mm);
317
}
318
319
preempt_enable();
320
}
321
322
/*
323
* sn2_ptc_deadlock_recovery
324
*
325
* Recover from PTC deadlocks conditions. Recovery requires stepping thru each
326
* TLB flush transaction. The recovery sequence is somewhat tricky & is
327
* coded in assembly language.
328
*/
329
330
void
331
sn2_ptc_deadlock_recovery(short *nasids, short ib, short ie, int mynasid,
332
volatile unsigned long *ptc0, unsigned long data0,
333
volatile unsigned long *ptc1, unsigned long data1)
334
{
335
short nasid, i;
336
unsigned long *piows, zeroval, n;
337
338
__get_cpu_var(ptcstats).deadlocks++;
339
340
piows = (unsigned long *) pda->pio_write_status_addr;
341
zeroval = pda->pio_write_status_val;
342
343
344
for (i=ib; i <= ie; i++) {
345
nasid = nasids[i];
346
if (local_node_uses_ptc_ga(is_shub1()) && nasid == mynasid)
347
continue;
348
ptc0 = CHANGE_NASID(nasid, ptc0);
349
if (ptc1)
350
ptc1 = CHANGE_NASID(nasid, ptc1);
351
352
n = sn2_ptc_deadlock_recovery_core(ptc0, data0, ptc1, data1, piows, zeroval);
353
__get_cpu_var(ptcstats).deadlocks2 += n;
354
}
355
356
}
357
358
/**
359
* sn_send_IPI_phys - send an IPI to a Nasid and slice
360
* @nasid: nasid to receive the interrupt (may be outside partition)
361
* @physid: physical cpuid to receive the interrupt.
362
* @vector: command to send
363
* @delivery_mode: delivery mechanism
364
*
365
* Sends an IPI (interprocessor interrupt) to the processor specified by
366
* @physid
367
*
368
* @delivery_mode can be one of the following
369
*
370
* %IA64_IPI_DM_INT - pend an interrupt
371
* %IA64_IPI_DM_PMI - pend a PMI
372
* %IA64_IPI_DM_NMI - pend an NMI
373
* %IA64_IPI_DM_INIT - pend an INIT interrupt
374
*/
375
void sn_send_IPI_phys(int nasid, long physid, int vector, int delivery_mode)
376
{
377
long val;
378
unsigned long flags = 0;
379
volatile long *p;
380
381
p = (long *)GLOBAL_MMR_PHYS_ADDR(nasid, SH_IPI_INT);
382
val = (1UL << SH_IPI_INT_SEND_SHFT) |
383
(physid << SH_IPI_INT_PID_SHFT) |
384
((long)delivery_mode << SH_IPI_INT_TYPE_SHFT) |
385
((long)vector << SH_IPI_INT_IDX_SHFT) |
386
(0x000feeUL << SH_IPI_INT_BASE_SHFT);
387
388
mb();
389
if (enable_shub_wars_1_1()) {
390
spin_lock_irqsave(&sn2_global_ptc_lock, flags);
391
}
392
pio_phys_write_mmr(p, val);
393
if (enable_shub_wars_1_1()) {
394
wait_piowc();
395
spin_unlock_irqrestore(&sn2_global_ptc_lock, flags);
396
}
397
398
}
399
400
EXPORT_SYMBOL(sn_send_IPI_phys);
401
402
/**
403
* sn2_send_IPI - send an IPI to a processor
404
* @cpuid: target of the IPI
405
* @vector: command to send
406
* @delivery_mode: delivery mechanism
407
* @redirect: redirect the IPI?
408
*
409
* Sends an IPI (InterProcessor Interrupt) to the processor specified by
410
* @cpuid. @vector specifies the command to send, while @delivery_mode can
411
* be one of the following
412
*
413
* %IA64_IPI_DM_INT - pend an interrupt
414
* %IA64_IPI_DM_PMI - pend a PMI
415
* %IA64_IPI_DM_NMI - pend an NMI
416
* %IA64_IPI_DM_INIT - pend an INIT interrupt
417
*/
418
void sn2_send_IPI(int cpuid, int vector, int delivery_mode, int redirect)
419
{
420
long physid;
421
int nasid;
422
423
physid = cpu_physical_id(cpuid);
424
nasid = cpuid_to_nasid(cpuid);
425
426
/* the following is used only when starting cpus at boot time */
427
if (unlikely(nasid == -1))
428
ia64_sn_get_sapic_info(physid, &nasid, NULL, NULL);
429
430
sn_send_IPI_phys(nasid, physid, vector, delivery_mode);
431
}
432
433
#ifdef CONFIG_HOTPLUG_CPU
434
/**
435
* sn_cpu_disable_allowed - Determine if a CPU can be disabled.
436
* @cpu - CPU that is requested to be disabled.
437
*
438
* CPU disable is only allowed on SHub2 systems running with a PROM
439
* that supports CPU disable. It is not permitted to disable the boot processor.
440
*/
441
bool sn_cpu_disable_allowed(int cpu)
442
{
443
if (is_shub2() && sn_prom_feature_available(PRF_CPU_DISABLE_SUPPORT)) {
444
if (cpu != 0)
445
return true;
446
else
447
printk(KERN_WARNING
448
"Disabling the boot processor is not allowed.\n");
449
450
} else
451
printk(KERN_WARNING
452
"CPU disable is not supported on this system.\n");
453
454
return false;
455
}
456
#endif /* CONFIG_HOTPLUG_CPU */
457
458
#ifdef CONFIG_PROC_FS
459
460
#define PTC_BASENAME "sgi_sn/ptc_statistics"
461
462
static void *sn2_ptc_seq_start(struct seq_file *file, loff_t * offset)
463
{
464
if (*offset < nr_cpu_ids)
465
return offset;
466
return NULL;
467
}
468
469
static void *sn2_ptc_seq_next(struct seq_file *file, void *data, loff_t * offset)
470
{
471
(*offset)++;
472
if (*offset < nr_cpu_ids)
473
return offset;
474
return NULL;
475
}
476
477
static void sn2_ptc_seq_stop(struct seq_file *file, void *data)
478
{
479
}
480
481
static int sn2_ptc_seq_show(struct seq_file *file, void *data)
482
{
483
struct ptc_stats *stat;
484
int cpu;
485
486
cpu = *(loff_t *) data;
487
488
if (!cpu) {
489
seq_printf(file,
490
"# cpu ptc_l newrid ptc_flushes nodes_flushed deadlocks lock_nsec shub_nsec shub_nsec_max not_my_mm deadlock2 ipi_fluches ipi_nsec\n");
491
seq_printf(file, "# ptctest %d, flushopt %d\n", sn2_ptctest, sn2_flush_opt);
492
}
493
494
if (cpu < nr_cpu_ids && cpu_online(cpu)) {
495
stat = &per_cpu(ptcstats, cpu);
496
seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n", cpu, stat->ptc_l,
497
stat->change_rid, stat->shub_ptc_flushes, stat->nodes_flushed,
498
stat->deadlocks,
499
1000 * stat->lock_itc_clocks / per_cpu(ia64_cpu_info, cpu).cyc_per_usec,
500
1000 * stat->shub_itc_clocks / per_cpu(ia64_cpu_info, cpu).cyc_per_usec,
501
1000 * stat->shub_itc_clocks_max / per_cpu(ia64_cpu_info, cpu).cyc_per_usec,
502
stat->shub_ptc_flushes_not_my_mm,
503
stat->deadlocks2,
504
stat->shub_ipi_flushes,
505
1000 * stat->shub_ipi_flushes_itc_clocks / per_cpu(ia64_cpu_info, cpu).cyc_per_usec);
506
}
507
return 0;
508
}
509
510
static ssize_t sn2_ptc_proc_write(struct file *file, const char __user *user, size_t count, loff_t *data)
511
{
512
int cpu;
513
char optstr[64];
514
515
if (count == 0 || count > sizeof(optstr))
516
return -EINVAL;
517
if (copy_from_user(optstr, user, count))
518
return -EFAULT;
519
optstr[count - 1] = '\0';
520
sn2_flush_opt = simple_strtoul(optstr, NULL, 0);
521
522
for_each_online_cpu(cpu)
523
memset(&per_cpu(ptcstats, cpu), 0, sizeof(struct ptc_stats));
524
525
return count;
526
}
527
528
static const struct seq_operations sn2_ptc_seq_ops = {
529
.start = sn2_ptc_seq_start,
530
.next = sn2_ptc_seq_next,
531
.stop = sn2_ptc_seq_stop,
532
.show = sn2_ptc_seq_show
533
};
534
535
static int sn2_ptc_proc_open(struct inode *inode, struct file *file)
536
{
537
return seq_open(file, &sn2_ptc_seq_ops);
538
}
539
540
static const struct file_operations proc_sn2_ptc_operations = {
541
.open = sn2_ptc_proc_open,
542
.read = seq_read,
543
.write = sn2_ptc_proc_write,
544
.llseek = seq_lseek,
545
.release = seq_release,
546
};
547
548
static struct proc_dir_entry *proc_sn2_ptc;
549
550
static int __init sn2_ptc_init(void)
551
{
552
if (!ia64_platform_is("sn2"))
553
return 0;
554
555
proc_sn2_ptc = proc_create(PTC_BASENAME, 0444,
556
NULL, &proc_sn2_ptc_operations);
557
if (!proc_sn2_ptc) {
558
printk(KERN_ERR "unable to create %s proc entry", PTC_BASENAME);
559
return -EINVAL;
560
}
561
spin_lock_init(&sn2_global_ptc_lock);
562
return 0;
563
}
564
565
static void __exit sn2_ptc_exit(void)
566
{
567
remove_proc_entry(PTC_BASENAME, NULL);
568
}
569
570
module_init(sn2_ptc_init);
571
module_exit(sn2_ptc_exit);
572
#endif /* CONFIG_PROC_FS */
573
574
575