Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/ia64/sn/pci/tioce_provider.c
15126 views
1
/*
2
* This file is subject to the terms and conditions of the GNU General Public
3
* License. See the file "COPYING" in the main directory of this archive
4
* for more details.
5
*
6
* Copyright (C) 2003-2006 Silicon Graphics, Inc. All Rights Reserved.
7
*/
8
9
#include <linux/types.h>
10
#include <linux/interrupt.h>
11
#include <linux/slab.h>
12
#include <linux/pci.h>
13
#include <asm/sn/sn_sal.h>
14
#include <asm/sn/addrs.h>
15
#include <asm/sn/io.h>
16
#include <asm/sn/pcidev.h>
17
#include <asm/sn/pcibus_provider_defs.h>
18
#include <asm/sn/tioce_provider.h>
19
20
/*
21
* 1/26/2006
22
*
23
* WAR for SGI PV 944642. For revA TIOCE, need to use the following recipe
24
* (taken from the above PV) before and after accessing tioce internal MMR's
25
* to avoid tioce lockups.
26
*
27
* The recipe as taken from the PV:
28
*
29
* if(mmr address < 0x45000) {
30
* if(mmr address == 0 or 0x80)
31
* mmr wrt or read address 0xc0
32
* else if(mmr address == 0x148 or 0x200)
33
* mmr wrt or read address 0x28
34
* else
35
* mmr wrt or read address 0x158
36
*
37
* do desired mmr access (rd or wrt)
38
*
39
* if(mmr address == 0x100)
40
* mmr wrt or read address 0x38
41
* mmr wrt or read address 0xb050
42
* } else
43
* do desired mmr access
44
*
45
* According to hw, we can use reads instead of writes to the above address
46
*
47
* Note this WAR can only to be used for accessing internal MMR's in the
48
* TIOCE Coretalk Address Range 0x0 - 0x07ff_ffff. This includes the
49
* "Local CE Registers and Memories" and "PCI Compatible Config Space" address
50
* spaces from table 2-1 of the "CE Programmer's Reference Overview" document.
51
*
52
* All registers defined in struct tioce will meet that criteria.
53
*/
54
55
static void inline
56
tioce_mmr_war_pre(struct tioce_kernel *kern, void __iomem *mmr_addr)
57
{
58
u64 mmr_base;
59
u64 mmr_offset;
60
61
if (kern->ce_common->ce_rev != TIOCE_REV_A)
62
return;
63
64
mmr_base = kern->ce_common->ce_pcibus.bs_base;
65
mmr_offset = (unsigned long)mmr_addr - mmr_base;
66
67
if (mmr_offset < 0x45000) {
68
u64 mmr_war_offset;
69
70
if (mmr_offset == 0 || mmr_offset == 0x80)
71
mmr_war_offset = 0xc0;
72
else if (mmr_offset == 0x148 || mmr_offset == 0x200)
73
mmr_war_offset = 0x28;
74
else
75
mmr_war_offset = 0x158;
76
77
readq_relaxed((void __iomem *)(mmr_base + mmr_war_offset));
78
}
79
}
80
81
static void inline
82
tioce_mmr_war_post(struct tioce_kernel *kern, void __iomem *mmr_addr)
83
{
84
u64 mmr_base;
85
u64 mmr_offset;
86
87
if (kern->ce_common->ce_rev != TIOCE_REV_A)
88
return;
89
90
mmr_base = kern->ce_common->ce_pcibus.bs_base;
91
mmr_offset = (unsigned long)mmr_addr - mmr_base;
92
93
if (mmr_offset < 0x45000) {
94
if (mmr_offset == 0x100)
95
readq_relaxed((void __iomem *)(mmr_base + 0x38));
96
readq_relaxed((void __iomem *)(mmr_base + 0xb050));
97
}
98
}
99
100
/* load mmr contents into a variable */
101
#define tioce_mmr_load(kern, mmrp, varp) do {\
102
tioce_mmr_war_pre(kern, mmrp); \
103
*(varp) = readq_relaxed(mmrp); \
104
tioce_mmr_war_post(kern, mmrp); \
105
} while (0)
106
107
/* store variable contents into mmr */
108
#define tioce_mmr_store(kern, mmrp, varp) do {\
109
tioce_mmr_war_pre(kern, mmrp); \
110
writeq(*varp, mmrp); \
111
tioce_mmr_war_post(kern, mmrp); \
112
} while (0)
113
114
/* store immediate value into mmr */
115
#define tioce_mmr_storei(kern, mmrp, val) do {\
116
tioce_mmr_war_pre(kern, mmrp); \
117
writeq(val, mmrp); \
118
tioce_mmr_war_post(kern, mmrp); \
119
} while (0)
120
121
/* set bits (immediate value) into mmr */
122
#define tioce_mmr_seti(kern, mmrp, bits) do {\
123
u64 tmp; \
124
tioce_mmr_load(kern, mmrp, &tmp); \
125
tmp |= (bits); \
126
tioce_mmr_store(kern, mmrp, &tmp); \
127
} while (0)
128
129
/* clear bits (immediate value) into mmr */
130
#define tioce_mmr_clri(kern, mmrp, bits) do { \
131
u64 tmp; \
132
tioce_mmr_load(kern, mmrp, &tmp); \
133
tmp &= ~(bits); \
134
tioce_mmr_store(kern, mmrp, &tmp); \
135
} while (0)
136
137
/**
138
* Bus address ranges for the 5 flavors of TIOCE DMA
139
*/
140
141
#define TIOCE_D64_MIN 0x8000000000000000UL
142
#define TIOCE_D64_MAX 0xffffffffffffffffUL
143
#define TIOCE_D64_ADDR(a) ((a) >= TIOCE_D64_MIN)
144
145
#define TIOCE_D32_MIN 0x0000000080000000UL
146
#define TIOCE_D32_MAX 0x00000000ffffffffUL
147
#define TIOCE_D32_ADDR(a) ((a) >= TIOCE_D32_MIN && (a) <= TIOCE_D32_MAX)
148
149
#define TIOCE_M32_MIN 0x0000000000000000UL
150
#define TIOCE_M32_MAX 0x000000007fffffffUL
151
#define TIOCE_M32_ADDR(a) ((a) >= TIOCE_M32_MIN && (a) <= TIOCE_M32_MAX)
152
153
#define TIOCE_M40_MIN 0x0000004000000000UL
154
#define TIOCE_M40_MAX 0x0000007fffffffffUL
155
#define TIOCE_M40_ADDR(a) ((a) >= TIOCE_M40_MIN && (a) <= TIOCE_M40_MAX)
156
157
#define TIOCE_M40S_MIN 0x0000008000000000UL
158
#define TIOCE_M40S_MAX 0x000000ffffffffffUL
159
#define TIOCE_M40S_ADDR(a) ((a) >= TIOCE_M40S_MIN && (a) <= TIOCE_M40S_MAX)
160
161
/*
162
* ATE manipulation macros.
163
*/
164
165
#define ATE_PAGESHIFT(ps) (__ffs(ps))
166
#define ATE_PAGEMASK(ps) ((ps)-1)
167
168
#define ATE_PAGE(x, ps) ((x) >> ATE_PAGESHIFT(ps))
169
#define ATE_NPAGES(start, len, pagesize) \
170
(ATE_PAGE((start)+(len)-1, pagesize) - ATE_PAGE(start, pagesize) + 1)
171
172
#define ATE_VALID(ate) ((ate) & (1UL << 63))
173
#define ATE_MAKE(addr, ps, msi) \
174
(((addr) & ~ATE_PAGEMASK(ps)) | (1UL << 63) | ((msi)?(1UL << 62):0))
175
176
/*
177
* Flavors of ate-based mapping supported by tioce_alloc_map()
178
*/
179
180
#define TIOCE_ATE_M32 1
181
#define TIOCE_ATE_M40 2
182
#define TIOCE_ATE_M40S 3
183
184
#define KB(x) ((u64)(x) << 10)
185
#define MB(x) ((u64)(x) << 20)
186
#define GB(x) ((u64)(x) << 30)
187
188
/**
189
* tioce_dma_d64 - create a DMA mapping using 64-bit direct mode
190
* @ct_addr: system coretalk address
191
*
192
* Map @ct_addr into 64-bit CE bus space. No device context is necessary
193
* and no CE mapping are consumed.
194
*
195
* Bits 53:0 come from the coretalk address. The remaining bits are set as
196
* follows:
197
*
198
* 63 - must be 1 to indicate d64 mode to CE hardware
199
* 62 - barrier bit ... controlled with tioce_dma_barrier()
200
* 61 - msi bit ... specified through dma_flags
201
* 60:54 - reserved, MBZ
202
*/
203
static u64
204
tioce_dma_d64(unsigned long ct_addr, int dma_flags)
205
{
206
u64 bus_addr;
207
208
bus_addr = ct_addr | (1UL << 63);
209
if (dma_flags & SN_DMA_MSI)
210
bus_addr |= (1UL << 61);
211
212
return bus_addr;
213
}
214
215
/**
216
* pcidev_to_tioce - return misc ce related pointers given a pci_dev
217
* @pci_dev: pci device context
218
* @base: ptr to store struct tioce_mmr * for the CE holding this device
219
* @kernel: ptr to store struct tioce_kernel * for the CE holding this device
220
* @port: ptr to store the CE port number that this device is on
221
*
222
* Return pointers to various CE-related structures for the CE upstream of
223
* @pci_dev.
224
*/
225
static inline void
226
pcidev_to_tioce(struct pci_dev *pdev, struct tioce __iomem **base,
227
struct tioce_kernel **kernel, int *port)
228
{
229
struct pcidev_info *pcidev_info;
230
struct tioce_common *ce_common;
231
struct tioce_kernel *ce_kernel;
232
233
pcidev_info = SN_PCIDEV_INFO(pdev);
234
ce_common = (struct tioce_common *)pcidev_info->pdi_pcibus_info;
235
ce_kernel = (struct tioce_kernel *)ce_common->ce_kernel_private;
236
237
if (base)
238
*base = (struct tioce __iomem *)ce_common->ce_pcibus.bs_base;
239
if (kernel)
240
*kernel = ce_kernel;
241
242
/*
243
* we use port as a zero-based value internally, even though the
244
* documentation is 1-based.
245
*/
246
if (port)
247
*port =
248
(pdev->bus->number < ce_kernel->ce_port1_secondary) ? 0 : 1;
249
}
250
251
/**
252
* tioce_alloc_map - Given a coretalk address, map it to pcie bus address
253
* space using one of the various ATE-based address modes.
254
* @ce_kern: tioce context
255
* @type: map mode to use
256
* @port: 0-based port that the requesting device is downstream of
257
* @ct_addr: the coretalk address to map
258
* @len: number of bytes to map
259
*
260
* Given the addressing type, set up various parameters that define the
261
* ATE pool to use. Search for a contiguous block of entries to cover the
262
* length, and if enough resources exist, fill in the ATEs and construct a
263
* tioce_dmamap struct to track the mapping.
264
*/
265
static u64
266
tioce_alloc_map(struct tioce_kernel *ce_kern, int type, int port,
267
u64 ct_addr, int len, int dma_flags)
268
{
269
int i;
270
int j;
271
int first;
272
int last;
273
int entries;
274
int nates;
275
u64 pagesize;
276
int msi_capable, msi_wanted;
277
u64 *ate_shadow;
278
u64 __iomem *ate_reg;
279
u64 addr;
280
struct tioce __iomem *ce_mmr;
281
u64 bus_base;
282
struct tioce_dmamap *map;
283
284
ce_mmr = (struct tioce __iomem *)ce_kern->ce_common->ce_pcibus.bs_base;
285
286
switch (type) {
287
case TIOCE_ATE_M32:
288
/*
289
* The first 64 entries of the ate3240 pool are dedicated to
290
* super-page (TIOCE_ATE_M40S) mode.
291
*/
292
first = 64;
293
entries = TIOCE_NUM_M3240_ATES - 64;
294
ate_shadow = ce_kern->ce_ate3240_shadow;
295
ate_reg = ce_mmr->ce_ure_ate3240;
296
pagesize = ce_kern->ce_ate3240_pagesize;
297
bus_base = TIOCE_M32_MIN;
298
msi_capable = 1;
299
break;
300
case TIOCE_ATE_M40:
301
first = 0;
302
entries = TIOCE_NUM_M40_ATES;
303
ate_shadow = ce_kern->ce_ate40_shadow;
304
ate_reg = ce_mmr->ce_ure_ate40;
305
pagesize = MB(64);
306
bus_base = TIOCE_M40_MIN;
307
msi_capable = 0;
308
break;
309
case TIOCE_ATE_M40S:
310
/*
311
* ate3240 entries 0-31 are dedicated to port1 super-page
312
* mappings. ate3240 entries 32-63 are dedicated to port2.
313
*/
314
first = port * 32;
315
entries = 32;
316
ate_shadow = ce_kern->ce_ate3240_shadow;
317
ate_reg = ce_mmr->ce_ure_ate3240;
318
pagesize = GB(16);
319
bus_base = TIOCE_M40S_MIN;
320
msi_capable = 0;
321
break;
322
default:
323
return 0;
324
}
325
326
msi_wanted = dma_flags & SN_DMA_MSI;
327
if (msi_wanted && !msi_capable)
328
return 0;
329
330
nates = ATE_NPAGES(ct_addr, len, pagesize);
331
if (nates > entries)
332
return 0;
333
334
last = first + entries - nates;
335
for (i = first; i <= last; i++) {
336
if (ATE_VALID(ate_shadow[i]))
337
continue;
338
339
for (j = i; j < i + nates; j++)
340
if (ATE_VALID(ate_shadow[j]))
341
break;
342
343
if (j >= i + nates)
344
break;
345
}
346
347
if (i > last)
348
return 0;
349
350
map = kzalloc(sizeof(struct tioce_dmamap), GFP_ATOMIC);
351
if (!map)
352
return 0;
353
354
addr = ct_addr;
355
for (j = 0; j < nates; j++) {
356
u64 ate;
357
358
ate = ATE_MAKE(addr, pagesize, msi_wanted);
359
ate_shadow[i + j] = ate;
360
tioce_mmr_storei(ce_kern, &ate_reg[i + j], ate);
361
addr += pagesize;
362
}
363
364
map->refcnt = 1;
365
map->nbytes = nates * pagesize;
366
map->ct_start = ct_addr & ~ATE_PAGEMASK(pagesize);
367
map->pci_start = bus_base + (i * pagesize);
368
map->ate_hw = &ate_reg[i];
369
map->ate_shadow = &ate_shadow[i];
370
map->ate_count = nates;
371
372
list_add(&map->ce_dmamap_list, &ce_kern->ce_dmamap_list);
373
374
return (map->pci_start + (ct_addr - map->ct_start));
375
}
376
377
/**
378
* tioce_dma_d32 - create a DMA mapping using 32-bit direct mode
379
* @pdev: linux pci_dev representing the function
380
* @paddr: system physical address
381
*
382
* Map @paddr into 32-bit bus space of the CE associated with @pcidev_info.
383
*/
384
static u64
385
tioce_dma_d32(struct pci_dev *pdev, u64 ct_addr, int dma_flags)
386
{
387
int dma_ok;
388
int port;
389
struct tioce __iomem *ce_mmr;
390
struct tioce_kernel *ce_kern;
391
u64 ct_upper;
392
u64 ct_lower;
393
dma_addr_t bus_addr;
394
395
if (dma_flags & SN_DMA_MSI)
396
return 0;
397
398
ct_upper = ct_addr & ~0x3fffffffUL;
399
ct_lower = ct_addr & 0x3fffffffUL;
400
401
pcidev_to_tioce(pdev, &ce_mmr, &ce_kern, &port);
402
403
if (ce_kern->ce_port[port].dirmap_refcnt == 0) {
404
u64 tmp;
405
406
ce_kern->ce_port[port].dirmap_shadow = ct_upper;
407
tioce_mmr_storei(ce_kern, &ce_mmr->ce_ure_dir_map[port],
408
ct_upper);
409
tmp = ce_mmr->ce_ure_dir_map[port];
410
dma_ok = 1;
411
} else
412
dma_ok = (ce_kern->ce_port[port].dirmap_shadow == ct_upper);
413
414
if (dma_ok) {
415
ce_kern->ce_port[port].dirmap_refcnt++;
416
bus_addr = TIOCE_D32_MIN + ct_lower;
417
} else
418
bus_addr = 0;
419
420
return bus_addr;
421
}
422
423
/**
424
* tioce_dma_barrier - swizzle a TIOCE bus address to include or exclude
425
* the barrier bit.
426
* @bus_addr: bus address to swizzle
427
*
428
* Given a TIOCE bus address, set the appropriate bit to indicate barrier
429
* attributes.
430
*/
431
static u64
432
tioce_dma_barrier(u64 bus_addr, int on)
433
{
434
u64 barrier_bit;
435
436
/* barrier not supported in M40/M40S mode */
437
if (TIOCE_M40_ADDR(bus_addr) || TIOCE_M40S_ADDR(bus_addr))
438
return bus_addr;
439
440
if (TIOCE_D64_ADDR(bus_addr))
441
barrier_bit = (1UL << 62);
442
else /* must be m32 or d32 */
443
barrier_bit = (1UL << 30);
444
445
return (on) ? (bus_addr | barrier_bit) : (bus_addr & ~barrier_bit);
446
}
447
448
/**
449
* tioce_dma_unmap - release CE mapping resources
450
* @pdev: linux pci_dev representing the function
451
* @bus_addr: bus address returned by an earlier tioce_dma_map
452
* @dir: mapping direction (unused)
453
*
454
* Locate mapping resources associated with @bus_addr and release them.
455
* For mappings created using the direct modes there are no resources
456
* to release.
457
*/
458
void
459
tioce_dma_unmap(struct pci_dev *pdev, dma_addr_t bus_addr, int dir)
460
{
461
int i;
462
int port;
463
struct tioce_kernel *ce_kern;
464
struct tioce __iomem *ce_mmr;
465
unsigned long flags;
466
467
bus_addr = tioce_dma_barrier(bus_addr, 0);
468
pcidev_to_tioce(pdev, &ce_mmr, &ce_kern, &port);
469
470
/* nothing to do for D64 */
471
472
if (TIOCE_D64_ADDR(bus_addr))
473
return;
474
475
spin_lock_irqsave(&ce_kern->ce_lock, flags);
476
477
if (TIOCE_D32_ADDR(bus_addr)) {
478
if (--ce_kern->ce_port[port].dirmap_refcnt == 0) {
479
ce_kern->ce_port[port].dirmap_shadow = 0;
480
tioce_mmr_storei(ce_kern, &ce_mmr->ce_ure_dir_map[port],
481
0);
482
}
483
} else {
484
struct tioce_dmamap *map;
485
486
list_for_each_entry(map, &ce_kern->ce_dmamap_list,
487
ce_dmamap_list) {
488
u64 last;
489
490
last = map->pci_start + map->nbytes - 1;
491
if (bus_addr >= map->pci_start && bus_addr <= last)
492
break;
493
}
494
495
if (&map->ce_dmamap_list == &ce_kern->ce_dmamap_list) {
496
printk(KERN_WARNING
497
"%s: %s - no map found for bus_addr 0x%llx\n",
498
__func__, pci_name(pdev), bus_addr);
499
} else if (--map->refcnt == 0) {
500
for (i = 0; i < map->ate_count; i++) {
501
map->ate_shadow[i] = 0;
502
tioce_mmr_storei(ce_kern, &map->ate_hw[i], 0);
503
}
504
505
list_del(&map->ce_dmamap_list);
506
kfree(map);
507
}
508
}
509
510
spin_unlock_irqrestore(&ce_kern->ce_lock, flags);
511
}
512
513
/**
514
* tioce_do_dma_map - map pages for PCI DMA
515
* @pdev: linux pci_dev representing the function
516
* @paddr: host physical address to map
517
* @byte_count: bytes to map
518
*
519
* This is the main wrapper for mapping host physical pages to CE PCI space.
520
* The mapping mode used is based on the device's dma_mask.
521
*/
522
static u64
523
tioce_do_dma_map(struct pci_dev *pdev, u64 paddr, size_t byte_count,
524
int barrier, int dma_flags)
525
{
526
unsigned long flags;
527
u64 ct_addr;
528
u64 mapaddr = 0;
529
struct tioce_kernel *ce_kern;
530
struct tioce_dmamap *map;
531
int port;
532
u64 dma_mask;
533
534
dma_mask = (barrier) ? pdev->dev.coherent_dma_mask : pdev->dma_mask;
535
536
/* cards must be able to address at least 31 bits */
537
if (dma_mask < 0x7fffffffUL)
538
return 0;
539
540
if (SN_DMA_ADDRTYPE(dma_flags) == SN_DMA_ADDR_PHYS)
541
ct_addr = PHYS_TO_TIODMA(paddr);
542
else
543
ct_addr = paddr;
544
545
/*
546
* If the device can generate 64 bit addresses, create a D64 map.
547
*/
548
if (dma_mask == ~0UL) {
549
mapaddr = tioce_dma_d64(ct_addr, dma_flags);
550
if (mapaddr)
551
goto dma_map_done;
552
}
553
554
pcidev_to_tioce(pdev, NULL, &ce_kern, &port);
555
556
spin_lock_irqsave(&ce_kern->ce_lock, flags);
557
558
/*
559
* D64 didn't work ... See if we have an existing map that covers
560
* this address range. Must account for devices dma_mask here since
561
* an existing map might have been done in a mode using more pci
562
* address bits than this device can support.
563
*/
564
list_for_each_entry(map, &ce_kern->ce_dmamap_list, ce_dmamap_list) {
565
u64 last;
566
567
last = map->ct_start + map->nbytes - 1;
568
if (ct_addr >= map->ct_start &&
569
ct_addr + byte_count - 1 <= last &&
570
map->pci_start <= dma_mask) {
571
map->refcnt++;
572
mapaddr = map->pci_start + (ct_addr - map->ct_start);
573
break;
574
}
575
}
576
577
/*
578
* If we don't have a map yet, and the card can generate 40
579
* bit addresses, try the M40/M40S modes. Note these modes do not
580
* support a barrier bit, so if we need a consistent map these
581
* won't work.
582
*/
583
if (!mapaddr && !barrier && dma_mask >= 0xffffffffffUL) {
584
/*
585
* We have two options for 40-bit mappings: 16GB "super" ATEs
586
* and 64MB "regular" ATEs. We'll try both if needed for a
587
* given mapping but which one we try first depends on the
588
* size. For requests >64MB, prefer to use a super page with
589
* regular as the fallback. Otherwise, try in the reverse order.
590
*/
591
592
if (byte_count > MB(64)) {
593
mapaddr = tioce_alloc_map(ce_kern, TIOCE_ATE_M40S,
594
port, ct_addr, byte_count,
595
dma_flags);
596
if (!mapaddr)
597
mapaddr =
598
tioce_alloc_map(ce_kern, TIOCE_ATE_M40, -1,
599
ct_addr, byte_count,
600
dma_flags);
601
} else {
602
mapaddr = tioce_alloc_map(ce_kern, TIOCE_ATE_M40, -1,
603
ct_addr, byte_count,
604
dma_flags);
605
if (!mapaddr)
606
mapaddr =
607
tioce_alloc_map(ce_kern, TIOCE_ATE_M40S,
608
port, ct_addr, byte_count,
609
dma_flags);
610
}
611
}
612
613
/*
614
* 32-bit direct is the next mode to try
615
*/
616
if (!mapaddr && dma_mask >= 0xffffffffUL)
617
mapaddr = tioce_dma_d32(pdev, ct_addr, dma_flags);
618
619
/*
620
* Last resort, try 32-bit ATE-based map.
621
*/
622
if (!mapaddr)
623
mapaddr =
624
tioce_alloc_map(ce_kern, TIOCE_ATE_M32, -1, ct_addr,
625
byte_count, dma_flags);
626
627
spin_unlock_irqrestore(&ce_kern->ce_lock, flags);
628
629
dma_map_done:
630
if (mapaddr && barrier)
631
mapaddr = tioce_dma_barrier(mapaddr, 1);
632
633
return mapaddr;
634
}
635
636
/**
637
* tioce_dma - standard pci dma map interface
638
* @pdev: pci device requesting the map
639
* @paddr: system physical address to map into pci space
640
* @byte_count: # bytes to map
641
*
642
* Simply call tioce_do_dma_map() to create a map with the barrier bit clear
643
* in the address.
644
*/
645
static u64
646
tioce_dma(struct pci_dev *pdev, unsigned long paddr, size_t byte_count, int dma_flags)
647
{
648
return tioce_do_dma_map(pdev, paddr, byte_count, 0, dma_flags);
649
}
650
651
/**
652
* tioce_dma_consistent - consistent pci dma map interface
653
* @pdev: pci device requesting the map
654
* @paddr: system physical address to map into pci space
655
* @byte_count: # bytes to map
656
*
657
* Simply call tioce_do_dma_map() to create a map with the barrier bit set
658
* in the address.
659
*/
660
static u64
661
tioce_dma_consistent(struct pci_dev *pdev, unsigned long paddr, size_t byte_count, int dma_flags)
662
{
663
return tioce_do_dma_map(pdev, paddr, byte_count, 1, dma_flags);
664
}
665
666
/**
667
* tioce_error_intr_handler - SGI TIO CE error interrupt handler
668
* @irq: unused
669
* @arg: pointer to tioce_common struct for the given CE
670
*
671
* Handle a CE error interrupt. Simply a wrapper around a SAL call which
672
* defers processing to the SGI prom.
673
*/
674
static irqreturn_t
675
tioce_error_intr_handler(int irq, void *arg)
676
{
677
struct tioce_common *soft = arg;
678
struct ia64_sal_retval ret_stuff;
679
ret_stuff.status = 0;
680
ret_stuff.v0 = 0;
681
682
SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_ERROR_INTERRUPT,
683
soft->ce_pcibus.bs_persist_segment,
684
soft->ce_pcibus.bs_persist_busnum, 0, 0, 0, 0, 0);
685
686
if (ret_stuff.v0)
687
panic("tioce_error_intr_handler: Fatal TIOCE error");
688
689
return IRQ_HANDLED;
690
}
691
692
/**
693
* tioce_reserve_m32 - reserve M32 ATEs for the indicated address range
694
* @tioce_kernel: TIOCE context to reserve ATEs for
695
* @base: starting bus address to reserve
696
* @limit: last bus address to reserve
697
*
698
* If base/limit falls within the range of bus space mapped through the
699
* M32 space, reserve the resources corresponding to the range.
700
*/
701
static void
702
tioce_reserve_m32(struct tioce_kernel *ce_kern, u64 base, u64 limit)
703
{
704
int ate_index, last_ate, ps;
705
struct tioce __iomem *ce_mmr;
706
707
ce_mmr = (struct tioce __iomem *)ce_kern->ce_common->ce_pcibus.bs_base;
708
ps = ce_kern->ce_ate3240_pagesize;
709
ate_index = ATE_PAGE(base, ps);
710
last_ate = ate_index + ATE_NPAGES(base, limit-base+1, ps) - 1;
711
712
if (ate_index < 64)
713
ate_index = 64;
714
715
if (last_ate >= TIOCE_NUM_M3240_ATES)
716
last_ate = TIOCE_NUM_M3240_ATES - 1;
717
718
while (ate_index <= last_ate) {
719
u64 ate;
720
721
ate = ATE_MAKE(0xdeadbeef, ps, 0);
722
ce_kern->ce_ate3240_shadow[ate_index] = ate;
723
tioce_mmr_storei(ce_kern, &ce_mmr->ce_ure_ate3240[ate_index],
724
ate);
725
ate_index++;
726
}
727
}
728
729
/**
730
* tioce_kern_init - init kernel structures related to a given TIOCE
731
* @tioce_common: ptr to a cached tioce_common struct that originated in prom
732
*/
733
static struct tioce_kernel *
734
tioce_kern_init(struct tioce_common *tioce_common)
735
{
736
int i;
737
int ps;
738
int dev;
739
u32 tmp;
740
unsigned int seg, bus;
741
struct tioce __iomem *tioce_mmr;
742
struct tioce_kernel *tioce_kern;
743
744
tioce_kern = kzalloc(sizeof(struct tioce_kernel), GFP_KERNEL);
745
if (!tioce_kern) {
746
return NULL;
747
}
748
749
tioce_kern->ce_common = tioce_common;
750
spin_lock_init(&tioce_kern->ce_lock);
751
INIT_LIST_HEAD(&tioce_kern->ce_dmamap_list);
752
tioce_common->ce_kernel_private = (u64) tioce_kern;
753
754
/*
755
* Determine the secondary bus number of the port2 logical PPB.
756
* This is used to decide whether a given pci device resides on
757
* port1 or port2. Note: We don't have enough plumbing set up
758
* here to use pci_read_config_xxx() so use raw_pci_read().
759
*/
760
761
seg = tioce_common->ce_pcibus.bs_persist_segment;
762
bus = tioce_common->ce_pcibus.bs_persist_busnum;
763
764
raw_pci_read(seg, bus, PCI_DEVFN(2, 0), PCI_SECONDARY_BUS, 1,&tmp);
765
tioce_kern->ce_port1_secondary = (u8) tmp;
766
767
/*
768
* Set PMU pagesize to the largest size available, and zero out
769
* the ATEs.
770
*/
771
772
tioce_mmr = (struct tioce __iomem *)tioce_common->ce_pcibus.bs_base;
773
tioce_mmr_clri(tioce_kern, &tioce_mmr->ce_ure_page_map,
774
CE_URE_PAGESIZE_MASK);
775
tioce_mmr_seti(tioce_kern, &tioce_mmr->ce_ure_page_map,
776
CE_URE_256K_PAGESIZE);
777
ps = tioce_kern->ce_ate3240_pagesize = KB(256);
778
779
for (i = 0; i < TIOCE_NUM_M40_ATES; i++) {
780
tioce_kern->ce_ate40_shadow[i] = 0;
781
tioce_mmr_storei(tioce_kern, &tioce_mmr->ce_ure_ate40[i], 0);
782
}
783
784
for (i = 0; i < TIOCE_NUM_M3240_ATES; i++) {
785
tioce_kern->ce_ate3240_shadow[i] = 0;
786
tioce_mmr_storei(tioce_kern, &tioce_mmr->ce_ure_ate3240[i], 0);
787
}
788
789
/*
790
* Reserve ATEs corresponding to reserved address ranges. These
791
* include:
792
*
793
* Memory space covered by each PPB mem base/limit register
794
* Memory space covered by each PPB prefetch base/limit register
795
*
796
* These bus ranges are for pio (downstream) traffic only, and so
797
* cannot be used for DMA.
798
*/
799
800
for (dev = 1; dev <= 2; dev++) {
801
u64 base, limit;
802
803
/* mem base/limit */
804
805
raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
806
PCI_MEMORY_BASE, 2, &tmp);
807
base = (u64)tmp << 16;
808
809
raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
810
PCI_MEMORY_LIMIT, 2, &tmp);
811
limit = (u64)tmp << 16;
812
limit |= 0xfffffUL;
813
814
if (base < limit)
815
tioce_reserve_m32(tioce_kern, base, limit);
816
817
/*
818
* prefetch mem base/limit. The tioce ppb's have 64-bit
819
* decoders, so read the upper portions w/o checking the
820
* attributes.
821
*/
822
823
raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
824
PCI_PREF_MEMORY_BASE, 2, &tmp);
825
base = ((u64)tmp & PCI_PREF_RANGE_MASK) << 16;
826
827
raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
828
PCI_PREF_BASE_UPPER32, 4, &tmp);
829
base |= (u64)tmp << 32;
830
831
raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
832
PCI_PREF_MEMORY_LIMIT, 2, &tmp);
833
834
limit = ((u64)tmp & PCI_PREF_RANGE_MASK) << 16;
835
limit |= 0xfffffUL;
836
837
raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
838
PCI_PREF_LIMIT_UPPER32, 4, &tmp);
839
limit |= (u64)tmp << 32;
840
841
if ((base < limit) && TIOCE_M32_ADDR(base))
842
tioce_reserve_m32(tioce_kern, base, limit);
843
}
844
845
return tioce_kern;
846
}
847
848
/**
849
* tioce_force_interrupt - implement altix force_interrupt() backend for CE
850
* @sn_irq_info: sn asic irq that we need an interrupt generated for
851
*
852
* Given an sn_irq_info struct, set the proper bit in ce_adm_force_int to
853
* force a secondary interrupt to be generated. This is to work around an
854
* asic issue where there is a small window of opportunity for a legacy device
855
* interrupt to be lost.
856
*/
857
static void
858
tioce_force_interrupt(struct sn_irq_info *sn_irq_info)
859
{
860
struct pcidev_info *pcidev_info;
861
struct tioce_common *ce_common;
862
struct tioce_kernel *ce_kern;
863
struct tioce __iomem *ce_mmr;
864
u64 force_int_val;
865
866
if (!sn_irq_info->irq_bridge)
867
return;
868
869
if (sn_irq_info->irq_bridge_type != PCIIO_ASIC_TYPE_TIOCE)
870
return;
871
872
pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
873
if (!pcidev_info)
874
return;
875
876
ce_common = (struct tioce_common *)pcidev_info->pdi_pcibus_info;
877
ce_mmr = (struct tioce __iomem *)ce_common->ce_pcibus.bs_base;
878
ce_kern = (struct tioce_kernel *)ce_common->ce_kernel_private;
879
880
/*
881
* TIOCE Rev A workaround (PV 945826), force an interrupt by writing
882
* the TIO_INTx register directly (1/26/2006)
883
*/
884
if (ce_common->ce_rev == TIOCE_REV_A) {
885
u64 int_bit_mask = (1ULL << sn_irq_info->irq_int_bit);
886
u64 status;
887
888
tioce_mmr_load(ce_kern, &ce_mmr->ce_adm_int_status, &status);
889
if (status & int_bit_mask) {
890
u64 force_irq = (1 << 8) | sn_irq_info->irq_irq;
891
u64 ctalk = sn_irq_info->irq_xtalkaddr;
892
u64 nasid, offset;
893
894
nasid = (ctalk & CTALK_NASID_MASK) >> CTALK_NASID_SHFT;
895
offset = (ctalk & CTALK_NODE_OFFSET);
896
HUB_S(TIO_IOSPACE_ADDR(nasid, offset), force_irq);
897
}
898
899
return;
900
}
901
902
/*
903
* irq_int_bit is originally set up by prom, and holds the interrupt
904
* bit shift (not mask) as defined by the bit definitions in the
905
* ce_adm_int mmr. These shifts are not the same for the
906
* ce_adm_force_int register, so do an explicit mapping here to make
907
* things clearer.
908
*/
909
910
switch (sn_irq_info->irq_int_bit) {
911
case CE_ADM_INT_PCIE_PORT1_DEV_A_SHFT:
912
force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_A_SHFT;
913
break;
914
case CE_ADM_INT_PCIE_PORT1_DEV_B_SHFT:
915
force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_B_SHFT;
916
break;
917
case CE_ADM_INT_PCIE_PORT1_DEV_C_SHFT:
918
force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_C_SHFT;
919
break;
920
case CE_ADM_INT_PCIE_PORT1_DEV_D_SHFT:
921
force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_D_SHFT;
922
break;
923
case CE_ADM_INT_PCIE_PORT2_DEV_A_SHFT:
924
force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_A_SHFT;
925
break;
926
case CE_ADM_INT_PCIE_PORT2_DEV_B_SHFT:
927
force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_B_SHFT;
928
break;
929
case CE_ADM_INT_PCIE_PORT2_DEV_C_SHFT:
930
force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_C_SHFT;
931
break;
932
case CE_ADM_INT_PCIE_PORT2_DEV_D_SHFT:
933
force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_D_SHFT;
934
break;
935
default:
936
return;
937
}
938
tioce_mmr_storei(ce_kern, &ce_mmr->ce_adm_force_int, force_int_val);
939
}
940
941
/**
942
* tioce_target_interrupt - implement set_irq_affinity for tioce resident
943
* functions. Note: only applies to line interrupts, not MSI's.
944
*
945
* @sn_irq_info: SN IRQ context
946
*
947
* Given an sn_irq_info, set the associated CE device's interrupt destination
948
* register. Since the interrupt destination registers are on a per-ce-slot
949
* basis, this will retarget line interrupts for all functions downstream of
950
* the slot.
951
*/
952
static void
953
tioce_target_interrupt(struct sn_irq_info *sn_irq_info)
954
{
955
struct pcidev_info *pcidev_info;
956
struct tioce_common *ce_common;
957
struct tioce_kernel *ce_kern;
958
struct tioce __iomem *ce_mmr;
959
int bit;
960
u64 vector;
961
962
pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
963
if (!pcidev_info)
964
return;
965
966
ce_common = (struct tioce_common *)pcidev_info->pdi_pcibus_info;
967
ce_mmr = (struct tioce __iomem *)ce_common->ce_pcibus.bs_base;
968
ce_kern = (struct tioce_kernel *)ce_common->ce_kernel_private;
969
970
bit = sn_irq_info->irq_int_bit;
971
972
tioce_mmr_seti(ce_kern, &ce_mmr->ce_adm_int_mask, (1UL << bit));
973
vector = (u64)sn_irq_info->irq_irq << INTR_VECTOR_SHFT;
974
vector |= sn_irq_info->irq_xtalkaddr;
975
tioce_mmr_storei(ce_kern, &ce_mmr->ce_adm_int_dest[bit], vector);
976
tioce_mmr_clri(ce_kern, &ce_mmr->ce_adm_int_mask, (1UL << bit));
977
978
tioce_force_interrupt(sn_irq_info);
979
}
980
981
/**
982
* tioce_bus_fixup - perform final PCI fixup for a TIO CE bus
983
* @prom_bussoft: Common prom/kernel struct representing the bus
984
*
985
* Replicates the tioce_common pointed to by @prom_bussoft in kernel
986
* space. Allocates and initializes a kernel-only area for a given CE,
987
* and sets up an irq for handling CE error interrupts.
988
*
989
* On successful setup, returns the kernel version of tioce_common back to
990
* the caller.
991
*/
992
static void *
993
tioce_bus_fixup(struct pcibus_bussoft *prom_bussoft, struct pci_controller *controller)
994
{
995
struct tioce_common *tioce_common;
996
struct tioce_kernel *tioce_kern;
997
struct tioce __iomem *tioce_mmr;
998
999
/*
1000
* Allocate kernel bus soft and copy from prom.
1001
*/
1002
1003
tioce_common = kzalloc(sizeof(struct tioce_common), GFP_KERNEL);
1004
if (!tioce_common)
1005
return NULL;
1006
1007
memcpy(tioce_common, prom_bussoft, sizeof(struct tioce_common));
1008
tioce_common->ce_pcibus.bs_base = (unsigned long)
1009
ioremap(REGION_OFFSET(tioce_common->ce_pcibus.bs_base),
1010
sizeof(struct tioce_common));
1011
1012
tioce_kern = tioce_kern_init(tioce_common);
1013
if (tioce_kern == NULL) {
1014
kfree(tioce_common);
1015
return NULL;
1016
}
1017
1018
/*
1019
* Clear out any transient errors before registering the error
1020
* interrupt handler.
1021
*/
1022
1023
tioce_mmr = (struct tioce __iomem *)tioce_common->ce_pcibus.bs_base;
1024
tioce_mmr_seti(tioce_kern, &tioce_mmr->ce_adm_int_status_alias, ~0ULL);
1025
tioce_mmr_seti(tioce_kern, &tioce_mmr->ce_adm_error_summary_alias,
1026
~0ULL);
1027
tioce_mmr_seti(tioce_kern, &tioce_mmr->ce_dre_comp_err_addr, 0ULL);
1028
1029
if (request_irq(SGI_PCIASIC_ERROR,
1030
tioce_error_intr_handler,
1031
IRQF_SHARED, "TIOCE error", (void *)tioce_common))
1032
printk(KERN_WARNING
1033
"%s: Unable to get irq %d. "
1034
"Error interrupts won't be routed for "
1035
"TIOCE bus %04x:%02x\n",
1036
__func__, SGI_PCIASIC_ERROR,
1037
tioce_common->ce_pcibus.bs_persist_segment,
1038
tioce_common->ce_pcibus.bs_persist_busnum);
1039
1040
sn_set_err_irq_affinity(SGI_PCIASIC_ERROR);
1041
return tioce_common;
1042
}
1043
1044
static struct sn_pcibus_provider tioce_pci_interfaces = {
1045
.dma_map = tioce_dma,
1046
.dma_map_consistent = tioce_dma_consistent,
1047
.dma_unmap = tioce_dma_unmap,
1048
.bus_fixup = tioce_bus_fixup,
1049
.force_interrupt = tioce_force_interrupt,
1050
.target_interrupt = tioce_target_interrupt
1051
};
1052
1053
/**
1054
* tioce_init_provider - init SN PCI provider ops for TIO CE
1055
*/
1056
int
1057
tioce_init_provider(void)
1058
{
1059
sn_pci_provider[PCIIO_ASIC_TYPE_TIOCE] = &tioce_pci_interfaces;
1060
return 0;
1061
}
1062
1063