Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/m32r/kernel/ptrace.c
10817 views
1
/*
2
* linux/arch/m32r/kernel/ptrace.c
3
*
4
* Copyright (C) 2002 Hirokazu Takata, Takeo Takahashi
5
* Copyright (C) 2004 Hirokazu Takata, Kei Sakamoto
6
*
7
* Original x86 implementation:
8
* By Ross Biro 1/23/92
9
* edited by Linus Torvalds
10
*
11
* Some code taken from sh version:
12
* Copyright (C) 1999, 2000 Kaz Kojima & Niibe Yutaka
13
* Some code taken from arm version:
14
* Copyright (C) 2000 Russell King
15
*/
16
17
#include <linux/kernel.h>
18
#include <linux/sched.h>
19
#include <linux/mm.h>
20
#include <linux/err.h>
21
#include <linux/smp.h>
22
#include <linux/errno.h>
23
#include <linux/ptrace.h>
24
#include <linux/user.h>
25
#include <linux/string.h>
26
#include <linux/signal.h>
27
28
#include <asm/cacheflush.h>
29
#include <asm/io.h>
30
#include <asm/uaccess.h>
31
#include <asm/pgtable.h>
32
#include <asm/system.h>
33
#include <asm/processor.h>
34
#include <asm/mmu_context.h>
35
36
/*
37
* This routine will get a word off of the process kernel stack.
38
*/
39
static inline unsigned long int
40
get_stack_long(struct task_struct *task, int offset)
41
{
42
unsigned long *stack;
43
44
stack = (unsigned long *)task_pt_regs(task);
45
46
return stack[offset];
47
}
48
49
/*
50
* This routine will put a word on the process kernel stack.
51
*/
52
static inline int
53
put_stack_long(struct task_struct *task, int offset, unsigned long data)
54
{
55
unsigned long *stack;
56
57
stack = (unsigned long *)task_pt_regs(task);
58
stack[offset] = data;
59
60
return 0;
61
}
62
63
static int reg_offset[] = {
64
PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
65
PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_FP, PT_LR, PT_SPU,
66
};
67
68
/*
69
* Read the word at offset "off" into the "struct user". We
70
* actually access the pt_regs stored on the kernel stack.
71
*/
72
static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
73
unsigned long __user *data)
74
{
75
unsigned long tmp;
76
#ifndef NO_FPU
77
struct user * dummy = NULL;
78
#endif
79
80
if ((off & 3) || off > sizeof(struct user) - 3)
81
return -EIO;
82
83
off >>= 2;
84
switch (off) {
85
case PT_EVB:
86
__asm__ __volatile__ (
87
"mvfc %0, cr5 \n\t"
88
: "=r" (tmp)
89
);
90
break;
91
case PT_CBR: {
92
unsigned long psw;
93
psw = get_stack_long(tsk, PT_PSW);
94
tmp = ((psw >> 8) & 1);
95
}
96
break;
97
case PT_PSW: {
98
unsigned long psw, bbpsw;
99
psw = get_stack_long(tsk, PT_PSW);
100
bbpsw = get_stack_long(tsk, PT_BBPSW);
101
tmp = ((psw >> 8) & 0xff) | ((bbpsw & 0xff) << 8);
102
}
103
break;
104
case PT_PC:
105
tmp = get_stack_long(tsk, PT_BPC);
106
break;
107
case PT_BPC:
108
off = PT_BBPC;
109
/* fall through */
110
default:
111
if (off < (sizeof(struct pt_regs) >> 2))
112
tmp = get_stack_long(tsk, off);
113
#ifndef NO_FPU
114
else if (off >= (long)(&dummy->fpu >> 2) &&
115
off < (long)(&dummy->u_fpvalid >> 2)) {
116
if (!tsk_used_math(tsk)) {
117
if (off == (long)(&dummy->fpu.fpscr >> 2))
118
tmp = FPSCR_INIT;
119
else
120
tmp = 0;
121
} else
122
tmp = ((long *)(&tsk->thread.fpu >> 2))
123
[off - (long)&dummy->fpu];
124
} else if (off == (long)(&dummy->u_fpvalid >> 2))
125
tmp = !!tsk_used_math(tsk);
126
#endif /* not NO_FPU */
127
else
128
tmp = 0;
129
}
130
131
return put_user(tmp, data);
132
}
133
134
static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
135
unsigned long data)
136
{
137
int ret = -EIO;
138
#ifndef NO_FPU
139
struct user * dummy = NULL;
140
#endif
141
142
if ((off & 3) || off > sizeof(struct user) - 3)
143
return -EIO;
144
145
off >>= 2;
146
switch (off) {
147
case PT_EVB:
148
case PT_BPC:
149
case PT_SPI:
150
/* We don't allow to modify evb. */
151
ret = 0;
152
break;
153
case PT_PSW:
154
case PT_CBR: {
155
/* We allow to modify only cbr in psw */
156
unsigned long psw;
157
psw = get_stack_long(tsk, PT_PSW);
158
psw = (psw & ~0x100) | ((data & 1) << 8);
159
ret = put_stack_long(tsk, PT_PSW, psw);
160
}
161
break;
162
case PT_PC:
163
off = PT_BPC;
164
data &= ~1;
165
/* fall through */
166
default:
167
if (off < (sizeof(struct pt_regs) >> 2))
168
ret = put_stack_long(tsk, off, data);
169
#ifndef NO_FPU
170
else if (off >= (long)(&dummy->fpu >> 2) &&
171
off < (long)(&dummy->u_fpvalid >> 2)) {
172
set_stopped_child_used_math(tsk);
173
((long *)&tsk->thread.fpu)
174
[off - (long)&dummy->fpu] = data;
175
ret = 0;
176
} else if (off == (long)(&dummy->u_fpvalid >> 2)) {
177
conditional_stopped_child_used_math(data, tsk);
178
ret = 0;
179
}
180
#endif /* not NO_FPU */
181
break;
182
}
183
184
return ret;
185
}
186
187
/*
188
* Get all user integer registers.
189
*/
190
static int ptrace_getregs(struct task_struct *tsk, void __user *uregs)
191
{
192
struct pt_regs *regs = task_pt_regs(tsk);
193
194
return copy_to_user(uregs, regs, sizeof(struct pt_regs)) ? -EFAULT : 0;
195
}
196
197
/*
198
* Set all user integer registers.
199
*/
200
static int ptrace_setregs(struct task_struct *tsk, void __user *uregs)
201
{
202
struct pt_regs newregs;
203
int ret;
204
205
ret = -EFAULT;
206
if (copy_from_user(&newregs, uregs, sizeof(struct pt_regs)) == 0) {
207
struct pt_regs *regs = task_pt_regs(tsk);
208
*regs = newregs;
209
ret = 0;
210
}
211
212
return ret;
213
}
214
215
216
static inline int
217
check_condition_bit(struct task_struct *child)
218
{
219
return (int)((get_stack_long(child, PT_PSW) >> 8) & 1);
220
}
221
222
static int
223
check_condition_src(unsigned long op, unsigned long regno1,
224
unsigned long regno2, struct task_struct *child)
225
{
226
unsigned long reg1, reg2;
227
228
reg2 = get_stack_long(child, reg_offset[regno2]);
229
230
switch (op) {
231
case 0x0: /* BEQ */
232
reg1 = get_stack_long(child, reg_offset[regno1]);
233
return reg1 == reg2;
234
case 0x1: /* BNE */
235
reg1 = get_stack_long(child, reg_offset[regno1]);
236
return reg1 != reg2;
237
case 0x8: /* BEQZ */
238
return reg2 == 0;
239
case 0x9: /* BNEZ */
240
return reg2 != 0;
241
case 0xa: /* BLTZ */
242
return (int)reg2 < 0;
243
case 0xb: /* BGEZ */
244
return (int)reg2 >= 0;
245
case 0xc: /* BLEZ */
246
return (int)reg2 <= 0;
247
case 0xd: /* BGTZ */
248
return (int)reg2 > 0;
249
default:
250
/* never reached */
251
return 0;
252
}
253
}
254
255
static void
256
compute_next_pc_for_16bit_insn(unsigned long insn, unsigned long pc,
257
unsigned long *next_pc,
258
struct task_struct *child)
259
{
260
unsigned long op, op2, op3;
261
unsigned long disp;
262
unsigned long regno;
263
int parallel = 0;
264
265
if (insn & 0x00008000)
266
parallel = 1;
267
if (pc & 3)
268
insn &= 0x7fff; /* right slot */
269
else
270
insn >>= 16; /* left slot */
271
272
op = (insn >> 12) & 0xf;
273
op2 = (insn >> 8) & 0xf;
274
op3 = (insn >> 4) & 0xf;
275
276
if (op == 0x7) {
277
switch (op2) {
278
case 0xd: /* BNC */
279
case 0x9: /* BNCL */
280
if (!check_condition_bit(child)) {
281
disp = (long)(insn << 24) >> 22;
282
*next_pc = (pc & ~0x3) + disp;
283
return;
284
}
285
break;
286
case 0x8: /* BCL */
287
case 0xc: /* BC */
288
if (check_condition_bit(child)) {
289
disp = (long)(insn << 24) >> 22;
290
*next_pc = (pc & ~0x3) + disp;
291
return;
292
}
293
break;
294
case 0xe: /* BL */
295
case 0xf: /* BRA */
296
disp = (long)(insn << 24) >> 22;
297
*next_pc = (pc & ~0x3) + disp;
298
return;
299
break;
300
}
301
} else if (op == 0x1) {
302
switch (op2) {
303
case 0x0:
304
if (op3 == 0xf) { /* TRAP */
305
#if 1
306
/* pass through */
307
#else
308
/* kernel space is not allowed as next_pc */
309
unsigned long evb;
310
unsigned long trapno;
311
trapno = insn & 0xf;
312
__asm__ __volatile__ (
313
"mvfc %0, cr5\n"
314
:"=r"(evb)
315
:
316
);
317
*next_pc = evb + (trapno << 2);
318
return;
319
#endif
320
} else if (op3 == 0xd) { /* RTE */
321
*next_pc = get_stack_long(child, PT_BPC);
322
return;
323
}
324
break;
325
case 0xc: /* JC */
326
if (op3 == 0xc && check_condition_bit(child)) {
327
regno = insn & 0xf;
328
*next_pc = get_stack_long(child,
329
reg_offset[regno]);
330
return;
331
}
332
break;
333
case 0xd: /* JNC */
334
if (op3 == 0xc && !check_condition_bit(child)) {
335
regno = insn & 0xf;
336
*next_pc = get_stack_long(child,
337
reg_offset[regno]);
338
return;
339
}
340
break;
341
case 0xe: /* JL */
342
case 0xf: /* JMP */
343
if (op3 == 0xc) { /* JMP */
344
regno = insn & 0xf;
345
*next_pc = get_stack_long(child,
346
reg_offset[regno]);
347
return;
348
}
349
break;
350
}
351
}
352
if (parallel)
353
*next_pc = pc + 4;
354
else
355
*next_pc = pc + 2;
356
}
357
358
static void
359
compute_next_pc_for_32bit_insn(unsigned long insn, unsigned long pc,
360
unsigned long *next_pc,
361
struct task_struct *child)
362
{
363
unsigned long op;
364
unsigned long op2;
365
unsigned long disp;
366
unsigned long regno1, regno2;
367
368
op = (insn >> 28) & 0xf;
369
if (op == 0xf) { /* branch 24-bit relative */
370
op2 = (insn >> 24) & 0xf;
371
switch (op2) {
372
case 0xd: /* BNC */
373
case 0x9: /* BNCL */
374
if (!check_condition_bit(child)) {
375
disp = (long)(insn << 8) >> 6;
376
*next_pc = (pc & ~0x3) + disp;
377
return;
378
}
379
break;
380
case 0x8: /* BCL */
381
case 0xc: /* BC */
382
if (check_condition_bit(child)) {
383
disp = (long)(insn << 8) >> 6;
384
*next_pc = (pc & ~0x3) + disp;
385
return;
386
}
387
break;
388
case 0xe: /* BL */
389
case 0xf: /* BRA */
390
disp = (long)(insn << 8) >> 6;
391
*next_pc = (pc & ~0x3) + disp;
392
return;
393
}
394
} else if (op == 0xb) { /* branch 16-bit relative */
395
op2 = (insn >> 20) & 0xf;
396
switch (op2) {
397
case 0x0: /* BEQ */
398
case 0x1: /* BNE */
399
case 0x8: /* BEQZ */
400
case 0x9: /* BNEZ */
401
case 0xa: /* BLTZ */
402
case 0xb: /* BGEZ */
403
case 0xc: /* BLEZ */
404
case 0xd: /* BGTZ */
405
regno1 = ((insn >> 24) & 0xf);
406
regno2 = ((insn >> 16) & 0xf);
407
if (check_condition_src(op2, regno1, regno2, child)) {
408
disp = (long)(insn << 16) >> 14;
409
*next_pc = (pc & ~0x3) + disp;
410
return;
411
}
412
break;
413
}
414
}
415
*next_pc = pc + 4;
416
}
417
418
static inline void
419
compute_next_pc(unsigned long insn, unsigned long pc,
420
unsigned long *next_pc, struct task_struct *child)
421
{
422
if (insn & 0x80000000)
423
compute_next_pc_for_32bit_insn(insn, pc, next_pc, child);
424
else
425
compute_next_pc_for_16bit_insn(insn, pc, next_pc, child);
426
}
427
428
static int
429
register_debug_trap(struct task_struct *child, unsigned long next_pc,
430
unsigned long next_insn, unsigned long *code)
431
{
432
struct debug_trap *p = &child->thread.debug_trap;
433
unsigned long addr = next_pc & ~3;
434
435
if (p->nr_trap == MAX_TRAPS) {
436
printk("kernel BUG at %s %d: p->nr_trap = %d\n",
437
__FILE__, __LINE__, p->nr_trap);
438
return -1;
439
}
440
p->addr[p->nr_trap] = addr;
441
p->insn[p->nr_trap] = next_insn;
442
p->nr_trap++;
443
if (next_pc & 3) {
444
*code = (next_insn & 0xffff0000) | 0x10f1;
445
/* xxx --> TRAP1 */
446
} else {
447
if ((next_insn & 0x80000000) || (next_insn & 0x8000)) {
448
*code = 0x10f17000;
449
/* TRAP1 --> NOP */
450
} else {
451
*code = (next_insn & 0xffff) | 0x10f10000;
452
/* TRAP1 --> xxx */
453
}
454
}
455
return 0;
456
}
457
458
static int
459
unregister_debug_trap(struct task_struct *child, unsigned long addr,
460
unsigned long *code)
461
{
462
struct debug_trap *p = &child->thread.debug_trap;
463
int i;
464
465
/* Search debug trap entry. */
466
for (i = 0; i < p->nr_trap; i++) {
467
if (p->addr[i] == addr)
468
break;
469
}
470
if (i >= p->nr_trap) {
471
/* The trap may be requested from debugger.
472
* ptrace should do nothing in this case.
473
*/
474
return 0;
475
}
476
477
/* Recover original instruction code. */
478
*code = p->insn[i];
479
480
/* Shift debug trap entries. */
481
while (i < p->nr_trap - 1) {
482
p->insn[i] = p->insn[i + 1];
483
p->addr[i] = p->addr[i + 1];
484
i++;
485
}
486
p->nr_trap--;
487
return 1;
488
}
489
490
static void
491
unregister_all_debug_traps(struct task_struct *child)
492
{
493
struct debug_trap *p = &child->thread.debug_trap;
494
int i;
495
496
for (i = 0; i < p->nr_trap; i++)
497
access_process_vm(child, p->addr[i], &p->insn[i], sizeof(p->insn[i]), 1);
498
p->nr_trap = 0;
499
}
500
501
static inline void
502
invalidate_cache(void)
503
{
504
#if defined(CONFIG_CHIP_M32700) || defined(CONFIG_CHIP_OPSP)
505
506
_flush_cache_copyback_all();
507
508
#else /* ! CONFIG_CHIP_M32700 */
509
510
/* Invalidate cache */
511
__asm__ __volatile__ (
512
"ldi r0, #-1 \n\t"
513
"ldi r1, #0 \n\t"
514
"stb r1, @r0 ; cache off \n\t"
515
"; \n\t"
516
"ldi r0, #-2 \n\t"
517
"ldi r1, #1 \n\t"
518
"stb r1, @r0 ; cache invalidate \n\t"
519
".fillinsn \n"
520
"0: \n\t"
521
"ldb r1, @r0 ; invalidate check \n\t"
522
"bnez r1, 0b \n\t"
523
"; \n\t"
524
"ldi r0, #-1 \n\t"
525
"ldi r1, #1 \n\t"
526
"stb r1, @r0 ; cache on \n\t"
527
: : : "r0", "r1", "memory"
528
);
529
/* FIXME: copying-back d-cache and invalidating i-cache are needed.
530
*/
531
#endif /* CONFIG_CHIP_M32700 */
532
}
533
534
/* Embed a debug trap (TRAP1) code */
535
static int
536
embed_debug_trap(struct task_struct *child, unsigned long next_pc)
537
{
538
unsigned long next_insn, code;
539
unsigned long addr = next_pc & ~3;
540
541
if (access_process_vm(child, addr, &next_insn, sizeof(next_insn), 0)
542
!= sizeof(next_insn)) {
543
return -1; /* error */
544
}
545
546
/* Set a trap code. */
547
if (register_debug_trap(child, next_pc, next_insn, &code)) {
548
return -1; /* error */
549
}
550
if (access_process_vm(child, addr, &code, sizeof(code), 1)
551
!= sizeof(code)) {
552
return -1; /* error */
553
}
554
return 0; /* success */
555
}
556
557
void
558
withdraw_debug_trap(struct pt_regs *regs)
559
{
560
unsigned long addr;
561
unsigned long code;
562
563
addr = (regs->bpc - 2) & ~3;
564
regs->bpc -= 2;
565
if (unregister_debug_trap(current, addr, &code)) {
566
access_process_vm(current, addr, &code, sizeof(code), 1);
567
invalidate_cache();
568
}
569
}
570
571
void
572
init_debug_traps(struct task_struct *child)
573
{
574
struct debug_trap *p = &child->thread.debug_trap;
575
int i;
576
p->nr_trap = 0;
577
for (i = 0; i < MAX_TRAPS; i++) {
578
p->addr[i] = 0;
579
p->insn[i] = 0;
580
}
581
}
582
583
void user_enable_single_step(struct task_struct *child)
584
{
585
unsigned long next_pc;
586
unsigned long pc, insn;
587
588
clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
589
590
/* Compute next pc. */
591
pc = get_stack_long(child, PT_BPC);
592
593
if (access_process_vm(child, pc&~3, &insn, sizeof(insn), 0)
594
!= sizeof(insn))
595
return -EIO;
596
597
compute_next_pc(insn, pc, &next_pc, child);
598
if (next_pc & 0x80000000)
599
return -EIO;
600
601
if (embed_debug_trap(child, next_pc))
602
return -EIO;
603
604
invalidate_cache();
605
return 0;
606
}
607
608
void user_disable_single_step(struct task_struct *child)
609
{
610
unregister_all_debug_traps(child);
611
invalidate_cache();
612
}
613
614
/*
615
* Called by kernel/ptrace.c when detaching..
616
*
617
* Make sure single step bits etc are not set.
618
*/
619
void ptrace_disable(struct task_struct *child)
620
{
621
/* nothing to do.. */
622
}
623
624
long
625
arch_ptrace(struct task_struct *child, long request,
626
unsigned long addr, unsigned long data)
627
{
628
int ret;
629
unsigned long __user *datap = (unsigned long __user *) data;
630
631
switch (request) {
632
/*
633
* read word at location "addr" in the child process.
634
*/
635
case PTRACE_PEEKTEXT:
636
case PTRACE_PEEKDATA:
637
ret = generic_ptrace_peekdata(child, addr, data);
638
break;
639
640
/*
641
* read the word at location addr in the USER area.
642
*/
643
case PTRACE_PEEKUSR:
644
ret = ptrace_read_user(child, addr, datap);
645
break;
646
647
/*
648
* write the word at location addr.
649
*/
650
case PTRACE_POKETEXT:
651
case PTRACE_POKEDATA:
652
ret = generic_ptrace_pokedata(child, addr, data);
653
if (ret == 0 && request == PTRACE_POKETEXT)
654
invalidate_cache();
655
break;
656
657
/*
658
* write the word at location addr in the USER area.
659
*/
660
case PTRACE_POKEUSR:
661
ret = ptrace_write_user(child, addr, data);
662
break;
663
664
case PTRACE_GETREGS:
665
ret = ptrace_getregs(child, datap);
666
break;
667
668
case PTRACE_SETREGS:
669
ret = ptrace_setregs(child, datap);
670
break;
671
672
default:
673
ret = ptrace_request(child, request, addr, data);
674
break;
675
}
676
677
return ret;
678
}
679
680
/* notification of system call entry/exit
681
* - triggered by current->work.syscall_trace
682
*/
683
void do_syscall_trace(void)
684
{
685
if (!test_thread_flag(TIF_SYSCALL_TRACE))
686
return;
687
if (!(current->ptrace & PT_PTRACED))
688
return;
689
/* the 0x80 provides a way for the tracing parent to distinguish
690
between a syscall stop and SIGTRAP delivery */
691
ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD)
692
? 0x80 : 0));
693
694
/*
695
* this isn't the same as continuing with a signal, but it will do
696
* for normal use. strace only continues with a signal if the
697
* stopping signal is not SIGTRAP. -brl
698
*/
699
if (current->exit_code) {
700
send_sig(current->exit_code, current, 1);
701
current->exit_code = 0;
702
}
703
}
704
705