Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/m68k/fpsp040/decbin.S
10817 views
1
|
2
| decbin.sa 3.3 12/19/90
3
|
4
| Description: Converts normalized packed bcd value pointed to by
5
| register A6 to extended-precision value in FP0.
6
|
7
| Input: Normalized packed bcd value in ETEMP(a6).
8
|
9
| Output: Exact floating-point representation of the packed bcd value.
10
|
11
| Saves and Modifies: D2-D5
12
|
13
| Speed: The program decbin takes ??? cycles to execute.
14
|
15
| Object Size:
16
|
17
| External Reference(s): None.
18
|
19
| Algorithm:
20
| Expected is a normal bcd (i.e. non-exceptional; all inf, zero,
21
| and NaN operands are dispatched without entering this routine)
22
| value in 68881/882 format at location ETEMP(A6).
23
|
24
| A1. Convert the bcd exponent to binary by successive adds and muls.
25
| Set the sign according to SE. Subtract 16 to compensate
26
| for the mantissa which is to be interpreted as 17 integer
27
| digits, rather than 1 integer and 16 fraction digits.
28
| Note: this operation can never overflow.
29
|
30
| A2. Convert the bcd mantissa to binary by successive
31
| adds and muls in FP0. Set the sign according to SM.
32
| The mantissa digits will be converted with the decimal point
33
| assumed following the least-significant digit.
34
| Note: this operation can never overflow.
35
|
36
| A3. Count the number of leading/trailing zeros in the
37
| bcd string. If SE is positive, count the leading zeros;
38
| if negative, count the trailing zeros. Set the adjusted
39
| exponent equal to the exponent from A1 and the zero count
40
| added if SM = 1 and subtracted if SM = 0. Scale the
41
| mantissa the equivalent of forcing in the bcd value:
42
|
43
| SM = 0 a non-zero digit in the integer position
44
| SM = 1 a non-zero digit in Mant0, lsd of the fraction
45
|
46
| this will insure that any value, regardless of its
47
| representation (ex. 0.1E2, 1E1, 10E0, 100E-1), is converted
48
| consistently.
49
|
50
| A4. Calculate the factor 10^exp in FP1 using a table of
51
| 10^(2^n) values. To reduce the error in forming factors
52
| greater than 10^27, a directed rounding scheme is used with
53
| tables rounded to RN, RM, and RP, according to the table
54
| in the comments of the pwrten section.
55
|
56
| A5. Form the final binary number by scaling the mantissa by
57
| the exponent factor. This is done by multiplying the
58
| mantissa in FP0 by the factor in FP1 if the adjusted
59
| exponent sign is positive, and dividing FP0 by FP1 if
60
| it is negative.
61
|
62
| Clean up and return. Check if the final mul or div resulted
63
| in an inex2 exception. If so, set inex1 in the fpsr and
64
| check if the inex1 exception is enabled. If so, set d7 upper
65
| word to $0100. This will signal unimp.sa that an enabled inex1
66
| exception occurred. Unimp will fix the stack.
67
|
68
69
| Copyright (C) Motorola, Inc. 1990
70
| All Rights Reserved
71
|
72
| For details on the license for this file, please see the
73
| file, README, in this same directory.
74
75
|DECBIN idnt 2,1 | Motorola 040 Floating Point Software Package
76
77
|section 8
78
79
#include "fpsp.h"
80
81
|
82
| PTENRN, PTENRM, and PTENRP are arrays of powers of 10 rounded
83
| to nearest, minus, and plus, respectively. The tables include
84
| 10**{1,2,4,8,16,32,64,128,256,512,1024,2048,4096}. No rounding
85
| is required until the power is greater than 27, however, all
86
| tables include the first 5 for ease of indexing.
87
|
88
|xref PTENRN
89
|xref PTENRM
90
|xref PTENRP
91
92
RTABLE: .byte 0,0,0,0
93
.byte 2,3,2,3
94
.byte 2,3,3,2
95
.byte 3,2,2,3
96
97
.global decbin
98
.global calc_e
99
.global pwrten
100
.global calc_m
101
.global norm
102
.global ap_st_z
103
.global ap_st_n
104
|
105
.set FNIBS,7
106
.set FSTRT,0
107
|
108
.set ESTRT,4
109
.set EDIGITS,2 |
110
|
111
| Constants in single precision
112
FZERO: .long 0x00000000
113
FONE: .long 0x3F800000
114
FTEN: .long 0x41200000
115
116
.set TEN,10
117
118
|
119
decbin:
120
| fmovel #0,FPCR ;clr real fpcr
121
moveml %d2-%d5,-(%a7)
122
|
123
| Calculate exponent:
124
| 1. Copy bcd value in memory for use as a working copy.
125
| 2. Calculate absolute value of exponent in d1 by mul and add.
126
| 3. Correct for exponent sign.
127
| 4. Subtract 16 to compensate for interpreting the mant as all integer digits.
128
| (i.e., all digits assumed left of the decimal point.)
129
|
130
| Register usage:
131
|
132
| calc_e:
133
| (*) d0: temp digit storage
134
| (*) d1: accumulator for binary exponent
135
| (*) d2: digit count
136
| (*) d3: offset pointer
137
| ( ) d4: first word of bcd
138
| ( ) a0: pointer to working bcd value
139
| ( ) a6: pointer to original bcd value
140
| (*) FP_SCR1: working copy of original bcd value
141
| (*) L_SCR1: copy of original exponent word
142
|
143
calc_e:
144
movel #EDIGITS,%d2 |# of nibbles (digits) in fraction part
145
moveql #ESTRT,%d3 |counter to pick up digits
146
leal FP_SCR1(%a6),%a0 |load tmp bcd storage address
147
movel ETEMP(%a6),(%a0) |save input bcd value
148
movel ETEMP_HI(%a6),4(%a0) |save words 2 and 3
149
movel ETEMP_LO(%a6),8(%a0) |and work with these
150
movel (%a0),%d4 |get first word of bcd
151
clrl %d1 |zero d1 for accumulator
152
e_gd:
153
mulul #TEN,%d1 |mul partial product by one digit place
154
bfextu %d4{%d3:#4},%d0 |get the digit and zero extend into d0
155
addl %d0,%d1 |d1 = d1 + d0
156
addqb #4,%d3 |advance d3 to the next digit
157
dbf %d2,e_gd |if we have used all 3 digits, exit loop
158
btst #30,%d4 |get SE
159
beqs e_pos |don't negate if pos
160
negl %d1 |negate before subtracting
161
e_pos:
162
subl #16,%d1 |sub to compensate for shift of mant
163
bges e_save |if still pos, do not neg
164
negl %d1 |now negative, make pos and set SE
165
orl #0x40000000,%d4 |set SE in d4,
166
orl #0x40000000,(%a0) |and in working bcd
167
e_save:
168
movel %d1,L_SCR1(%a6) |save exp in memory
169
|
170
|
171
| Calculate mantissa:
172
| 1. Calculate absolute value of mantissa in fp0 by mul and add.
173
| 2. Correct for mantissa sign.
174
| (i.e., all digits assumed left of the decimal point.)
175
|
176
| Register usage:
177
|
178
| calc_m:
179
| (*) d0: temp digit storage
180
| (*) d1: lword counter
181
| (*) d2: digit count
182
| (*) d3: offset pointer
183
| ( ) d4: words 2 and 3 of bcd
184
| ( ) a0: pointer to working bcd value
185
| ( ) a6: pointer to original bcd value
186
| (*) fp0: mantissa accumulator
187
| ( ) FP_SCR1: working copy of original bcd value
188
| ( ) L_SCR1: copy of original exponent word
189
|
190
calc_m:
191
moveql #1,%d1 |word counter, init to 1
192
fmoves FZERO,%fp0 |accumulator
193
|
194
|
195
| Since the packed number has a long word between the first & second parts,
196
| get the integer digit then skip down & get the rest of the
197
| mantissa. We will unroll the loop once.
198
|
199
bfextu (%a0){#28:#4},%d0 |integer part is ls digit in long word
200
faddb %d0,%fp0 |add digit to sum in fp0
201
|
202
|
203
| Get the rest of the mantissa.
204
|
205
loadlw:
206
movel (%a0,%d1.L*4),%d4 |load mantissa longword into d4
207
moveql #FSTRT,%d3 |counter to pick up digits
208
moveql #FNIBS,%d2 |reset number of digits per a0 ptr
209
md2b:
210
fmuls FTEN,%fp0 |fp0 = fp0 * 10
211
bfextu %d4{%d3:#4},%d0 |get the digit and zero extend
212
faddb %d0,%fp0 |fp0 = fp0 + digit
213
|
214
|
215
| If all the digits (8) in that long word have been converted (d2=0),
216
| then inc d1 (=2) to point to the next long word and reset d3 to 0
217
| to initialize the digit offset, and set d2 to 7 for the digit count;
218
| else continue with this long word.
219
|
220
addqb #4,%d3 |advance d3 to the next digit
221
dbf %d2,md2b |check for last digit in this lw
222
nextlw:
223
addql #1,%d1 |inc lw pointer in mantissa
224
cmpl #2,%d1 |test for last lw
225
ble loadlw |if not, get last one
226
227
|
228
| Check the sign of the mant and make the value in fp0 the same sign.
229
|
230
m_sign:
231
btst #31,(%a0) |test sign of the mantissa
232
beq ap_st_z |if clear, go to append/strip zeros
233
fnegx %fp0 |if set, negate fp0
234
235
|
236
| Append/strip zeros:
237
|
238
| For adjusted exponents which have an absolute value greater than 27*,
239
| this routine calculates the amount needed to normalize the mantissa
240
| for the adjusted exponent. That number is subtracted from the exp
241
| if the exp was positive, and added if it was negative. The purpose
242
| of this is to reduce the value of the exponent and the possibility
243
| of error in calculation of pwrten.
244
|
245
| 1. Branch on the sign of the adjusted exponent.
246
| 2p.(positive exp)
247
| 2. Check M16 and the digits in lwords 2 and 3 in descending order.
248
| 3. Add one for each zero encountered until a non-zero digit.
249
| 4. Subtract the count from the exp.
250
| 5. Check if the exp has crossed zero in #3 above; make the exp abs
251
| and set SE.
252
| 6. Multiply the mantissa by 10**count.
253
| 2n.(negative exp)
254
| 2. Check the digits in lwords 3 and 2 in descending order.
255
| 3. Add one for each zero encountered until a non-zero digit.
256
| 4. Add the count to the exp.
257
| 5. Check if the exp has crossed zero in #3 above; clear SE.
258
| 6. Divide the mantissa by 10**count.
259
|
260
| *Why 27? If the adjusted exponent is within -28 < expA < 28, than
261
| any adjustment due to append/strip zeros will drive the resultant
262
| exponent towards zero. Since all pwrten constants with a power
263
| of 27 or less are exact, there is no need to use this routine to
264
| attempt to lessen the resultant exponent.
265
|
266
| Register usage:
267
|
268
| ap_st_z:
269
| (*) d0: temp digit storage
270
| (*) d1: zero count
271
| (*) d2: digit count
272
| (*) d3: offset pointer
273
| ( ) d4: first word of bcd
274
| (*) d5: lword counter
275
| ( ) a0: pointer to working bcd value
276
| ( ) FP_SCR1: working copy of original bcd value
277
| ( ) L_SCR1: copy of original exponent word
278
|
279
|
280
| First check the absolute value of the exponent to see if this
281
| routine is necessary. If so, then check the sign of the exponent
282
| and do append (+) or strip (-) zeros accordingly.
283
| This section handles a positive adjusted exponent.
284
|
285
ap_st_z:
286
movel L_SCR1(%a6),%d1 |load expA for range test
287
cmpl #27,%d1 |test is with 27
288
ble pwrten |if abs(expA) <28, skip ap/st zeros
289
btst #30,(%a0) |check sign of exp
290
bne ap_st_n |if neg, go to neg side
291
clrl %d1 |zero count reg
292
movel (%a0),%d4 |load lword 1 to d4
293
bfextu %d4{#28:#4},%d0 |get M16 in d0
294
bnes ap_p_fx |if M16 is non-zero, go fix exp
295
addql #1,%d1 |inc zero count
296
moveql #1,%d5 |init lword counter
297
movel (%a0,%d5.L*4),%d4 |get lword 2 to d4
298
bnes ap_p_cl |if lw 2 is zero, skip it
299
addql #8,%d1 |and inc count by 8
300
addql #1,%d5 |inc lword counter
301
movel (%a0,%d5.L*4),%d4 |get lword 3 to d4
302
ap_p_cl:
303
clrl %d3 |init offset reg
304
moveql #7,%d2 |init digit counter
305
ap_p_gd:
306
bfextu %d4{%d3:#4},%d0 |get digit
307
bnes ap_p_fx |if non-zero, go to fix exp
308
addql #4,%d3 |point to next digit
309
addql #1,%d1 |inc digit counter
310
dbf %d2,ap_p_gd |get next digit
311
ap_p_fx:
312
movel %d1,%d0 |copy counter to d2
313
movel L_SCR1(%a6),%d1 |get adjusted exp from memory
314
subl %d0,%d1 |subtract count from exp
315
bges ap_p_fm |if still pos, go to pwrten
316
negl %d1 |now its neg; get abs
317
movel (%a0),%d4 |load lword 1 to d4
318
orl #0x40000000,%d4 | and set SE in d4
319
orl #0x40000000,(%a0) | and in memory
320
|
321
| Calculate the mantissa multiplier to compensate for the striping of
322
| zeros from the mantissa.
323
|
324
ap_p_fm:
325
movel #PTENRN,%a1 |get address of power-of-ten table
326
clrl %d3 |init table index
327
fmoves FONE,%fp1 |init fp1 to 1
328
moveql #3,%d2 |init d2 to count bits in counter
329
ap_p_el:
330
asrl #1,%d0 |shift lsb into carry
331
bccs ap_p_en |if 1, mul fp1 by pwrten factor
332
fmulx (%a1,%d3),%fp1 |mul by 10**(d3_bit_no)
333
ap_p_en:
334
addl #12,%d3 |inc d3 to next rtable entry
335
tstl %d0 |check if d0 is zero
336
bnes ap_p_el |if not, get next bit
337
fmulx %fp1,%fp0 |mul mantissa by 10**(no_bits_shifted)
338
bra pwrten |go calc pwrten
339
|
340
| This section handles a negative adjusted exponent.
341
|
342
ap_st_n:
343
clrl %d1 |clr counter
344
moveql #2,%d5 |set up d5 to point to lword 3
345
movel (%a0,%d5.L*4),%d4 |get lword 3
346
bnes ap_n_cl |if not zero, check digits
347
subl #1,%d5 |dec d5 to point to lword 2
348
addql #8,%d1 |inc counter by 8
349
movel (%a0,%d5.L*4),%d4 |get lword 2
350
ap_n_cl:
351
movel #28,%d3 |point to last digit
352
moveql #7,%d2 |init digit counter
353
ap_n_gd:
354
bfextu %d4{%d3:#4},%d0 |get digit
355
bnes ap_n_fx |if non-zero, go to exp fix
356
subql #4,%d3 |point to previous digit
357
addql #1,%d1 |inc digit counter
358
dbf %d2,ap_n_gd |get next digit
359
ap_n_fx:
360
movel %d1,%d0 |copy counter to d0
361
movel L_SCR1(%a6),%d1 |get adjusted exp from memory
362
subl %d0,%d1 |subtract count from exp
363
bgts ap_n_fm |if still pos, go fix mantissa
364
negl %d1 |take abs of exp and clr SE
365
movel (%a0),%d4 |load lword 1 to d4
366
andl #0xbfffffff,%d4 | and clr SE in d4
367
andl #0xbfffffff,(%a0) | and in memory
368
|
369
| Calculate the mantissa multiplier to compensate for the appending of
370
| zeros to the mantissa.
371
|
372
ap_n_fm:
373
movel #PTENRN,%a1 |get address of power-of-ten table
374
clrl %d3 |init table index
375
fmoves FONE,%fp1 |init fp1 to 1
376
moveql #3,%d2 |init d2 to count bits in counter
377
ap_n_el:
378
asrl #1,%d0 |shift lsb into carry
379
bccs ap_n_en |if 1, mul fp1 by pwrten factor
380
fmulx (%a1,%d3),%fp1 |mul by 10**(d3_bit_no)
381
ap_n_en:
382
addl #12,%d3 |inc d3 to next rtable entry
383
tstl %d0 |check if d0 is zero
384
bnes ap_n_el |if not, get next bit
385
fdivx %fp1,%fp0 |div mantissa by 10**(no_bits_shifted)
386
|
387
|
388
| Calculate power-of-ten factor from adjusted and shifted exponent.
389
|
390
| Register usage:
391
|
392
| pwrten:
393
| (*) d0: temp
394
| ( ) d1: exponent
395
| (*) d2: {FPCR[6:5],SM,SE} as index in RTABLE; temp
396
| (*) d3: FPCR work copy
397
| ( ) d4: first word of bcd
398
| (*) a1: RTABLE pointer
399
| calc_p:
400
| (*) d0: temp
401
| ( ) d1: exponent
402
| (*) d3: PWRTxx table index
403
| ( ) a0: pointer to working copy of bcd
404
| (*) a1: PWRTxx pointer
405
| (*) fp1: power-of-ten accumulator
406
|
407
| Pwrten calculates the exponent factor in the selected rounding mode
408
| according to the following table:
409
|
410
| Sign of Mant Sign of Exp Rounding Mode PWRTEN Rounding Mode
411
|
412
| ANY ANY RN RN
413
|
414
| + + RP RP
415
| - + RP RM
416
| + - RP RM
417
| - - RP RP
418
|
419
| + + RM RM
420
| - + RM RP
421
| + - RM RP
422
| - - RM RM
423
|
424
| + + RZ RM
425
| - + RZ RM
426
| + - RZ RP
427
| - - RZ RP
428
|
429
|
430
pwrten:
431
movel USER_FPCR(%a6),%d3 |get user's FPCR
432
bfextu %d3{#26:#2},%d2 |isolate rounding mode bits
433
movel (%a0),%d4 |reload 1st bcd word to d4
434
asll #2,%d2 |format d2 to be
435
bfextu %d4{#0:#2},%d0 | {FPCR[6],FPCR[5],SM,SE}
436
addl %d0,%d2 |in d2 as index into RTABLE
437
leal RTABLE,%a1 |load rtable base
438
moveb (%a1,%d2),%d0 |load new rounding bits from table
439
clrl %d3 |clear d3 to force no exc and extended
440
bfins %d0,%d3{#26:#2} |stuff new rounding bits in FPCR
441
fmovel %d3,%FPCR |write new FPCR
442
asrl #1,%d0 |write correct PTENxx table
443
bccs not_rp |to a1
444
leal PTENRP,%a1 |it is RP
445
bras calc_p |go to init section
446
not_rp:
447
asrl #1,%d0 |keep checking
448
bccs not_rm
449
leal PTENRM,%a1 |it is RM
450
bras calc_p |go to init section
451
not_rm:
452
leal PTENRN,%a1 |it is RN
453
calc_p:
454
movel %d1,%d0 |copy exp to d0;use d0
455
bpls no_neg |if exp is negative,
456
negl %d0 |invert it
457
orl #0x40000000,(%a0) |and set SE bit
458
no_neg:
459
clrl %d3 |table index
460
fmoves FONE,%fp1 |init fp1 to 1
461
e_loop:
462
asrl #1,%d0 |shift next bit into carry
463
bccs e_next |if zero, skip the mul
464
fmulx (%a1,%d3),%fp1 |mul by 10**(d3_bit_no)
465
e_next:
466
addl #12,%d3 |inc d3 to next rtable entry
467
tstl %d0 |check if d0 is zero
468
bnes e_loop |not zero, continue shifting
469
|
470
|
471
| Check the sign of the adjusted exp and make the value in fp0 the
472
| same sign. If the exp was pos then multiply fp1*fp0;
473
| else divide fp0/fp1.
474
|
475
| Register Usage:
476
| norm:
477
| ( ) a0: pointer to working bcd value
478
| (*) fp0: mantissa accumulator
479
| ( ) fp1: scaling factor - 10**(abs(exp))
480
|
481
norm:
482
btst #30,(%a0) |test the sign of the exponent
483
beqs mul |if clear, go to multiply
484
div:
485
fdivx %fp1,%fp0 |exp is negative, so divide mant by exp
486
bras end_dec
487
mul:
488
fmulx %fp1,%fp0 |exp is positive, so multiply by exp
489
|
490
|
491
| Clean up and return with result in fp0.
492
|
493
| If the final mul/div in decbin incurred an inex exception,
494
| it will be inex2, but will be reported as inex1 by get_op.
495
|
496
end_dec:
497
fmovel %FPSR,%d0 |get status register
498
bclrl #inex2_bit+8,%d0 |test for inex2 and clear it
499
fmovel %d0,%FPSR |return status reg w/o inex2
500
beqs no_exc |skip this if no exc
501
orl #inx1a_mask,USER_FPSR(%a6) |set inex1/ainex
502
no_exc:
503
moveml (%a7)+,%d2-%d5
504
rts
505
|end
506
507