Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/m68k/fpsp040/satan.S
10818 views
1
|
2
| satan.sa 3.3 12/19/90
3
|
4
| The entry point satan computes the arctangent of an
5
| input value. satand does the same except the input value is a
6
| denormalized number.
7
|
8
| Input: Double-extended value in memory location pointed to by address
9
| register a0.
10
|
11
| Output: Arctan(X) returned in floating-point register Fp0.
12
|
13
| Accuracy and Monotonicity: The returned result is within 2 ulps in
14
| 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
15
| result is subsequently rounded to double precision. The
16
| result is provably monotonic in double precision.
17
|
18
| Speed: The program satan takes approximately 160 cycles for input
19
| argument X such that 1/16 < |X| < 16. For the other arguments,
20
| the program will run no worse than 10% slower.
21
|
22
| Algorithm:
23
| Step 1. If |X| >= 16 or |X| < 1/16, go to Step 5.
24
|
25
| Step 2. Let X = sgn * 2**k * 1.xxxxxxxx...x. Note that k = -4, -3,..., or 3.
26
| Define F = sgn * 2**k * 1.xxxx1, i.e. the first 5 significant bits
27
| of X with a bit-1 attached at the 6-th bit position. Define u
28
| to be u = (X-F) / (1 + X*F).
29
|
30
| Step 3. Approximate arctan(u) by a polynomial poly.
31
|
32
| Step 4. Return arctan(F) + poly, arctan(F) is fetched from a table of values
33
| calculated beforehand. Exit.
34
|
35
| Step 5. If |X| >= 16, go to Step 7.
36
|
37
| Step 6. Approximate arctan(X) by an odd polynomial in X. Exit.
38
|
39
| Step 7. Define X' = -1/X. Approximate arctan(X') by an odd polynomial in X'.
40
| Arctan(X) = sign(X)*Pi/2 + arctan(X'). Exit.
41
|
42
43
| Copyright (C) Motorola, Inc. 1990
44
| All Rights Reserved
45
|
46
| For details on the license for this file, please see the
47
| file, README, in this same directory.
48
49
|satan idnt 2,1 | Motorola 040 Floating Point Software Package
50
51
|section 8
52
53
#include "fpsp.h"
54
55
BOUNDS1: .long 0x3FFB8000,0x4002FFFF
56
57
ONE: .long 0x3F800000
58
59
.long 0x00000000
60
61
ATANA3: .long 0xBFF6687E,0x314987D8
62
ATANA2: .long 0x4002AC69,0x34A26DB3
63
64
ATANA1: .long 0xBFC2476F,0x4E1DA28E
65
ATANB6: .long 0x3FB34444,0x7F876989
66
67
ATANB5: .long 0xBFB744EE,0x7FAF45DB
68
ATANB4: .long 0x3FBC71C6,0x46940220
69
70
ATANB3: .long 0xBFC24924,0x921872F9
71
ATANB2: .long 0x3FC99999,0x99998FA9
72
73
ATANB1: .long 0xBFD55555,0x55555555
74
ATANC5: .long 0xBFB70BF3,0x98539E6A
75
76
ATANC4: .long 0x3FBC7187,0x962D1D7D
77
ATANC3: .long 0xBFC24924,0x827107B8
78
79
ATANC2: .long 0x3FC99999,0x9996263E
80
ATANC1: .long 0xBFD55555,0x55555536
81
82
PPIBY2: .long 0x3FFF0000,0xC90FDAA2,0x2168C235,0x00000000
83
NPIBY2: .long 0xBFFF0000,0xC90FDAA2,0x2168C235,0x00000000
84
PTINY: .long 0x00010000,0x80000000,0x00000000,0x00000000
85
NTINY: .long 0x80010000,0x80000000,0x00000000,0x00000000
86
87
ATANTBL:
88
.long 0x3FFB0000,0x83D152C5,0x060B7A51,0x00000000
89
.long 0x3FFB0000,0x8BC85445,0x65498B8B,0x00000000
90
.long 0x3FFB0000,0x93BE4060,0x17626B0D,0x00000000
91
.long 0x3FFB0000,0x9BB3078D,0x35AEC202,0x00000000
92
.long 0x3FFB0000,0xA3A69A52,0x5DDCE7DE,0x00000000
93
.long 0x3FFB0000,0xAB98E943,0x62765619,0x00000000
94
.long 0x3FFB0000,0xB389E502,0xF9C59862,0x00000000
95
.long 0x3FFB0000,0xBB797E43,0x6B09E6FB,0x00000000
96
.long 0x3FFB0000,0xC367A5C7,0x39E5F446,0x00000000
97
.long 0x3FFB0000,0xCB544C61,0xCFF7D5C6,0x00000000
98
.long 0x3FFB0000,0xD33F62F8,0x2488533E,0x00000000
99
.long 0x3FFB0000,0xDB28DA81,0x62404C77,0x00000000
100
.long 0x3FFB0000,0xE310A407,0x8AD34F18,0x00000000
101
.long 0x3FFB0000,0xEAF6B0A8,0x188EE1EB,0x00000000
102
.long 0x3FFB0000,0xF2DAF194,0x9DBE79D5,0x00000000
103
.long 0x3FFB0000,0xFABD5813,0x61D47E3E,0x00000000
104
.long 0x3FFC0000,0x8346AC21,0x0959ECC4,0x00000000
105
.long 0x3FFC0000,0x8B232A08,0x304282D8,0x00000000
106
.long 0x3FFC0000,0x92FB70B8,0xD29AE2F9,0x00000000
107
.long 0x3FFC0000,0x9ACF476F,0x5CCD1CB4,0x00000000
108
.long 0x3FFC0000,0xA29E7630,0x4954F23F,0x00000000
109
.long 0x3FFC0000,0xAA68C5D0,0x8AB85230,0x00000000
110
.long 0x3FFC0000,0xB22DFFFD,0x9D539F83,0x00000000
111
.long 0x3FFC0000,0xB9EDEF45,0x3E900EA5,0x00000000
112
.long 0x3FFC0000,0xC1A85F1C,0xC75E3EA5,0x00000000
113
.long 0x3FFC0000,0xC95D1BE8,0x28138DE6,0x00000000
114
.long 0x3FFC0000,0xD10BF300,0x840D2DE4,0x00000000
115
.long 0x3FFC0000,0xD8B4B2BA,0x6BC05E7A,0x00000000
116
.long 0x3FFC0000,0xE0572A6B,0xB42335F6,0x00000000
117
.long 0x3FFC0000,0xE7F32A70,0xEA9CAA8F,0x00000000
118
.long 0x3FFC0000,0xEF888432,0x64ECEFAA,0x00000000
119
.long 0x3FFC0000,0xF7170A28,0xECC06666,0x00000000
120
.long 0x3FFD0000,0x812FD288,0x332DAD32,0x00000000
121
.long 0x3FFD0000,0x88A8D1B1,0x218E4D64,0x00000000
122
.long 0x3FFD0000,0x9012AB3F,0x23E4AEE8,0x00000000
123
.long 0x3FFD0000,0x976CC3D4,0x11E7F1B9,0x00000000
124
.long 0x3FFD0000,0x9EB68949,0x3889A227,0x00000000
125
.long 0x3FFD0000,0xA5EF72C3,0x4487361B,0x00000000
126
.long 0x3FFD0000,0xAD1700BA,0xF07A7227,0x00000000
127
.long 0x3FFD0000,0xB42CBCFA,0xFD37EFB7,0x00000000
128
.long 0x3FFD0000,0xBB303A94,0x0BA80F89,0x00000000
129
.long 0x3FFD0000,0xC22115C6,0xFCAEBBAF,0x00000000
130
.long 0x3FFD0000,0xC8FEF3E6,0x86331221,0x00000000
131
.long 0x3FFD0000,0xCFC98330,0xB4000C70,0x00000000
132
.long 0x3FFD0000,0xD6807AA1,0x102C5BF9,0x00000000
133
.long 0x3FFD0000,0xDD2399BC,0x31252AA3,0x00000000
134
.long 0x3FFD0000,0xE3B2A855,0x6B8FC517,0x00000000
135
.long 0x3FFD0000,0xEA2D764F,0x64315989,0x00000000
136
.long 0x3FFD0000,0xF3BF5BF8,0xBAD1A21D,0x00000000
137
.long 0x3FFE0000,0x801CE39E,0x0D205C9A,0x00000000
138
.long 0x3FFE0000,0x8630A2DA,0xDA1ED066,0x00000000
139
.long 0x3FFE0000,0x8C1AD445,0xF3E09B8C,0x00000000
140
.long 0x3FFE0000,0x91DB8F16,0x64F350E2,0x00000000
141
.long 0x3FFE0000,0x97731420,0x365E538C,0x00000000
142
.long 0x3FFE0000,0x9CE1C8E6,0xA0B8CDBA,0x00000000
143
.long 0x3FFE0000,0xA22832DB,0xCADAAE09,0x00000000
144
.long 0x3FFE0000,0xA746F2DD,0xB7602294,0x00000000
145
.long 0x3FFE0000,0xAC3EC0FB,0x997DD6A2,0x00000000
146
.long 0x3FFE0000,0xB110688A,0xEBDC6F6A,0x00000000
147
.long 0x3FFE0000,0xB5BCC490,0x59ECC4B0,0x00000000
148
.long 0x3FFE0000,0xBA44BC7D,0xD470782F,0x00000000
149
.long 0x3FFE0000,0xBEA94144,0xFD049AAC,0x00000000
150
.long 0x3FFE0000,0xC2EB4ABB,0x661628B6,0x00000000
151
.long 0x3FFE0000,0xC70BD54C,0xE602EE14,0x00000000
152
.long 0x3FFE0000,0xCD000549,0xADEC7159,0x00000000
153
.long 0x3FFE0000,0xD48457D2,0xD8EA4EA3,0x00000000
154
.long 0x3FFE0000,0xDB948DA7,0x12DECE3B,0x00000000
155
.long 0x3FFE0000,0xE23855F9,0x69E8096A,0x00000000
156
.long 0x3FFE0000,0xE8771129,0xC4353259,0x00000000
157
.long 0x3FFE0000,0xEE57C16E,0x0D379C0D,0x00000000
158
.long 0x3FFE0000,0xF3E10211,0xA87C3779,0x00000000
159
.long 0x3FFE0000,0xF919039D,0x758B8D41,0x00000000
160
.long 0x3FFE0000,0xFE058B8F,0x64935FB3,0x00000000
161
.long 0x3FFF0000,0x8155FB49,0x7B685D04,0x00000000
162
.long 0x3FFF0000,0x83889E35,0x49D108E1,0x00000000
163
.long 0x3FFF0000,0x859CFA76,0x511D724B,0x00000000
164
.long 0x3FFF0000,0x87952ECF,0xFF8131E7,0x00000000
165
.long 0x3FFF0000,0x89732FD1,0x9557641B,0x00000000
166
.long 0x3FFF0000,0x8B38CAD1,0x01932A35,0x00000000
167
.long 0x3FFF0000,0x8CE7A8D8,0x301EE6B5,0x00000000
168
.long 0x3FFF0000,0x8F46A39E,0x2EAE5281,0x00000000
169
.long 0x3FFF0000,0x922DA7D7,0x91888487,0x00000000
170
.long 0x3FFF0000,0x94D19FCB,0xDEDF5241,0x00000000
171
.long 0x3FFF0000,0x973AB944,0x19D2A08B,0x00000000
172
.long 0x3FFF0000,0x996FF00E,0x08E10B96,0x00000000
173
.long 0x3FFF0000,0x9B773F95,0x12321DA7,0x00000000
174
.long 0x3FFF0000,0x9D55CC32,0x0F935624,0x00000000
175
.long 0x3FFF0000,0x9F100575,0x006CC571,0x00000000
176
.long 0x3FFF0000,0xA0A9C290,0xD97CC06C,0x00000000
177
.long 0x3FFF0000,0xA22659EB,0xEBC0630A,0x00000000
178
.long 0x3FFF0000,0xA388B4AF,0xF6EF0EC9,0x00000000
179
.long 0x3FFF0000,0xA4D35F10,0x61D292C4,0x00000000
180
.long 0x3FFF0000,0xA60895DC,0xFBE3187E,0x00000000
181
.long 0x3FFF0000,0xA72A51DC,0x7367BEAC,0x00000000
182
.long 0x3FFF0000,0xA83A5153,0x0956168F,0x00000000
183
.long 0x3FFF0000,0xA93A2007,0x7539546E,0x00000000
184
.long 0x3FFF0000,0xAA9E7245,0x023B2605,0x00000000
185
.long 0x3FFF0000,0xAC4C84BA,0x6FE4D58F,0x00000000
186
.long 0x3FFF0000,0xADCE4A4A,0x606B9712,0x00000000
187
.long 0x3FFF0000,0xAF2A2DCD,0x8D263C9C,0x00000000
188
.long 0x3FFF0000,0xB0656F81,0xF22265C7,0x00000000
189
.long 0x3FFF0000,0xB1846515,0x0F71496A,0x00000000
190
.long 0x3FFF0000,0xB28AAA15,0x6F9ADA35,0x00000000
191
.long 0x3FFF0000,0xB37B44FF,0x3766B895,0x00000000
192
.long 0x3FFF0000,0xB458C3DC,0xE9630433,0x00000000
193
.long 0x3FFF0000,0xB525529D,0x562246BD,0x00000000
194
.long 0x3FFF0000,0xB5E2CCA9,0x5F9D88CC,0x00000000
195
.long 0x3FFF0000,0xB692CADA,0x7ACA1ADA,0x00000000
196
.long 0x3FFF0000,0xB736AEA7,0xA6925838,0x00000000
197
.long 0x3FFF0000,0xB7CFAB28,0x7E9F7B36,0x00000000
198
.long 0x3FFF0000,0xB85ECC66,0xCB219835,0x00000000
199
.long 0x3FFF0000,0xB8E4FD5A,0x20A593DA,0x00000000
200
.long 0x3FFF0000,0xB99F41F6,0x4AFF9BB5,0x00000000
201
.long 0x3FFF0000,0xBA7F1E17,0x842BBE7B,0x00000000
202
.long 0x3FFF0000,0xBB471285,0x7637E17D,0x00000000
203
.long 0x3FFF0000,0xBBFABE8A,0x4788DF6F,0x00000000
204
.long 0x3FFF0000,0xBC9D0FAD,0x2B689D79,0x00000000
205
.long 0x3FFF0000,0xBD306A39,0x471ECD86,0x00000000
206
.long 0x3FFF0000,0xBDB6C731,0x856AF18A,0x00000000
207
.long 0x3FFF0000,0xBE31CAC5,0x02E80D70,0x00000000
208
.long 0x3FFF0000,0xBEA2D55C,0xE33194E2,0x00000000
209
.long 0x3FFF0000,0xBF0B10B7,0xC03128F0,0x00000000
210
.long 0x3FFF0000,0xBF6B7A18,0xDACB778D,0x00000000
211
.long 0x3FFF0000,0xBFC4EA46,0x63FA18F6,0x00000000
212
.long 0x3FFF0000,0xC0181BDE,0x8B89A454,0x00000000
213
.long 0x3FFF0000,0xC065B066,0xCFBF6439,0x00000000
214
.long 0x3FFF0000,0xC0AE345F,0x56340AE6,0x00000000
215
.long 0x3FFF0000,0xC0F22291,0x9CB9E6A7,0x00000000
216
217
.set X,FP_SCR1
218
.set XDCARE,X+2
219
.set XFRAC,X+4
220
.set XFRACLO,X+8
221
222
.set ATANF,FP_SCR2
223
.set ATANFHI,ATANF+4
224
.set ATANFLO,ATANF+8
225
226
227
| xref t_frcinx
228
|xref t_extdnrm
229
230
.global satand
231
satand:
232
|--ENTRY POINT FOR ATAN(X) FOR DENORMALIZED ARGUMENT
233
234
bra t_extdnrm
235
236
.global satan
237
satan:
238
|--ENTRY POINT FOR ATAN(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S
239
240
fmovex (%a0),%fp0 | ...LOAD INPUT
241
242
movel (%a0),%d0
243
movew 4(%a0),%d0
244
fmovex %fp0,X(%a6)
245
andil #0x7FFFFFFF,%d0
246
247
cmpil #0x3FFB8000,%d0 | ...|X| >= 1/16?
248
bges ATANOK1
249
bra ATANSM
250
251
ATANOK1:
252
cmpil #0x4002FFFF,%d0 | ...|X| < 16 ?
253
bles ATANMAIN
254
bra ATANBIG
255
256
257
|--THE MOST LIKELY CASE, |X| IN [1/16, 16). WE USE TABLE TECHNIQUE
258
|--THE IDEA IS ATAN(X) = ATAN(F) + ATAN( [X-F] / [1+XF] ).
259
|--SO IF F IS CHOSEN TO BE CLOSE TO X AND ATAN(F) IS STORED IN
260
|--A TABLE, ALL WE NEED IS TO APPROXIMATE ATAN(U) WHERE
261
|--U = (X-F)/(1+XF) IS SMALL (REMEMBER F IS CLOSE TO X). IT IS
262
|--TRUE THAT A DIVIDE IS NOW NEEDED, BUT THE APPROXIMATION FOR
263
|--ATAN(U) IS A VERY SHORT POLYNOMIAL AND THE INDEXING TO
264
|--FETCH F AND SAVING OF REGISTERS CAN BE ALL HIDED UNDER THE
265
|--DIVIDE. IN THE END THIS METHOD IS MUCH FASTER THAN A TRADITIONAL
266
|--ONE. NOTE ALSO THAT THE TRADITIONAL SCHEME THAT APPROXIMATE
267
|--ATAN(X) DIRECTLY WILL NEED TO USE A RATIONAL APPROXIMATION
268
|--(DIVISION NEEDED) ANYWAY BECAUSE A POLYNOMIAL APPROXIMATION
269
|--WILL INVOLVE A VERY LONG POLYNOMIAL.
270
271
|--NOW WE SEE X AS +-2^K * 1.BBBBBBB....B <- 1. + 63 BITS
272
|--WE CHOSE F TO BE +-2^K * 1.BBBB1
273
|--THAT IS IT MATCHES THE EXPONENT AND FIRST 5 BITS OF X, THE
274
|--SIXTH BITS IS SET TO BE 1. SINCE K = -4, -3, ..., 3, THERE
275
|--ARE ONLY 8 TIMES 16 = 2^7 = 128 |F|'S. SINCE ATAN(-|F|) IS
276
|-- -ATAN(|F|), WE NEED TO STORE ONLY ATAN(|F|).
277
278
ATANMAIN:
279
280
movew #0x0000,XDCARE(%a6) | ...CLEAN UP X JUST IN CASE
281
andil #0xF8000000,XFRAC(%a6) | ...FIRST 5 BITS
282
oril #0x04000000,XFRAC(%a6) | ...SET 6-TH BIT TO 1
283
movel #0x00000000,XFRACLO(%a6) | ...LOCATION OF X IS NOW F
284
285
fmovex %fp0,%fp1 | ...FP1 IS X
286
fmulx X(%a6),%fp1 | ...FP1 IS X*F, NOTE THAT X*F > 0
287
fsubx X(%a6),%fp0 | ...FP0 IS X-F
288
fadds #0x3F800000,%fp1 | ...FP1 IS 1 + X*F
289
fdivx %fp1,%fp0 | ...FP0 IS U = (X-F)/(1+X*F)
290
291
|--WHILE THE DIVISION IS TAKING ITS TIME, WE FETCH ATAN(|F|)
292
|--CREATE ATAN(F) AND STORE IT IN ATANF, AND
293
|--SAVE REGISTERS FP2.
294
295
movel %d2,-(%a7) | ...SAVE d2 TEMPORARILY
296
movel %d0,%d2 | ...THE EXPO AND 16 BITS OF X
297
andil #0x00007800,%d0 | ...4 VARYING BITS OF F'S FRACTION
298
andil #0x7FFF0000,%d2 | ...EXPONENT OF F
299
subil #0x3FFB0000,%d2 | ...K+4
300
asrl #1,%d2
301
addl %d2,%d0 | ...THE 7 BITS IDENTIFYING F
302
asrl #7,%d0 | ...INDEX INTO TBL OF ATAN(|F|)
303
lea ATANTBL,%a1
304
addal %d0,%a1 | ...ADDRESS OF ATAN(|F|)
305
movel (%a1)+,ATANF(%a6)
306
movel (%a1)+,ATANFHI(%a6)
307
movel (%a1)+,ATANFLO(%a6) | ...ATANF IS NOW ATAN(|F|)
308
movel X(%a6),%d0 | ...LOAD SIGN AND EXPO. AGAIN
309
andil #0x80000000,%d0 | ...SIGN(F)
310
orl %d0,ATANF(%a6) | ...ATANF IS NOW SIGN(F)*ATAN(|F|)
311
movel (%a7)+,%d2 | ...RESTORE d2
312
313
|--THAT'S ALL I HAVE TO DO FOR NOW,
314
|--BUT ALAS, THE DIVIDE IS STILL CRANKING!
315
316
|--U IN FP0, WE ARE NOW READY TO COMPUTE ATAN(U) AS
317
|--U + A1*U*V*(A2 + V*(A3 + V)), V = U*U
318
|--THE POLYNOMIAL MAY LOOK STRANGE, BUT IS NEVERTHELESS CORRECT.
319
|--THE NATURAL FORM IS U + U*V*(A1 + V*(A2 + V*A3))
320
|--WHAT WE HAVE HERE IS MERELY A1 = A3, A2 = A1/A3, A3 = A2/A3.
321
|--THE REASON FOR THIS REARRANGEMENT IS TO MAKE THE INDEPENDENT
322
|--PARTS A1*U*V AND (A2 + ... STUFF) MORE LOAD-BALANCED
323
324
325
fmovex %fp0,%fp1
326
fmulx %fp1,%fp1
327
fmoved ATANA3,%fp2
328
faddx %fp1,%fp2 | ...A3+V
329
fmulx %fp1,%fp2 | ...V*(A3+V)
330
fmulx %fp0,%fp1 | ...U*V
331
faddd ATANA2,%fp2 | ...A2+V*(A3+V)
332
fmuld ATANA1,%fp1 | ...A1*U*V
333
fmulx %fp2,%fp1 | ...A1*U*V*(A2+V*(A3+V))
334
335
faddx %fp1,%fp0 | ...ATAN(U), FP1 RELEASED
336
fmovel %d1,%FPCR |restore users exceptions
337
faddx ATANF(%a6),%fp0 | ...ATAN(X)
338
bra t_frcinx
339
340
ATANBORS:
341
|--|X| IS IN d0 IN COMPACT FORM. FP1, d0 SAVED.
342
|--FP0 IS X AND |X| <= 1/16 OR |X| >= 16.
343
cmpil #0x3FFF8000,%d0
344
bgt ATANBIG | ...I.E. |X| >= 16
345
346
ATANSM:
347
|--|X| <= 1/16
348
|--IF |X| < 2^(-40), RETURN X AS ANSWER. OTHERWISE, APPROXIMATE
349
|--ATAN(X) BY X + X*Y*(B1+Y*(B2+Y*(B3+Y*(B4+Y*(B5+Y*B6)))))
350
|--WHICH IS X + X*Y*( [B1+Z*(B3+Z*B5)] + [Y*(B2+Z*(B4+Z*B6)] )
351
|--WHERE Y = X*X, AND Z = Y*Y.
352
353
cmpil #0x3FD78000,%d0
354
blt ATANTINY
355
|--COMPUTE POLYNOMIAL
356
fmulx %fp0,%fp0 | ...FP0 IS Y = X*X
357
358
359
movew #0x0000,XDCARE(%a6)
360
361
fmovex %fp0,%fp1
362
fmulx %fp1,%fp1 | ...FP1 IS Z = Y*Y
363
364
fmoved ATANB6,%fp2
365
fmoved ATANB5,%fp3
366
367
fmulx %fp1,%fp2 | ...Z*B6
368
fmulx %fp1,%fp3 | ...Z*B5
369
370
faddd ATANB4,%fp2 | ...B4+Z*B6
371
faddd ATANB3,%fp3 | ...B3+Z*B5
372
373
fmulx %fp1,%fp2 | ...Z*(B4+Z*B6)
374
fmulx %fp3,%fp1 | ...Z*(B3+Z*B5)
375
376
faddd ATANB2,%fp2 | ...B2+Z*(B4+Z*B6)
377
faddd ATANB1,%fp1 | ...B1+Z*(B3+Z*B5)
378
379
fmulx %fp0,%fp2 | ...Y*(B2+Z*(B4+Z*B6))
380
fmulx X(%a6),%fp0 | ...X*Y
381
382
faddx %fp2,%fp1 | ...[B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))]
383
384
385
fmulx %fp1,%fp0 | ...X*Y*([B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))])
386
387
fmovel %d1,%FPCR |restore users exceptions
388
faddx X(%a6),%fp0
389
390
bra t_frcinx
391
392
ATANTINY:
393
|--|X| < 2^(-40), ATAN(X) = X
394
movew #0x0000,XDCARE(%a6)
395
396
fmovel %d1,%FPCR |restore users exceptions
397
fmovex X(%a6),%fp0 |last inst - possible exception set
398
399
bra t_frcinx
400
401
ATANBIG:
402
|--IF |X| > 2^(100), RETURN SIGN(X)*(PI/2 - TINY). OTHERWISE,
403
|--RETURN SIGN(X)*PI/2 + ATAN(-1/X).
404
cmpil #0x40638000,%d0
405
bgt ATANHUGE
406
407
|--APPROXIMATE ATAN(-1/X) BY
408
|--X'+X'*Y*(C1+Y*(C2+Y*(C3+Y*(C4+Y*C5)))), X' = -1/X, Y = X'*X'
409
|--THIS CAN BE RE-WRITTEN AS
410
|--X'+X'*Y*( [C1+Z*(C3+Z*C5)] + [Y*(C2+Z*C4)] ), Z = Y*Y.
411
412
fmoves #0xBF800000,%fp1 | ...LOAD -1
413
fdivx %fp0,%fp1 | ...FP1 IS -1/X
414
415
416
|--DIVIDE IS STILL CRANKING
417
418
fmovex %fp1,%fp0 | ...FP0 IS X'
419
fmulx %fp0,%fp0 | ...FP0 IS Y = X'*X'
420
fmovex %fp1,X(%a6) | ...X IS REALLY X'
421
422
fmovex %fp0,%fp1
423
fmulx %fp1,%fp1 | ...FP1 IS Z = Y*Y
424
425
fmoved ATANC5,%fp3
426
fmoved ATANC4,%fp2
427
428
fmulx %fp1,%fp3 | ...Z*C5
429
fmulx %fp1,%fp2 | ...Z*B4
430
431
faddd ATANC3,%fp3 | ...C3+Z*C5
432
faddd ATANC2,%fp2 | ...C2+Z*C4
433
434
fmulx %fp3,%fp1 | ...Z*(C3+Z*C5), FP3 RELEASED
435
fmulx %fp0,%fp2 | ...Y*(C2+Z*C4)
436
437
faddd ATANC1,%fp1 | ...C1+Z*(C3+Z*C5)
438
fmulx X(%a6),%fp0 | ...X'*Y
439
440
faddx %fp2,%fp1 | ...[Y*(C2+Z*C4)]+[C1+Z*(C3+Z*C5)]
441
442
443
fmulx %fp1,%fp0 | ...X'*Y*([B1+Z*(B3+Z*B5)]
444
| ... +[Y*(B2+Z*(B4+Z*B6))])
445
faddx X(%a6),%fp0
446
447
fmovel %d1,%FPCR |restore users exceptions
448
449
btstb #7,(%a0)
450
beqs pos_big
451
452
neg_big:
453
faddx NPIBY2,%fp0
454
bra t_frcinx
455
456
pos_big:
457
faddx PPIBY2,%fp0
458
bra t_frcinx
459
460
ATANHUGE:
461
|--RETURN SIGN(X)*(PIBY2 - TINY) = SIGN(X)*PIBY2 - SIGN(X)*TINY
462
btstb #7,(%a0)
463
beqs pos_huge
464
465
neg_huge:
466
fmovex NPIBY2,%fp0
467
fmovel %d1,%fpcr
468
fsubx NTINY,%fp0
469
bra t_frcinx
470
471
pos_huge:
472
fmovex PPIBY2,%fp0
473
fmovel %d1,%fpcr
474
fsubx PTINY,%fp0
475
bra t_frcinx
476
477
|end
478
479