Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/m68k/fpsp040/setox.S
10820 views
1
|
2
| setox.sa 3.1 12/10/90
3
|
4
| The entry point setox computes the exponential of a value.
5
| setoxd does the same except the input value is a denormalized
6
| number. setoxm1 computes exp(X)-1, and setoxm1d computes
7
| exp(X)-1 for denormalized X.
8
|
9
| INPUT
10
| -----
11
| Double-extended value in memory location pointed to by address
12
| register a0.
13
|
14
| OUTPUT
15
| ------
16
| exp(X) or exp(X)-1 returned in floating-point register fp0.
17
|
18
| ACCURACY and MONOTONICITY
19
| -------------------------
20
| The returned result is within 0.85 ulps in 64 significant bit, i.e.
21
| within 0.5001 ulp to 53 bits if the result is subsequently rounded
22
| to double precision. The result is provably monotonic in double
23
| precision.
24
|
25
| SPEED
26
| -----
27
| Two timings are measured, both in the copy-back mode. The
28
| first one is measured when the function is invoked the first time
29
| (so the instructions and data are not in cache), and the
30
| second one is measured when the function is reinvoked at the same
31
| input argument.
32
|
33
| The program setox takes approximately 210/190 cycles for input
34
| argument X whose magnitude is less than 16380 log2, which
35
| is the usual situation. For the less common arguments,
36
| depending on their values, the program may run faster or slower --
37
| but no worse than 10% slower even in the extreme cases.
38
|
39
| The program setoxm1 takes approximately ??? / ??? cycles for input
40
| argument X, 0.25 <= |X| < 70log2. For |X| < 0.25, it takes
41
| approximately ??? / ??? cycles. For the less common arguments,
42
| depending on their values, the program may run faster or slower --
43
| but no worse than 10% slower even in the extreme cases.
44
|
45
| ALGORITHM and IMPLEMENTATION NOTES
46
| ----------------------------------
47
|
48
| setoxd
49
| ------
50
| Step 1. Set ans := 1.0
51
|
52
| Step 2. Return ans := ans + sign(X)*2^(-126). Exit.
53
| Notes: This will always generate one exception -- inexact.
54
|
55
|
56
| setox
57
| -----
58
|
59
| Step 1. Filter out extreme cases of input argument.
60
| 1.1 If |X| >= 2^(-65), go to Step 1.3.
61
| 1.2 Go to Step 7.
62
| 1.3 If |X| < 16380 log(2), go to Step 2.
63
| 1.4 Go to Step 8.
64
| Notes: The usual case should take the branches 1.1 -> 1.3 -> 2.
65
| To avoid the use of floating-point comparisons, a
66
| compact representation of |X| is used. This format is a
67
| 32-bit integer, the upper (more significant) 16 bits are
68
| the sign and biased exponent field of |X|; the lower 16
69
| bits are the 16 most significant fraction (including the
70
| explicit bit) bits of |X|. Consequently, the comparisons
71
| in Steps 1.1 and 1.3 can be performed by integer comparison.
72
| Note also that the constant 16380 log(2) used in Step 1.3
73
| is also in the compact form. Thus taking the branch
74
| to Step 2 guarantees |X| < 16380 log(2). There is no harm
75
| to have a small number of cases where |X| is less than,
76
| but close to, 16380 log(2) and the branch to Step 9 is
77
| taken.
78
|
79
| Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ).
80
| 2.1 Set AdjFlag := 0 (indicates the branch 1.3 -> 2 was taken)
81
| 2.2 N := round-to-nearest-integer( X * 64/log2 ).
82
| 2.3 Calculate J = N mod 64; so J = 0,1,2,..., or 63.
83
| 2.4 Calculate M = (N - J)/64; so N = 64M + J.
84
| 2.5 Calculate the address of the stored value of 2^(J/64).
85
| 2.6 Create the value Scale = 2^M.
86
| Notes: The calculation in 2.2 is really performed by
87
|
88
| Z := X * constant
89
| N := round-to-nearest-integer(Z)
90
|
91
| where
92
|
93
| constant := single-precision( 64/log 2 ).
94
|
95
| Using a single-precision constant avoids memory access.
96
| Another effect of using a single-precision "constant" is
97
| that the calculated value Z is
98
|
99
| Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24).
100
|
101
| This error has to be considered later in Steps 3 and 4.
102
|
103
| Step 3. Calculate X - N*log2/64.
104
| 3.1 R := X + N*L1, where L1 := single-precision(-log2/64).
105
| 3.2 R := R + N*L2, L2 := extended-precision(-log2/64 - L1).
106
| Notes: a) The way L1 and L2 are chosen ensures L1+L2 approximate
107
| the value -log2/64 to 88 bits of accuracy.
108
| b) N*L1 is exact because N is no longer than 22 bits and
109
| L1 is no longer than 24 bits.
110
| c) The calculation X+N*L1 is also exact due to cancellation.
111
| Thus, R is practically X+N(L1+L2) to full 64 bits.
112
| d) It is important to estimate how large can |R| be after
113
| Step 3.2.
114
|
115
| N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24)
116
| X*64/log2 (1+eps) = N + f, |f| <= 0.5
117
| X*64/log2 - N = f - eps*X 64/log2
118
| X - N*log2/64 = f*log2/64 - eps*X
119
|
120
|
121
| Now |X| <= 16446 log2, thus
122
|
123
| |X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64
124
| <= 0.57 log2/64.
125
| This bound will be used in Step 4.
126
|
127
| Step 4. Approximate exp(R)-1 by a polynomial
128
| p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5))))
129
| Notes: a) In order to reduce memory access, the coefficients are
130
| made as "short" as possible: A1 (which is 1/2), A4 and A5
131
| are single precision; A2 and A3 are double precision.
132
| b) Even with the restrictions above,
133
| |p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062.
134
| Note that 0.0062 is slightly bigger than 0.57 log2/64.
135
| c) To fully utilize the pipeline, p is separated into
136
| two independent pieces of roughly equal complexities
137
| p = [ R + R*S*(A2 + S*A4) ] +
138
| [ S*(A1 + S*(A3 + S*A5)) ]
139
| where S = R*R.
140
|
141
| Step 5. Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by
142
| ans := T + ( T*p + t)
143
| where T and t are the stored values for 2^(J/64).
144
| Notes: 2^(J/64) is stored as T and t where T+t approximates
145
| 2^(J/64) to roughly 85 bits; T is in extended precision
146
| and t is in single precision. Note also that T is rounded
147
| to 62 bits so that the last two bits of T are zero. The
148
| reason for such a special form is that T-1, T-2, and T-8
149
| will all be exact --- a property that will give much
150
| more accurate computation of the function EXPM1.
151
|
152
| Step 6. Reconstruction of exp(X)
153
| exp(X) = 2^M * 2^(J/64) * exp(R).
154
| 6.1 If AdjFlag = 0, go to 6.3
155
| 6.2 ans := ans * AdjScale
156
| 6.3 Restore the user FPCR
157
| 6.4 Return ans := ans * Scale. Exit.
158
| Notes: If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R,
159
| |M| <= 16380, and Scale = 2^M. Moreover, exp(X) will
160
| neither overflow nor underflow. If AdjFlag = 1, that
161
| means that
162
| X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380.
163
| Hence, exp(X) may overflow or underflow or neither.
164
| When that is the case, AdjScale = 2^(M1) where M1 is
165
| approximately M. Thus 6.2 will never cause over/underflow.
166
| Possible exception in 6.4 is overflow or underflow.
167
| The inexact exception is not generated in 6.4. Although
168
| one can argue that the inexact flag should always be
169
| raised, to simulate that exception cost to much than the
170
| flag is worth in practical uses.
171
|
172
| Step 7. Return 1 + X.
173
| 7.1 ans := X
174
| 7.2 Restore user FPCR.
175
| 7.3 Return ans := 1 + ans. Exit
176
| Notes: For non-zero X, the inexact exception will always be
177
| raised by 7.3. That is the only exception raised by 7.3.
178
| Note also that we use the FMOVEM instruction to move X
179
| in Step 7.1 to avoid unnecessary trapping. (Although
180
| the FMOVEM may not seem relevant since X is normalized,
181
| the precaution will be useful in the library version of
182
| this code where the separate entry for denormalized inputs
183
| will be done away with.)
184
|
185
| Step 8. Handle exp(X) where |X| >= 16380log2.
186
| 8.1 If |X| > 16480 log2, go to Step 9.
187
| (mimic 2.2 - 2.6)
188
| 8.2 N := round-to-integer( X * 64/log2 )
189
| 8.3 Calculate J = N mod 64, J = 0,1,...,63
190
| 8.4 K := (N-J)/64, M1 := truncate(K/2), M = K-M1, AdjFlag := 1.
191
| 8.5 Calculate the address of the stored value 2^(J/64).
192
| 8.6 Create the values Scale = 2^M, AdjScale = 2^M1.
193
| 8.7 Go to Step 3.
194
| Notes: Refer to notes for 2.2 - 2.6.
195
|
196
| Step 9. Handle exp(X), |X| > 16480 log2.
197
| 9.1 If X < 0, go to 9.3
198
| 9.2 ans := Huge, go to 9.4
199
| 9.3 ans := Tiny.
200
| 9.4 Restore user FPCR.
201
| 9.5 Return ans := ans * ans. Exit.
202
| Notes: Exp(X) will surely overflow or underflow, depending on
203
| X's sign. "Huge" and "Tiny" are respectively large/tiny
204
| extended-precision numbers whose square over/underflow
205
| with an inexact result. Thus, 9.5 always raises the
206
| inexact together with either overflow or underflow.
207
|
208
|
209
| setoxm1d
210
| --------
211
|
212
| Step 1. Set ans := 0
213
|
214
| Step 2. Return ans := X + ans. Exit.
215
| Notes: This will return X with the appropriate rounding
216
| precision prescribed by the user FPCR.
217
|
218
| setoxm1
219
| -------
220
|
221
| Step 1. Check |X|
222
| 1.1 If |X| >= 1/4, go to Step 1.3.
223
| 1.2 Go to Step 7.
224
| 1.3 If |X| < 70 log(2), go to Step 2.
225
| 1.4 Go to Step 10.
226
| Notes: The usual case should take the branches 1.1 -> 1.3 -> 2.
227
| However, it is conceivable |X| can be small very often
228
| because EXPM1 is intended to evaluate exp(X)-1 accurately
229
| when |X| is small. For further details on the comparisons,
230
| see the notes on Step 1 of setox.
231
|
232
| Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ).
233
| 2.1 N := round-to-nearest-integer( X * 64/log2 ).
234
| 2.2 Calculate J = N mod 64; so J = 0,1,2,..., or 63.
235
| 2.3 Calculate M = (N - J)/64; so N = 64M + J.
236
| 2.4 Calculate the address of the stored value of 2^(J/64).
237
| 2.5 Create the values Sc = 2^M and OnebySc := -2^(-M).
238
| Notes: See the notes on Step 2 of setox.
239
|
240
| Step 3. Calculate X - N*log2/64.
241
| 3.1 R := X + N*L1, where L1 := single-precision(-log2/64).
242
| 3.2 R := R + N*L2, L2 := extended-precision(-log2/64 - L1).
243
| Notes: Applying the analysis of Step 3 of setox in this case
244
| shows that |R| <= 0.0055 (note that |X| <= 70 log2 in
245
| this case).
246
|
247
| Step 4. Approximate exp(R)-1 by a polynomial
248
| p = R+R*R*(A1+R*(A2+R*(A3+R*(A4+R*(A5+R*A6)))))
249
| Notes: a) In order to reduce memory access, the coefficients are
250
| made as "short" as possible: A1 (which is 1/2), A5 and A6
251
| are single precision; A2, A3 and A4 are double precision.
252
| b) Even with the restriction above,
253
| |p - (exp(R)-1)| < |R| * 2^(-72.7)
254
| for all |R| <= 0.0055.
255
| c) To fully utilize the pipeline, p is separated into
256
| two independent pieces of roughly equal complexity
257
| p = [ R*S*(A2 + S*(A4 + S*A6)) ] +
258
| [ R + S*(A1 + S*(A3 + S*A5)) ]
259
| where S = R*R.
260
|
261
| Step 5. Compute 2^(J/64)*p by
262
| p := T*p
263
| where T and t are the stored values for 2^(J/64).
264
| Notes: 2^(J/64) is stored as T and t where T+t approximates
265
| 2^(J/64) to roughly 85 bits; T is in extended precision
266
| and t is in single precision. Note also that T is rounded
267
| to 62 bits so that the last two bits of T are zero. The
268
| reason for such a special form is that T-1, T-2, and T-8
269
| will all be exact --- a property that will be exploited
270
| in Step 6 below. The total relative error in p is no
271
| bigger than 2^(-67.7) compared to the final result.
272
|
273
| Step 6. Reconstruction of exp(X)-1
274
| exp(X)-1 = 2^M * ( 2^(J/64) + p - 2^(-M) ).
275
| 6.1 If M <= 63, go to Step 6.3.
276
| 6.2 ans := T + (p + (t + OnebySc)). Go to 6.6
277
| 6.3 If M >= -3, go to 6.5.
278
| 6.4 ans := (T + (p + t)) + OnebySc. Go to 6.6
279
| 6.5 ans := (T + OnebySc) + (p + t).
280
| 6.6 Restore user FPCR.
281
| 6.7 Return ans := Sc * ans. Exit.
282
| Notes: The various arrangements of the expressions give accurate
283
| evaluations.
284
|
285
| Step 7. exp(X)-1 for |X| < 1/4.
286
| 7.1 If |X| >= 2^(-65), go to Step 9.
287
| 7.2 Go to Step 8.
288
|
289
| Step 8. Calculate exp(X)-1, |X| < 2^(-65).
290
| 8.1 If |X| < 2^(-16312), goto 8.3
291
| 8.2 Restore FPCR; return ans := X - 2^(-16382). Exit.
292
| 8.3 X := X * 2^(140).
293
| 8.4 Restore FPCR; ans := ans - 2^(-16382).
294
| Return ans := ans*2^(140). Exit
295
| Notes: The idea is to return "X - tiny" under the user
296
| precision and rounding modes. To avoid unnecessary
297
| inefficiency, we stay away from denormalized numbers the
298
| best we can. For |X| >= 2^(-16312), the straightforward
299
| 8.2 generates the inexact exception as the case warrants.
300
|
301
| Step 9. Calculate exp(X)-1, |X| < 1/4, by a polynomial
302
| p = X + X*X*(B1 + X*(B2 + ... + X*B12))
303
| Notes: a) In order to reduce memory access, the coefficients are
304
| made as "short" as possible: B1 (which is 1/2), B9 to B12
305
| are single precision; B3 to B8 are double precision; and
306
| B2 is double extended.
307
| b) Even with the restriction above,
308
| |p - (exp(X)-1)| < |X| 2^(-70.6)
309
| for all |X| <= 0.251.
310
| Note that 0.251 is slightly bigger than 1/4.
311
| c) To fully preserve accuracy, the polynomial is computed
312
| as X + ( S*B1 + Q ) where S = X*X and
313
| Q = X*S*(B2 + X*(B3 + ... + X*B12))
314
| d) To fully utilize the pipeline, Q is separated into
315
| two independent pieces of roughly equal complexity
316
| Q = [ X*S*(B2 + S*(B4 + ... + S*B12)) ] +
317
| [ S*S*(B3 + S*(B5 + ... + S*B11)) ]
318
|
319
| Step 10. Calculate exp(X)-1 for |X| >= 70 log 2.
320
| 10.1 If X >= 70log2 , exp(X) - 1 = exp(X) for all practical
321
| purposes. Therefore, go to Step 1 of setox.
322
| 10.2 If X <= -70log2, exp(X) - 1 = -1 for all practical purposes.
323
| ans := -1
324
| Restore user FPCR
325
| Return ans := ans + 2^(-126). Exit.
326
| Notes: 10.2 will always create an inexact and return -1 + tiny
327
| in the user rounding precision and mode.
328
|
329
|
330
331
| Copyright (C) Motorola, Inc. 1990
332
| All Rights Reserved
333
|
334
| For details on the license for this file, please see the
335
| file, README, in this same directory.
336
337
|setox idnt 2,1 | Motorola 040 Floating Point Software Package
338
339
|section 8
340
341
#include "fpsp.h"
342
343
L2: .long 0x3FDC0000,0x82E30865,0x4361C4C6,0x00000000
344
345
EXPA3: .long 0x3FA55555,0x55554431
346
EXPA2: .long 0x3FC55555,0x55554018
347
348
HUGE: .long 0x7FFE0000,0xFFFFFFFF,0xFFFFFFFF,0x00000000
349
TINY: .long 0x00010000,0xFFFFFFFF,0xFFFFFFFF,0x00000000
350
351
EM1A4: .long 0x3F811111,0x11174385
352
EM1A3: .long 0x3FA55555,0x55554F5A
353
354
EM1A2: .long 0x3FC55555,0x55555555,0x00000000,0x00000000
355
356
EM1B8: .long 0x3EC71DE3,0xA5774682
357
EM1B7: .long 0x3EFA01A0,0x19D7CB68
358
359
EM1B6: .long 0x3F2A01A0,0x1A019DF3
360
EM1B5: .long 0x3F56C16C,0x16C170E2
361
362
EM1B4: .long 0x3F811111,0x11111111
363
EM1B3: .long 0x3FA55555,0x55555555
364
365
EM1B2: .long 0x3FFC0000,0xAAAAAAAA,0xAAAAAAAB
366
.long 0x00000000
367
368
TWO140: .long 0x48B00000,0x00000000
369
TWON140: .long 0x37300000,0x00000000
370
371
EXPTBL:
372
.long 0x3FFF0000,0x80000000,0x00000000,0x00000000
373
.long 0x3FFF0000,0x8164D1F3,0xBC030774,0x9F841A9B
374
.long 0x3FFF0000,0x82CD8698,0xAC2BA1D8,0x9FC1D5B9
375
.long 0x3FFF0000,0x843A28C3,0xACDE4048,0xA0728369
376
.long 0x3FFF0000,0x85AAC367,0xCC487B14,0x1FC5C95C
377
.long 0x3FFF0000,0x871F6196,0x9E8D1010,0x1EE85C9F
378
.long 0x3FFF0000,0x88980E80,0x92DA8528,0x9FA20729
379
.long 0x3FFF0000,0x8A14D575,0x496EFD9C,0xA07BF9AF
380
.long 0x3FFF0000,0x8B95C1E3,0xEA8BD6E8,0xA0020DCF
381
.long 0x3FFF0000,0x8D1ADF5B,0x7E5BA9E4,0x205A63DA
382
.long 0x3FFF0000,0x8EA4398B,0x45CD53C0,0x1EB70051
383
.long 0x3FFF0000,0x9031DC43,0x1466B1DC,0x1F6EB029
384
.long 0x3FFF0000,0x91C3D373,0xAB11C338,0xA0781494
385
.long 0x3FFF0000,0x935A2B2F,0x13E6E92C,0x9EB319B0
386
.long 0x3FFF0000,0x94F4EFA8,0xFEF70960,0x2017457D
387
.long 0x3FFF0000,0x96942D37,0x20185A00,0x1F11D537
388
.long 0x3FFF0000,0x9837F051,0x8DB8A970,0x9FB952DD
389
.long 0x3FFF0000,0x99E04593,0x20B7FA64,0x1FE43087
390
.long 0x3FFF0000,0x9B8D39B9,0xD54E5538,0x1FA2A818
391
.long 0x3FFF0000,0x9D3ED9A7,0x2CFFB750,0x1FDE494D
392
.long 0x3FFF0000,0x9EF53260,0x91A111AC,0x20504890
393
.long 0x3FFF0000,0xA0B0510F,0xB9714FC4,0xA073691C
394
.long 0x3FFF0000,0xA2704303,0x0C496818,0x1F9B7A05
395
.long 0x3FFF0000,0xA43515AE,0x09E680A0,0xA0797126
396
.long 0x3FFF0000,0xA5FED6A9,0xB15138EC,0xA071A140
397
.long 0x3FFF0000,0xA7CD93B4,0xE9653568,0x204F62DA
398
.long 0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x1F283C4A
399
.long 0x3FFF0000,0xAB7A39B5,0xA93ED338,0x9F9A7FDC
400
.long 0x3FFF0000,0xAD583EEA,0x42A14AC8,0xA05B3FAC
401
.long 0x3FFF0000,0xAF3B78AD,0x690A4374,0x1FDF2610
402
.long 0x3FFF0000,0xB123F581,0xD2AC2590,0x9F705F90
403
.long 0x3FFF0000,0xB311C412,0xA9112488,0x201F678A
404
.long 0x3FFF0000,0xB504F333,0xF9DE6484,0x1F32FB13
405
.long 0x3FFF0000,0xB6FD91E3,0x28D17790,0x20038B30
406
.long 0x3FFF0000,0xB8FBAF47,0x62FB9EE8,0x200DC3CC
407
.long 0x3FFF0000,0xBAFF5AB2,0x133E45FC,0x9F8B2AE6
408
.long 0x3FFF0000,0xBD08A39F,0x580C36C0,0xA02BBF70
409
.long 0x3FFF0000,0xBF1799B6,0x7A731084,0xA00BF518
410
.long 0x3FFF0000,0xC12C4CCA,0x66709458,0xA041DD41
411
.long 0x3FFF0000,0xC346CCDA,0x24976408,0x9FDF137B
412
.long 0x3FFF0000,0xC5672A11,0x5506DADC,0x201F1568
413
.long 0x3FFF0000,0xC78D74C8,0xABB9B15C,0x1FC13A2E
414
.long 0x3FFF0000,0xC9B9BD86,0x6E2F27A4,0xA03F8F03
415
.long 0x3FFF0000,0xCBEC14FE,0xF2727C5C,0x1FF4907D
416
.long 0x3FFF0000,0xCE248C15,0x1F8480E4,0x9E6E53E4
417
.long 0x3FFF0000,0xD06333DA,0xEF2B2594,0x1FD6D45C
418
.long 0x3FFF0000,0xD2A81D91,0xF12AE45C,0xA076EDB9
419
.long 0x3FFF0000,0xD4F35AAB,0xCFEDFA20,0x9FA6DE21
420
.long 0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x1EE69A2F
421
.long 0x3FFF0000,0xD99D15C2,0x78AFD7B4,0x207F439F
422
.long 0x3FFF0000,0xDBFBB797,0xDAF23754,0x201EC207
423
.long 0x3FFF0000,0xDE60F482,0x5E0E9124,0x9E8BE175
424
.long 0x3FFF0000,0xE0CCDEEC,0x2A94E110,0x20032C4B
425
.long 0x3FFF0000,0xE33F8972,0xBE8A5A50,0x2004DFF5
426
.long 0x3FFF0000,0xE5B906E7,0x7C8348A8,0x1E72F47A
427
.long 0x3FFF0000,0xE8396A50,0x3C4BDC68,0x1F722F22
428
.long 0x3FFF0000,0xEAC0C6E7,0xDD243930,0xA017E945
429
.long 0x3FFF0000,0xED4F301E,0xD9942B84,0x1F401A5B
430
.long 0x3FFF0000,0xEFE4B99B,0xDCDAF5CC,0x9FB9A9E3
431
.long 0x3FFF0000,0xF281773C,0x59FFB138,0x20744C05
432
.long 0x3FFF0000,0xF5257D15,0x2486CC2C,0x1F773A19
433
.long 0x3FFF0000,0xF7D0DF73,0x0AD13BB8,0x1FFE90D5
434
.long 0x3FFF0000,0xFA83B2DB,0x722A033C,0xA041ED22
435
.long 0x3FFF0000,0xFD3E0C0C,0xF486C174,0x1F853F3A
436
437
.set ADJFLAG,L_SCR2
438
.set SCALE,FP_SCR1
439
.set ADJSCALE,FP_SCR2
440
.set SC,FP_SCR3
441
.set ONEBYSC,FP_SCR4
442
443
| xref t_frcinx
444
|xref t_extdnrm
445
|xref t_unfl
446
|xref t_ovfl
447
448
.global setoxd
449
setoxd:
450
|--entry point for EXP(X), X is denormalized
451
movel (%a0),%d0
452
andil #0x80000000,%d0
453
oril #0x00800000,%d0 | ...sign(X)*2^(-126)
454
movel %d0,-(%sp)
455
fmoves #0x3F800000,%fp0
456
fmovel %d1,%fpcr
457
fadds (%sp)+,%fp0
458
bra t_frcinx
459
460
.global setox
461
setox:
462
|--entry point for EXP(X), here X is finite, non-zero, and not NaN's
463
464
|--Step 1.
465
movel (%a0),%d0 | ...load part of input X
466
andil #0x7FFF0000,%d0 | ...biased expo. of X
467
cmpil #0x3FBE0000,%d0 | ...2^(-65)
468
bges EXPC1 | ...normal case
469
bra EXPSM
470
471
EXPC1:
472
|--The case |X| >= 2^(-65)
473
movew 4(%a0),%d0 | ...expo. and partial sig. of |X|
474
cmpil #0x400CB167,%d0 | ...16380 log2 trunc. 16 bits
475
blts EXPMAIN | ...normal case
476
bra EXPBIG
477
478
EXPMAIN:
479
|--Step 2.
480
|--This is the normal branch: 2^(-65) <= |X| < 16380 log2.
481
fmovex (%a0),%fp0 | ...load input from (a0)
482
483
fmovex %fp0,%fp1
484
fmuls #0x42B8AA3B,%fp0 | ...64/log2 * X
485
fmovemx %fp2-%fp2/%fp3,-(%a7) | ...save fp2
486
movel #0,ADJFLAG(%a6)
487
fmovel %fp0,%d0 | ...N = int( X * 64/log2 )
488
lea EXPTBL,%a1
489
fmovel %d0,%fp0 | ...convert to floating-format
490
491
movel %d0,L_SCR1(%a6) | ...save N temporarily
492
andil #0x3F,%d0 | ...D0 is J = N mod 64
493
lsll #4,%d0
494
addal %d0,%a1 | ...address of 2^(J/64)
495
movel L_SCR1(%a6),%d0
496
asrl #6,%d0 | ...D0 is M
497
addiw #0x3FFF,%d0 | ...biased expo. of 2^(M)
498
movew L2,L_SCR1(%a6) | ...prefetch L2, no need in CB
499
500
EXPCONT1:
501
|--Step 3.
502
|--fp1,fp2 saved on the stack. fp0 is N, fp1 is X,
503
|--a0 points to 2^(J/64), D0 is biased expo. of 2^(M)
504
fmovex %fp0,%fp2
505
fmuls #0xBC317218,%fp0 | ...N * L1, L1 = lead(-log2/64)
506
fmulx L2,%fp2 | ...N * L2, L1+L2 = -log2/64
507
faddx %fp1,%fp0 | ...X + N*L1
508
faddx %fp2,%fp0 | ...fp0 is R, reduced arg.
509
| MOVE.W #$3FA5,EXPA3 ...load EXPA3 in cache
510
511
|--Step 4.
512
|--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
513
|-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5))))
514
|--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R
515
|--[R+R*S*(A2+S*A4)] + [S*(A1+S*(A3+S*A5))]
516
517
fmovex %fp0,%fp1
518
fmulx %fp1,%fp1 | ...fp1 IS S = R*R
519
520
fmoves #0x3AB60B70,%fp2 | ...fp2 IS A5
521
| MOVE.W #0,2(%a1) ...load 2^(J/64) in cache
522
523
fmulx %fp1,%fp2 | ...fp2 IS S*A5
524
fmovex %fp1,%fp3
525
fmuls #0x3C088895,%fp3 | ...fp3 IS S*A4
526
527
faddd EXPA3,%fp2 | ...fp2 IS A3+S*A5
528
faddd EXPA2,%fp3 | ...fp3 IS A2+S*A4
529
530
fmulx %fp1,%fp2 | ...fp2 IS S*(A3+S*A5)
531
movew %d0,SCALE(%a6) | ...SCALE is 2^(M) in extended
532
clrw SCALE+2(%a6)
533
movel #0x80000000,SCALE+4(%a6)
534
clrl SCALE+8(%a6)
535
536
fmulx %fp1,%fp3 | ...fp3 IS S*(A2+S*A4)
537
538
fadds #0x3F000000,%fp2 | ...fp2 IS A1+S*(A3+S*A5)
539
fmulx %fp0,%fp3 | ...fp3 IS R*S*(A2+S*A4)
540
541
fmulx %fp1,%fp2 | ...fp2 IS S*(A1+S*(A3+S*A5))
542
faddx %fp3,%fp0 | ...fp0 IS R+R*S*(A2+S*A4),
543
| ...fp3 released
544
545
fmovex (%a1)+,%fp1 | ...fp1 is lead. pt. of 2^(J/64)
546
faddx %fp2,%fp0 | ...fp0 is EXP(R) - 1
547
| ...fp2 released
548
549
|--Step 5
550
|--final reconstruction process
551
|--EXP(X) = 2^M * ( 2^(J/64) + 2^(J/64)*(EXP(R)-1) )
552
553
fmulx %fp1,%fp0 | ...2^(J/64)*(Exp(R)-1)
554
fmovemx (%a7)+,%fp2-%fp2/%fp3 | ...fp2 restored
555
fadds (%a1),%fp0 | ...accurate 2^(J/64)
556
557
faddx %fp1,%fp0 | ...2^(J/64) + 2^(J/64)*...
558
movel ADJFLAG(%a6),%d0
559
560
|--Step 6
561
tstl %d0
562
beqs NORMAL
563
ADJUST:
564
fmulx ADJSCALE(%a6),%fp0
565
NORMAL:
566
fmovel %d1,%FPCR | ...restore user FPCR
567
fmulx SCALE(%a6),%fp0 | ...multiply 2^(M)
568
bra t_frcinx
569
570
EXPSM:
571
|--Step 7
572
fmovemx (%a0),%fp0-%fp0 | ...in case X is denormalized
573
fmovel %d1,%FPCR
574
fadds #0x3F800000,%fp0 | ...1+X in user mode
575
bra t_frcinx
576
577
EXPBIG:
578
|--Step 8
579
cmpil #0x400CB27C,%d0 | ...16480 log2
580
bgts EXP2BIG
581
|--Steps 8.2 -- 8.6
582
fmovex (%a0),%fp0 | ...load input from (a0)
583
584
fmovex %fp0,%fp1
585
fmuls #0x42B8AA3B,%fp0 | ...64/log2 * X
586
fmovemx %fp2-%fp2/%fp3,-(%a7) | ...save fp2
587
movel #1,ADJFLAG(%a6)
588
fmovel %fp0,%d0 | ...N = int( X * 64/log2 )
589
lea EXPTBL,%a1
590
fmovel %d0,%fp0 | ...convert to floating-format
591
movel %d0,L_SCR1(%a6) | ...save N temporarily
592
andil #0x3F,%d0 | ...D0 is J = N mod 64
593
lsll #4,%d0
594
addal %d0,%a1 | ...address of 2^(J/64)
595
movel L_SCR1(%a6),%d0
596
asrl #6,%d0 | ...D0 is K
597
movel %d0,L_SCR1(%a6) | ...save K temporarily
598
asrl #1,%d0 | ...D0 is M1
599
subl %d0,L_SCR1(%a6) | ...a1 is M
600
addiw #0x3FFF,%d0 | ...biased expo. of 2^(M1)
601
movew %d0,ADJSCALE(%a6) | ...ADJSCALE := 2^(M1)
602
clrw ADJSCALE+2(%a6)
603
movel #0x80000000,ADJSCALE+4(%a6)
604
clrl ADJSCALE+8(%a6)
605
movel L_SCR1(%a6),%d0 | ...D0 is M
606
addiw #0x3FFF,%d0 | ...biased expo. of 2^(M)
607
bra EXPCONT1 | ...go back to Step 3
608
609
EXP2BIG:
610
|--Step 9
611
fmovel %d1,%FPCR
612
movel (%a0),%d0
613
bclrb #sign_bit,(%a0) | ...setox always returns positive
614
cmpil #0,%d0
615
blt t_unfl
616
bra t_ovfl
617
618
.global setoxm1d
619
setoxm1d:
620
|--entry point for EXPM1(X), here X is denormalized
621
|--Step 0.
622
bra t_extdnrm
623
624
625
.global setoxm1
626
setoxm1:
627
|--entry point for EXPM1(X), here X is finite, non-zero, non-NaN
628
629
|--Step 1.
630
|--Step 1.1
631
movel (%a0),%d0 | ...load part of input X
632
andil #0x7FFF0000,%d0 | ...biased expo. of X
633
cmpil #0x3FFD0000,%d0 | ...1/4
634
bges EM1CON1 | ...|X| >= 1/4
635
bra EM1SM
636
637
EM1CON1:
638
|--Step 1.3
639
|--The case |X| >= 1/4
640
movew 4(%a0),%d0 | ...expo. and partial sig. of |X|
641
cmpil #0x4004C215,%d0 | ...70log2 rounded up to 16 bits
642
bles EM1MAIN | ...1/4 <= |X| <= 70log2
643
bra EM1BIG
644
645
EM1MAIN:
646
|--Step 2.
647
|--This is the case: 1/4 <= |X| <= 70 log2.
648
fmovex (%a0),%fp0 | ...load input from (a0)
649
650
fmovex %fp0,%fp1
651
fmuls #0x42B8AA3B,%fp0 | ...64/log2 * X
652
fmovemx %fp2-%fp2/%fp3,-(%a7) | ...save fp2
653
| MOVE.W #$3F81,EM1A4 ...prefetch in CB mode
654
fmovel %fp0,%d0 | ...N = int( X * 64/log2 )
655
lea EXPTBL,%a1
656
fmovel %d0,%fp0 | ...convert to floating-format
657
658
movel %d0,L_SCR1(%a6) | ...save N temporarily
659
andil #0x3F,%d0 | ...D0 is J = N mod 64
660
lsll #4,%d0
661
addal %d0,%a1 | ...address of 2^(J/64)
662
movel L_SCR1(%a6),%d0
663
asrl #6,%d0 | ...D0 is M
664
movel %d0,L_SCR1(%a6) | ...save a copy of M
665
| MOVE.W #$3FDC,L2 ...prefetch L2 in CB mode
666
667
|--Step 3.
668
|--fp1,fp2 saved on the stack. fp0 is N, fp1 is X,
669
|--a0 points to 2^(J/64), D0 and a1 both contain M
670
fmovex %fp0,%fp2
671
fmuls #0xBC317218,%fp0 | ...N * L1, L1 = lead(-log2/64)
672
fmulx L2,%fp2 | ...N * L2, L1+L2 = -log2/64
673
faddx %fp1,%fp0 | ...X + N*L1
674
faddx %fp2,%fp0 | ...fp0 is R, reduced arg.
675
| MOVE.W #$3FC5,EM1A2 ...load EM1A2 in cache
676
addiw #0x3FFF,%d0 | ...D0 is biased expo. of 2^M
677
678
|--Step 4.
679
|--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
680
|-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*(A5 + R*A6)))))
681
|--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R
682
|--[R*S*(A2+S*(A4+S*A6))] + [R+S*(A1+S*(A3+S*A5))]
683
684
fmovex %fp0,%fp1
685
fmulx %fp1,%fp1 | ...fp1 IS S = R*R
686
687
fmoves #0x3950097B,%fp2 | ...fp2 IS a6
688
| MOVE.W #0,2(%a1) ...load 2^(J/64) in cache
689
690
fmulx %fp1,%fp2 | ...fp2 IS S*A6
691
fmovex %fp1,%fp3
692
fmuls #0x3AB60B6A,%fp3 | ...fp3 IS S*A5
693
694
faddd EM1A4,%fp2 | ...fp2 IS A4+S*A6
695
faddd EM1A3,%fp3 | ...fp3 IS A3+S*A5
696
movew %d0,SC(%a6) | ...SC is 2^(M) in extended
697
clrw SC+2(%a6)
698
movel #0x80000000,SC+4(%a6)
699
clrl SC+8(%a6)
700
701
fmulx %fp1,%fp2 | ...fp2 IS S*(A4+S*A6)
702
movel L_SCR1(%a6),%d0 | ...D0 is M
703
negw %d0 | ...D0 is -M
704
fmulx %fp1,%fp3 | ...fp3 IS S*(A3+S*A5)
705
addiw #0x3FFF,%d0 | ...biased expo. of 2^(-M)
706
faddd EM1A2,%fp2 | ...fp2 IS A2+S*(A4+S*A6)
707
fadds #0x3F000000,%fp3 | ...fp3 IS A1+S*(A3+S*A5)
708
709
fmulx %fp1,%fp2 | ...fp2 IS S*(A2+S*(A4+S*A6))
710
oriw #0x8000,%d0 | ...signed/expo. of -2^(-M)
711
movew %d0,ONEBYSC(%a6) | ...OnebySc is -2^(-M)
712
clrw ONEBYSC+2(%a6)
713
movel #0x80000000,ONEBYSC+4(%a6)
714
clrl ONEBYSC+8(%a6)
715
fmulx %fp3,%fp1 | ...fp1 IS S*(A1+S*(A3+S*A5))
716
| ...fp3 released
717
718
fmulx %fp0,%fp2 | ...fp2 IS R*S*(A2+S*(A4+S*A6))
719
faddx %fp1,%fp0 | ...fp0 IS R+S*(A1+S*(A3+S*A5))
720
| ...fp1 released
721
722
faddx %fp2,%fp0 | ...fp0 IS EXP(R)-1
723
| ...fp2 released
724
fmovemx (%a7)+,%fp2-%fp2/%fp3 | ...fp2 restored
725
726
|--Step 5
727
|--Compute 2^(J/64)*p
728
729
fmulx (%a1),%fp0 | ...2^(J/64)*(Exp(R)-1)
730
731
|--Step 6
732
|--Step 6.1
733
movel L_SCR1(%a6),%d0 | ...retrieve M
734
cmpil #63,%d0
735
bles MLE63
736
|--Step 6.2 M >= 64
737
fmoves 12(%a1),%fp1 | ...fp1 is t
738
faddx ONEBYSC(%a6),%fp1 | ...fp1 is t+OnebySc
739
faddx %fp1,%fp0 | ...p+(t+OnebySc), fp1 released
740
faddx (%a1),%fp0 | ...T+(p+(t+OnebySc))
741
bras EM1SCALE
742
MLE63:
743
|--Step 6.3 M <= 63
744
cmpil #-3,%d0
745
bges MGEN3
746
MLTN3:
747
|--Step 6.4 M <= -4
748
fadds 12(%a1),%fp0 | ...p+t
749
faddx (%a1),%fp0 | ...T+(p+t)
750
faddx ONEBYSC(%a6),%fp0 | ...OnebySc + (T+(p+t))
751
bras EM1SCALE
752
MGEN3:
753
|--Step 6.5 -3 <= M <= 63
754
fmovex (%a1)+,%fp1 | ...fp1 is T
755
fadds (%a1),%fp0 | ...fp0 is p+t
756
faddx ONEBYSC(%a6),%fp1 | ...fp1 is T+OnebySc
757
faddx %fp1,%fp0 | ...(T+OnebySc)+(p+t)
758
759
EM1SCALE:
760
|--Step 6.6
761
fmovel %d1,%FPCR
762
fmulx SC(%a6),%fp0
763
764
bra t_frcinx
765
766
EM1SM:
767
|--Step 7 |X| < 1/4.
768
cmpil #0x3FBE0000,%d0 | ...2^(-65)
769
bges EM1POLY
770
771
EM1TINY:
772
|--Step 8 |X| < 2^(-65)
773
cmpil #0x00330000,%d0 | ...2^(-16312)
774
blts EM12TINY
775
|--Step 8.2
776
movel #0x80010000,SC(%a6) | ...SC is -2^(-16382)
777
movel #0x80000000,SC+4(%a6)
778
clrl SC+8(%a6)
779
fmovex (%a0),%fp0
780
fmovel %d1,%FPCR
781
faddx SC(%a6),%fp0
782
783
bra t_frcinx
784
785
EM12TINY:
786
|--Step 8.3
787
fmovex (%a0),%fp0
788
fmuld TWO140,%fp0
789
movel #0x80010000,SC(%a6)
790
movel #0x80000000,SC+4(%a6)
791
clrl SC+8(%a6)
792
faddx SC(%a6),%fp0
793
fmovel %d1,%FPCR
794
fmuld TWON140,%fp0
795
796
bra t_frcinx
797
798
EM1POLY:
799
|--Step 9 exp(X)-1 by a simple polynomial
800
fmovex (%a0),%fp0 | ...fp0 is X
801
fmulx %fp0,%fp0 | ...fp0 is S := X*X
802
fmovemx %fp2-%fp2/%fp3,-(%a7) | ...save fp2
803
fmoves #0x2F30CAA8,%fp1 | ...fp1 is B12
804
fmulx %fp0,%fp1 | ...fp1 is S*B12
805
fmoves #0x310F8290,%fp2 | ...fp2 is B11
806
fadds #0x32D73220,%fp1 | ...fp1 is B10+S*B12
807
808
fmulx %fp0,%fp2 | ...fp2 is S*B11
809
fmulx %fp0,%fp1 | ...fp1 is S*(B10 + ...
810
811
fadds #0x3493F281,%fp2 | ...fp2 is B9+S*...
812
faddd EM1B8,%fp1 | ...fp1 is B8+S*...
813
814
fmulx %fp0,%fp2 | ...fp2 is S*(B9+...
815
fmulx %fp0,%fp1 | ...fp1 is S*(B8+...
816
817
faddd EM1B7,%fp2 | ...fp2 is B7+S*...
818
faddd EM1B6,%fp1 | ...fp1 is B6+S*...
819
820
fmulx %fp0,%fp2 | ...fp2 is S*(B7+...
821
fmulx %fp0,%fp1 | ...fp1 is S*(B6+...
822
823
faddd EM1B5,%fp2 | ...fp2 is B5+S*...
824
faddd EM1B4,%fp1 | ...fp1 is B4+S*...
825
826
fmulx %fp0,%fp2 | ...fp2 is S*(B5+...
827
fmulx %fp0,%fp1 | ...fp1 is S*(B4+...
828
829
faddd EM1B3,%fp2 | ...fp2 is B3+S*...
830
faddx EM1B2,%fp1 | ...fp1 is B2+S*...
831
832
fmulx %fp0,%fp2 | ...fp2 is S*(B3+...
833
fmulx %fp0,%fp1 | ...fp1 is S*(B2+...
834
835
fmulx %fp0,%fp2 | ...fp2 is S*S*(B3+...)
836
fmulx (%a0),%fp1 | ...fp1 is X*S*(B2...
837
838
fmuls #0x3F000000,%fp0 | ...fp0 is S*B1
839
faddx %fp2,%fp1 | ...fp1 is Q
840
| ...fp2 released
841
842
fmovemx (%a7)+,%fp2-%fp2/%fp3 | ...fp2 restored
843
844
faddx %fp1,%fp0 | ...fp0 is S*B1+Q
845
| ...fp1 released
846
847
fmovel %d1,%FPCR
848
faddx (%a0),%fp0
849
850
bra t_frcinx
851
852
EM1BIG:
853
|--Step 10 |X| > 70 log2
854
movel (%a0),%d0
855
cmpil #0,%d0
856
bgt EXPC1
857
|--Step 10.2
858
fmoves #0xBF800000,%fp0 | ...fp0 is -1
859
fmovel %d1,%FPCR
860
fadds #0x00800000,%fp0 | ...-1 + 2^(-126)
861
862
bra t_frcinx
863
864
|end
865
866