Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/m68k/fpsp040/slog2.S
10817 views
1
|
2
| slog2.sa 3.1 12/10/90
3
|
4
| The entry point slog10 computes the base-10
5
| logarithm of an input argument X.
6
| slog10d does the same except the input value is a
7
| denormalized number.
8
| sLog2 and sLog2d are the base-2 analogues.
9
|
10
| INPUT: Double-extended value in memory location pointed to
11
| by address register a0.
12
|
13
| OUTPUT: log_10(X) or log_2(X) returned in floating-point
14
| register fp0.
15
|
16
| ACCURACY and MONOTONICITY: The returned result is within 1.7
17
| ulps in 64 significant bit, i.e. within 0.5003 ulp
18
| to 53 bits if the result is subsequently rounded
19
| to double precision. The result is provably monotonic
20
| in double precision.
21
|
22
| SPEED: Two timings are measured, both in the copy-back mode.
23
| The first one is measured when the function is invoked
24
| the first time (so the instructions and data are not
25
| in cache), and the second one is measured when the
26
| function is reinvoked at the same input argument.
27
|
28
| ALGORITHM and IMPLEMENTATION NOTES:
29
|
30
| slog10d:
31
|
32
| Step 0. If X < 0, create a NaN and raise the invalid operation
33
| flag. Otherwise, save FPCR in D1; set FpCR to default.
34
| Notes: Default means round-to-nearest mode, no floating-point
35
| traps, and precision control = double extended.
36
|
37
| Step 1. Call slognd to obtain Y = log(X), the natural log of X.
38
| Notes: Even if X is denormalized, log(X) is always normalized.
39
|
40
| Step 2. Compute log_10(X) = log(X) * (1/log(10)).
41
| 2.1 Restore the user FPCR
42
| 2.2 Return ans := Y * INV_L10.
43
|
44
|
45
| slog10:
46
|
47
| Step 0. If X < 0, create a NaN and raise the invalid operation
48
| flag. Otherwise, save FPCR in D1; set FpCR to default.
49
| Notes: Default means round-to-nearest mode, no floating-point
50
| traps, and precision control = double extended.
51
|
52
| Step 1. Call sLogN to obtain Y = log(X), the natural log of X.
53
|
54
| Step 2. Compute log_10(X) = log(X) * (1/log(10)).
55
| 2.1 Restore the user FPCR
56
| 2.2 Return ans := Y * INV_L10.
57
|
58
|
59
| sLog2d:
60
|
61
| Step 0. If X < 0, create a NaN and raise the invalid operation
62
| flag. Otherwise, save FPCR in D1; set FpCR to default.
63
| Notes: Default means round-to-nearest mode, no floating-point
64
| traps, and precision control = double extended.
65
|
66
| Step 1. Call slognd to obtain Y = log(X), the natural log of X.
67
| Notes: Even if X is denormalized, log(X) is always normalized.
68
|
69
| Step 2. Compute log_10(X) = log(X) * (1/log(2)).
70
| 2.1 Restore the user FPCR
71
| 2.2 Return ans := Y * INV_L2.
72
|
73
|
74
| sLog2:
75
|
76
| Step 0. If X < 0, create a NaN and raise the invalid operation
77
| flag. Otherwise, save FPCR in D1; set FpCR to default.
78
| Notes: Default means round-to-nearest mode, no floating-point
79
| traps, and precision control = double extended.
80
|
81
| Step 1. If X is not an integer power of two, i.e., X != 2^k,
82
| go to Step 3.
83
|
84
| Step 2. Return k.
85
| 2.1 Get integer k, X = 2^k.
86
| 2.2 Restore the user FPCR.
87
| 2.3 Return ans := convert-to-double-extended(k).
88
|
89
| Step 3. Call sLogN to obtain Y = log(X), the natural log of X.
90
|
91
| Step 4. Compute log_2(X) = log(X) * (1/log(2)).
92
| 4.1 Restore the user FPCR
93
| 4.2 Return ans := Y * INV_L2.
94
|
95
96
| Copyright (C) Motorola, Inc. 1990
97
| All Rights Reserved
98
|
99
| For details on the license for this file, please see the
100
| file, README, in this same directory.
101
102
|SLOG2 idnt 2,1 | Motorola 040 Floating Point Software Package
103
104
|section 8
105
106
|xref t_frcinx
107
|xref t_operr
108
|xref slogn
109
|xref slognd
110
111
INV_L10: .long 0x3FFD0000,0xDE5BD8A9,0x37287195,0x00000000
112
113
INV_L2: .long 0x3FFF0000,0xB8AA3B29,0x5C17F0BC,0x00000000
114
115
.global slog10d
116
slog10d:
117
|--entry point for Log10(X), X is denormalized
118
movel (%a0),%d0
119
blt invalid
120
movel %d1,-(%sp)
121
clrl %d1
122
bsr slognd | ...log(X), X denorm.
123
fmovel (%sp)+,%fpcr
124
fmulx INV_L10,%fp0
125
bra t_frcinx
126
127
.global slog10
128
slog10:
129
|--entry point for Log10(X), X is normalized
130
131
movel (%a0),%d0
132
blt invalid
133
movel %d1,-(%sp)
134
clrl %d1
135
bsr slogn | ...log(X), X normal.
136
fmovel (%sp)+,%fpcr
137
fmulx INV_L10,%fp0
138
bra t_frcinx
139
140
141
.global slog2d
142
slog2d:
143
|--entry point for Log2(X), X is denormalized
144
145
movel (%a0),%d0
146
blt invalid
147
movel %d1,-(%sp)
148
clrl %d1
149
bsr slognd | ...log(X), X denorm.
150
fmovel (%sp)+,%fpcr
151
fmulx INV_L2,%fp0
152
bra t_frcinx
153
154
.global slog2
155
slog2:
156
|--entry point for Log2(X), X is normalized
157
movel (%a0),%d0
158
blt invalid
159
160
movel 8(%a0),%d0
161
bnes continue | ...X is not 2^k
162
163
movel 4(%a0),%d0
164
andl #0x7FFFFFFF,%d0
165
tstl %d0
166
bnes continue
167
168
|--X = 2^k.
169
movew (%a0),%d0
170
andl #0x00007FFF,%d0
171
subl #0x3FFF,%d0
172
fmovel %d1,%fpcr
173
fmovel %d0,%fp0
174
bra t_frcinx
175
176
continue:
177
movel %d1,-(%sp)
178
clrl %d1
179
bsr slogn | ...log(X), X normal.
180
fmovel (%sp)+,%fpcr
181
fmulx INV_L2,%fp0
182
bra t_frcinx
183
184
invalid:
185
bra t_operr
186
187
|end
188
189