Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/m68k/kernel/head.S
10817 views
1
/* -*- mode: asm -*-
2
**
3
** head.S -- This file contains the initial boot code for the
4
** Linux/68k kernel.
5
**
6
** Copyright 1993 by Hamish Macdonald
7
**
8
** 68040 fixes by Michael Rausch
9
** 68060 fixes by Roman Hodek
10
** MMU cleanup by Randy Thelen
11
** Final MMU cleanup by Roman Zippel
12
**
13
** Atari support by Andreas Schwab, using ideas of Robert de Vries
14
** and Bjoern Brauel
15
** VME Support by Richard Hirst
16
**
17
** 94/11/14 Andreas Schwab: put kernel at PAGESIZE
18
** 94/11/18 Andreas Schwab: remove identity mapping of STRAM for Atari
19
** ++ Bjoern & Roman: ATARI-68040 support for the Medusa
20
** 95/11/18 Richard Hirst: Added MVME166 support
21
** 96/04/26 Guenther Kelleter: fixed identity mapping for Falcon with
22
** Magnum- and FX-alternate ram
23
** 98/04/25 Phil Blundell: added HP300 support
24
** 1998/08/30 David Kilzer: Added support for font_desc structures
25
** for linux-2.1.115
26
** 9/02/11 Richard Zidlicky: added Q40 support (initial vesion 99/01/01)
27
** 2004/05/13 Kars de Jong: Finalised HP300 support
28
**
29
** This file is subject to the terms and conditions of the GNU General Public
30
** License. See the file README.legal in the main directory of this archive
31
** for more details.
32
**
33
*/
34
35
/*
36
* Linux startup code.
37
*
38
* At this point, the boot loader has:
39
* Disabled interrupts
40
* Disabled caches
41
* Put us in supervisor state.
42
*
43
* The kernel setup code takes the following steps:
44
* . Raise interrupt level
45
* . Set up initial kernel memory mapping.
46
* . This sets up a mapping of the 4M of memory the kernel is located in.
47
* . It also does a mapping of any initial machine specific areas.
48
* . Enable the MMU
49
* . Enable cache memories
50
* . Jump to kernel startup
51
*
52
* Much of the file restructuring was to accomplish:
53
* 1) Remove register dependency through-out the file.
54
* 2) Increase use of subroutines to perform functions
55
* 3) Increase readability of the code
56
*
57
* Of course, readability is a subjective issue, so it will never be
58
* argued that that goal was accomplished. It was merely a goal.
59
* A key way to help make code more readable is to give good
60
* documentation. So, the first thing you will find is exaustive
61
* write-ups on the structure of the file, and the features of the
62
* functional subroutines.
63
*
64
* General Structure:
65
* ------------------
66
* Without a doubt the single largest chunk of head.S is spent
67
* mapping the kernel and I/O physical space into the logical range
68
* for the kernel.
69
* There are new subroutines and data structures to make MMU
70
* support cleaner and easier to understand.
71
* First, you will find a routine call "mmu_map" which maps
72
* a logical to a physical region for some length given a cache
73
* type on behalf of the caller. This routine makes writing the
74
* actual per-machine specific code very simple.
75
* A central part of the code, but not a subroutine in itself,
76
* is the mmu_init code which is broken down into mapping the kernel
77
* (the same for all machines) and mapping machine-specific I/O
78
* regions.
79
* Also, there will be a description of engaging the MMU and
80
* caches.
81
* You will notice that there is a chunk of code which
82
* can emit the entire MMU mapping of the machine. This is present
83
* only in debug modes and can be very helpful.
84
* Further, there is a new console driver in head.S that is
85
* also only engaged in debug mode. Currently, it's only supported
86
* on the Macintosh class of machines. However, it is hoped that
87
* others will plug-in support for specific machines.
88
*
89
* ######################################################################
90
*
91
* mmu_map
92
* -------
93
* mmu_map was written for two key reasons. First, it was clear
94
* that it was very difficult to read the previous code for mapping
95
* regions of memory. Second, the Macintosh required such extensive
96
* memory allocations that it didn't make sense to propagate the
97
* existing code any further.
98
* mmu_map requires some parameters:
99
*
100
* mmu_map (logical, physical, length, cache_type)
101
*
102
* While this essentially describes the function in the abstract, you'll
103
* find more indepth description of other parameters at the implementation site.
104
*
105
* mmu_get_root_table_entry
106
* ------------------------
107
* mmu_get_ptr_table_entry
108
* -----------------------
109
* mmu_get_page_table_entry
110
* ------------------------
111
*
112
* These routines are used by other mmu routines to get a pointer into
113
* a table, if necessary a new table is allocated. These routines are working
114
* basically like pmd_alloc() and pte_alloc() in <asm/pgtable.h>. The root
115
* table needs of course only to be allocated once in mmu_get_root_table_entry,
116
* so that here also some mmu specific initialization is done. The second page
117
* at the start of the kernel (the first page is unmapped later) is used for
118
* the kernel_pg_dir. It must be at a position known at link time (as it's used
119
* to initialize the init task struct) and since it needs special cache
120
* settings, it's the easiest to use this page, the rest of the page is used
121
* for further pointer tables.
122
* mmu_get_page_table_entry allocates always a whole page for page tables, this
123
* means 1024 pages and so 4MB of memory can be mapped. It doesn't make sense
124
* to manage page tables in smaller pieces as nearly all mappings have that
125
* size.
126
*
127
* ######################################################################
128
*
129
*
130
* ######################################################################
131
*
132
* mmu_engage
133
* ----------
134
* Thanks to a small helping routine enabling the mmu got quite simple
135
* and there is only one way left. mmu_engage makes a complete a new mapping
136
* that only includes the absolute necessary to be able to jump to the final
137
* position and to restore the original mapping.
138
* As this code doesn't need a transparent translation register anymore this
139
* means all registers are free to be used by machines that needs them for
140
* other purposes.
141
*
142
* ######################################################################
143
*
144
* mmu_print
145
* ---------
146
* This algorithm will print out the page tables of the system as
147
* appropriate for an 030 or an 040. This is useful for debugging purposes
148
* and as such is enclosed in #ifdef MMU_PRINT/#endif clauses.
149
*
150
* ######################################################################
151
*
152
* console_init
153
* ------------
154
* The console is also able to be turned off. The console in head.S
155
* is specifically for debugging and can be very useful. It is surrounded by
156
* #ifdef CONSOLE/#endif clauses so it doesn't have to ship in known-good
157
* kernels. It's basic algorithm is to determine the size of the screen
158
* (in height/width and bit depth) and then use that information for
159
* displaying an 8x8 font or an 8x16 (widthxheight). I prefer the 8x8 for
160
* debugging so I can see more good data. But it was trivial to add support
161
* for both fonts, so I included it.
162
* Also, the algorithm for plotting pixels is abstracted so that in
163
* theory other platforms could add support for different kinds of frame
164
* buffers. This could be very useful.
165
*
166
* console_put_penguin
167
* -------------------
168
* An important part of any Linux bring up is the penguin and there's
169
* nothing like getting the Penguin on the screen! This algorithm will work
170
* on any machine for which there is a console_plot_pixel.
171
*
172
* console_scroll
173
* --------------
174
* My hope is that the scroll algorithm does the right thing on the
175
* various platforms, but it wouldn't be hard to add the test conditions
176
* and new code if it doesn't.
177
*
178
* console_putc
179
* -------------
180
*
181
* ######################################################################
182
*
183
* Register usage has greatly simplified within head.S. Every subroutine
184
* saves and restores all registers that it modifies (except it returns a
185
* value in there of course). So the only register that needs to be initialized
186
* is the stack pointer.
187
* All other init code and data is now placed in the init section, so it will
188
* be automatically freed at the end of the kernel initialization.
189
*
190
* ######################################################################
191
*
192
* options
193
* -------
194
* There are many options available in a build of this file. I've
195
* taken the time to describe them here to save you the time of searching
196
* for them and trying to understand what they mean.
197
*
198
* CONFIG_xxx: These are the obvious machine configuration defines created
199
* during configuration. These are defined in autoconf.h.
200
*
201
* CONSOLE: There is support for head.S console in this file. This
202
* console can talk to a Mac frame buffer, but could easily be extrapolated
203
* to extend it to support other platforms.
204
*
205
* TEST_MMU: This is a test harness for running on any given machine but
206
* getting an MMU dump for another class of machine. The classes of machines
207
* that can be tested are any of the makes (Atari, Amiga, Mac, VME, etc.)
208
* and any of the models (030, 040, 060, etc.).
209
*
210
* NOTE: TEST_MMU is NOT permanent! It is scheduled to be removed
211
* When head.S boots on Atari, Amiga, Macintosh, and VME
212
* machines. At that point the underlying logic will be
213
* believed to be solid enough to be trusted, and TEST_MMU
214
* can be dropped. Do note that that will clean up the
215
* head.S code significantly as large blocks of #if/#else
216
* clauses can be removed.
217
*
218
* MMU_NOCACHE_KERNEL: On the Macintosh platform there was an inquiry into
219
* determing why devices don't appear to work. A test case was to remove
220
* the cacheability of the kernel bits.
221
*
222
* MMU_PRINT: There is a routine built into head.S that can display the
223
* MMU data structures. It outputs its result through the serial_putc
224
* interface. So where ever that winds up driving data, that's where the
225
* mmu struct will appear. On the Macintosh that's typically the console.
226
*
227
* SERIAL_DEBUG: There are a series of putc() macro statements
228
* scattered through out the code to give progress of status to the
229
* person sitting at the console. This constant determines whether those
230
* are used.
231
*
232
* DEBUG: This is the standard DEBUG flag that can be set for building
233
* the kernel. It has the effect adding additional tests into
234
* the code.
235
*
236
* FONT_6x11:
237
* FONT_8x8:
238
* FONT_8x16:
239
* In theory these could be determined at run time or handed
240
* over by the booter. But, let's be real, it's a fine hard
241
* coded value. (But, you will notice the code is run-time
242
* flexible!) A pointer to the font's struct font_desc
243
* is kept locally in Lconsole_font. It is used to determine
244
* font size information dynamically.
245
*
246
* Atari constants:
247
* USE_PRINTER: Use the printer port for serial debug.
248
* USE_SCC_B: Use the SCC port A (Serial2) for serial debug.
249
* USE_SCC_A: Use the SCC port B (Modem2) for serial debug.
250
* USE_MFP: Use the ST-MFP port (Modem1) for serial debug.
251
*
252
* Macintosh constants:
253
* MAC_SERIAL_DEBUG: Turns on serial debug output for the Macintosh.
254
* MAC_USE_SCC_A: Use the SCC port A (modem) for serial debug.
255
* MAC_USE_SCC_B: Use the SCC port B (printer) for serial debug (default).
256
*/
257
258
#include <linux/linkage.h>
259
#include <linux/init.h>
260
#include <asm/bootinfo.h>
261
#include <asm/setup.h>
262
#include <asm/entry.h>
263
#include <asm/pgtable.h>
264
#include <asm/page.h>
265
#include <asm/asm-offsets.h>
266
267
#ifdef CONFIG_MAC
268
269
#include <asm/machw.h>
270
271
/*
272
* Macintosh console support
273
*/
274
275
#ifdef CONFIG_FRAMEBUFFER_CONSOLE
276
#define CONSOLE
277
#define CONSOLE_PENGUIN
278
#endif
279
280
/*
281
* Macintosh serial debug support; outputs boot info to the printer
282
* and/or modem serial ports
283
*/
284
#undef MAC_SERIAL_DEBUG
285
286
/*
287
* Macintosh serial debug port selection; define one or both;
288
* requires MAC_SERIAL_DEBUG to be defined
289
*/
290
#define MAC_USE_SCC_A /* Macintosh modem serial port */
291
#define MAC_USE_SCC_B /* Macintosh printer serial port */
292
293
#endif /* CONFIG_MAC */
294
295
#undef MMU_PRINT
296
#undef MMU_NOCACHE_KERNEL
297
#define SERIAL_DEBUG
298
#undef DEBUG
299
300
/*
301
* For the head.S console, there are three supported fonts, 6x11, 8x16 and 8x8.
302
* The 8x8 font is harder to read but fits more on the screen.
303
*/
304
#define FONT_8x8 /* default */
305
/* #define FONT_8x16 */ /* 2nd choice */
306
/* #define FONT_6x11 */ /* 3rd choice */
307
308
.globl kernel_pg_dir
309
.globl availmem
310
.globl m68k_pgtable_cachemode
311
.globl m68k_supervisor_cachemode
312
#ifdef CONFIG_MVME16x
313
.globl mvme_bdid
314
#endif
315
#ifdef CONFIG_Q40
316
.globl q40_mem_cptr
317
#endif
318
319
CPUTYPE_040 = 1 /* indicates an 040 */
320
CPUTYPE_060 = 2 /* indicates an 060 */
321
CPUTYPE_0460 = 3 /* if either above are set, this is set */
322
CPUTYPE_020 = 4 /* indicates an 020 */
323
324
/* Translation control register */
325
TC_ENABLE = 0x8000
326
TC_PAGE8K = 0x4000
327
TC_PAGE4K = 0x0000
328
329
/* Transparent translation registers */
330
TTR_ENABLE = 0x8000 /* enable transparent translation */
331
TTR_ANYMODE = 0x4000 /* user and kernel mode access */
332
TTR_KERNELMODE = 0x2000 /* only kernel mode access */
333
TTR_USERMODE = 0x0000 /* only user mode access */
334
TTR_CI = 0x0400 /* inhibit cache */
335
TTR_RW = 0x0200 /* read/write mode */
336
TTR_RWM = 0x0100 /* read/write mask */
337
TTR_FCB2 = 0x0040 /* function code base bit 2 */
338
TTR_FCB1 = 0x0020 /* function code base bit 1 */
339
TTR_FCB0 = 0x0010 /* function code base bit 0 */
340
TTR_FCM2 = 0x0004 /* function code mask bit 2 */
341
TTR_FCM1 = 0x0002 /* function code mask bit 1 */
342
TTR_FCM0 = 0x0001 /* function code mask bit 0 */
343
344
/* Cache Control registers */
345
CC6_ENABLE_D = 0x80000000 /* enable data cache (680[46]0) */
346
CC6_FREEZE_D = 0x40000000 /* freeze data cache (68060) */
347
CC6_ENABLE_SB = 0x20000000 /* enable store buffer (68060) */
348
CC6_PUSH_DPI = 0x10000000 /* disable CPUSH invalidation (68060) */
349
CC6_HALF_D = 0x08000000 /* half-cache mode for data cache (68060) */
350
CC6_ENABLE_B = 0x00800000 /* enable branch cache (68060) */
351
CC6_CLRA_B = 0x00400000 /* clear all entries in branch cache (68060) */
352
CC6_CLRU_B = 0x00200000 /* clear user entries in branch cache (68060) */
353
CC6_ENABLE_I = 0x00008000 /* enable instruction cache (680[46]0) */
354
CC6_FREEZE_I = 0x00004000 /* freeze instruction cache (68060) */
355
CC6_HALF_I = 0x00002000 /* half-cache mode for instruction cache (68060) */
356
CC3_ALLOC_WRITE = 0x00002000 /* write allocate mode(68030) */
357
CC3_ENABLE_DB = 0x00001000 /* enable data burst (68030) */
358
CC3_CLR_D = 0x00000800 /* clear data cache (68030) */
359
CC3_CLRE_D = 0x00000400 /* clear entry in data cache (68030) */
360
CC3_FREEZE_D = 0x00000200 /* freeze data cache (68030) */
361
CC3_ENABLE_D = 0x00000100 /* enable data cache (68030) */
362
CC3_ENABLE_IB = 0x00000010 /* enable instruction burst (68030) */
363
CC3_CLR_I = 0x00000008 /* clear instruction cache (68030) */
364
CC3_CLRE_I = 0x00000004 /* clear entry in instruction cache (68030) */
365
CC3_FREEZE_I = 0x00000002 /* freeze instruction cache (68030) */
366
CC3_ENABLE_I = 0x00000001 /* enable instruction cache (68030) */
367
368
/* Miscellaneous definitions */
369
PAGESIZE = 4096
370
PAGESHIFT = 12
371
372
ROOT_TABLE_SIZE = 128
373
PTR_TABLE_SIZE = 128
374
PAGE_TABLE_SIZE = 64
375
ROOT_INDEX_SHIFT = 25
376
PTR_INDEX_SHIFT = 18
377
PAGE_INDEX_SHIFT = 12
378
379
#ifdef DEBUG
380
/* When debugging use readable names for labels */
381
#ifdef __STDC__
382
#define L(name) .head.S.##name
383
#else
384
#define L(name) .head.S./**/name
385
#endif
386
#else
387
#ifdef __STDC__
388
#define L(name) .L##name
389
#else
390
#define L(name) .L/**/name
391
#endif
392
#endif
393
394
/* The __INITDATA stuff is a no-op when ftrace or kgdb are turned on */
395
#ifndef __INITDATA
396
#define __INITDATA .data
397
#define __FINIT .previous
398
#endif
399
400
/* Several macros to make the writing of subroutines easier:
401
* - func_start marks the beginning of the routine which setups the frame
402
* register and saves the registers, it also defines another macro
403
* to automatically restore the registers again.
404
* - func_return marks the end of the routine and simply calls the prepared
405
* macro to restore registers and jump back to the caller.
406
* - func_define generates another macro to automatically put arguments
407
* onto the stack call the subroutine and cleanup the stack again.
408
*/
409
410
/* Within subroutines these macros can be used to access the arguments
411
* on the stack. With STACK some allocated memory on the stack can be
412
* accessed and ARG0 points to the return address (used by mmu_engage).
413
*/
414
#define STACK %a6@(stackstart)
415
#define ARG0 %a6@(4)
416
#define ARG1 %a6@(8)
417
#define ARG2 %a6@(12)
418
#define ARG3 %a6@(16)
419
#define ARG4 %a6@(20)
420
421
.macro func_start name,saveregs,stack=0
422
L(\name):
423
linkw %a6,#-\stack
424
moveml \saveregs,%sp@-
425
.set stackstart,-\stack
426
427
.macro func_return_\name
428
moveml %sp@+,\saveregs
429
unlk %a6
430
rts
431
.endm
432
.endm
433
434
.macro func_return name
435
func_return_\name
436
.endm
437
438
.macro func_call name
439
jbsr L(\name)
440
.endm
441
442
.macro move_stack nr,arg1,arg2,arg3,arg4
443
.if \nr
444
move_stack "(\nr-1)",\arg2,\arg3,\arg4
445
movel \arg1,%sp@-
446
.endif
447
.endm
448
449
.macro func_define name,nr=0
450
.macro \name arg1,arg2,arg3,arg4
451
move_stack \nr,\arg1,\arg2,\arg3,\arg4
452
func_call \name
453
.if \nr
454
lea %sp@(\nr*4),%sp
455
.endif
456
.endm
457
.endm
458
459
func_define mmu_map,4
460
func_define mmu_map_tt,4
461
func_define mmu_fixup_page_mmu_cache,1
462
func_define mmu_temp_map,2
463
func_define mmu_engage
464
func_define mmu_get_root_table_entry,1
465
func_define mmu_get_ptr_table_entry,2
466
func_define mmu_get_page_table_entry,2
467
func_define mmu_print
468
func_define get_new_page
469
#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
470
func_define set_leds
471
#endif
472
473
.macro mmu_map_eq arg1,arg2,arg3
474
mmu_map \arg1,\arg1,\arg2,\arg3
475
.endm
476
477
.macro get_bi_record record
478
pea \record
479
func_call get_bi_record
480
addql #4,%sp
481
.endm
482
483
func_define serial_putc,1
484
func_define console_putc,1
485
486
func_define console_init
487
func_define console_put_stats
488
func_define console_put_penguin
489
func_define console_plot_pixel,3
490
func_define console_scroll
491
492
.macro putc ch
493
#if defined(CONSOLE) || defined(SERIAL_DEBUG)
494
pea \ch
495
#endif
496
#ifdef CONSOLE
497
func_call console_putc
498
#endif
499
#ifdef SERIAL_DEBUG
500
func_call serial_putc
501
#endif
502
#if defined(CONSOLE) || defined(SERIAL_DEBUG)
503
addql #4,%sp
504
#endif
505
.endm
506
507
.macro dputc ch
508
#ifdef DEBUG
509
putc \ch
510
#endif
511
.endm
512
513
func_define putn,1
514
515
.macro dputn nr
516
#ifdef DEBUG
517
putn \nr
518
#endif
519
.endm
520
521
.macro puts string
522
#if defined(CONSOLE) || defined(SERIAL_DEBUG)
523
__INITDATA
524
.Lstr\@:
525
.string "\string"
526
__FINIT
527
pea %pc@(.Lstr\@)
528
func_call puts
529
addql #4,%sp
530
#endif
531
.endm
532
533
.macro dputs string
534
#ifdef DEBUG
535
puts "\string"
536
#endif
537
.endm
538
539
#define is_not_amiga(lab) cmpl &MACH_AMIGA,%pc@(m68k_machtype); jne lab
540
#define is_not_atari(lab) cmpl &MACH_ATARI,%pc@(m68k_machtype); jne lab
541
#define is_not_mac(lab) cmpl &MACH_MAC,%pc@(m68k_machtype); jne lab
542
#define is_not_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jne lab
543
#define is_not_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jne lab
544
#define is_not_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jne lab
545
#define is_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jeq lab
546
#define is_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jeq lab
547
#define is_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jeq lab
548
#define is_not_hp300(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); jne lab
549
#define is_not_apollo(lab) cmpl &MACH_APOLLO,%pc@(m68k_machtype); jne lab
550
#define is_not_q40(lab) cmpl &MACH_Q40,%pc@(m68k_machtype); jne lab
551
#define is_not_sun3x(lab) cmpl &MACH_SUN3X,%pc@(m68k_machtype); jne lab
552
553
#define hasnt_leds(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); \
554
jeq 42f; \
555
cmpl &MACH_APOLLO,%pc@(m68k_machtype); \
556
jne lab ;\
557
42:\
558
559
#define is_040_or_060(lab) btst &CPUTYPE_0460,%pc@(L(cputype)+3); jne lab
560
#define is_not_040_or_060(lab) btst &CPUTYPE_0460,%pc@(L(cputype)+3); jeq lab
561
#define is_040(lab) btst &CPUTYPE_040,%pc@(L(cputype)+3); jne lab
562
#define is_060(lab) btst &CPUTYPE_060,%pc@(L(cputype)+3); jne lab
563
#define is_not_060(lab) btst &CPUTYPE_060,%pc@(L(cputype)+3); jeq lab
564
#define is_020(lab) btst &CPUTYPE_020,%pc@(L(cputype)+3); jne lab
565
#define is_not_020(lab) btst &CPUTYPE_020,%pc@(L(cputype)+3); jeq lab
566
567
/* On the HP300 we use the on-board LEDs for debug output before
568
the console is running. Writing a 1 bit turns the corresponding LED
569
_off_ - on the 340 bit 7 is towards the back panel of the machine. */
570
.macro leds mask
571
#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
572
hasnt_leds(.Lled\@)
573
pea \mask
574
func_call set_leds
575
addql #4,%sp
576
.Lled\@:
577
#endif
578
.endm
579
580
__HEAD
581
ENTRY(_stext)
582
/*
583
* Version numbers of the bootinfo interface
584
* The area from _stext to _start will later be used as kernel pointer table
585
*/
586
bras 1f /* Jump over bootinfo version numbers */
587
588
.long BOOTINFOV_MAGIC
589
.long MACH_AMIGA, AMIGA_BOOTI_VERSION
590
.long MACH_ATARI, ATARI_BOOTI_VERSION
591
.long MACH_MVME147, MVME147_BOOTI_VERSION
592
.long MACH_MVME16x, MVME16x_BOOTI_VERSION
593
.long MACH_BVME6000, BVME6000_BOOTI_VERSION
594
.long MACH_MAC, MAC_BOOTI_VERSION
595
.long MACH_Q40, Q40_BOOTI_VERSION
596
.long MACH_HP300, HP300_BOOTI_VERSION
597
.long 0
598
1: jra __start
599
600
.equ kernel_pg_dir,_stext
601
602
.equ .,_stext+PAGESIZE
603
604
ENTRY(_start)
605
jra __start
606
__INIT
607
ENTRY(__start)
608
/*
609
* Setup initial stack pointer
610
*/
611
lea %pc@(_stext),%sp
612
613
/*
614
* Record the CPU and machine type.
615
*/
616
get_bi_record BI_MACHTYPE
617
lea %pc@(m68k_machtype),%a1
618
movel %a0@,%a1@
619
620
get_bi_record BI_FPUTYPE
621
lea %pc@(m68k_fputype),%a1
622
movel %a0@,%a1@
623
624
get_bi_record BI_MMUTYPE
625
lea %pc@(m68k_mmutype),%a1
626
movel %a0@,%a1@
627
628
get_bi_record BI_CPUTYPE
629
lea %pc@(m68k_cputype),%a1
630
movel %a0@,%a1@
631
632
leds 0x1
633
634
#ifdef CONFIG_MAC
635
/*
636
* For Macintosh, we need to determine the display parameters early (at least
637
* while debugging it).
638
*/
639
640
is_not_mac(L(test_notmac))
641
642
get_bi_record BI_MAC_VADDR
643
lea %pc@(L(mac_videobase)),%a1
644
movel %a0@,%a1@
645
646
get_bi_record BI_MAC_VDEPTH
647
lea %pc@(L(mac_videodepth)),%a1
648
movel %a0@,%a1@
649
650
get_bi_record BI_MAC_VDIM
651
lea %pc@(L(mac_dimensions)),%a1
652
movel %a0@,%a1@
653
654
get_bi_record BI_MAC_VROW
655
lea %pc@(L(mac_rowbytes)),%a1
656
movel %a0@,%a1@
657
658
#ifdef MAC_SERIAL_DEBUG
659
get_bi_record BI_MAC_SCCBASE
660
lea %pc@(L(mac_sccbase)),%a1
661
movel %a0@,%a1@
662
#endif /* MAC_SERIAL_DEBUG */
663
664
#if 0
665
/*
666
* Clear the screen
667
*/
668
lea %pc@(L(mac_videobase)),%a0
669
movel %a0@,%a1
670
lea %pc@(L(mac_dimensions)),%a0
671
movel %a0@,%d1
672
swap %d1 /* #rows is high bytes */
673
andl #0xFFFF,%d1 /* rows */
674
subl #10,%d1
675
lea %pc@(L(mac_rowbytes)),%a0
676
loopy2:
677
movel %a0@,%d0
678
subql #1,%d0
679
loopx2:
680
moveb #0x55, %a1@+
681
dbra %d0,loopx2
682
dbra %d1,loopy2
683
#endif
684
685
L(test_notmac):
686
#endif /* CONFIG_MAC */
687
688
689
/*
690
* There are ultimately two pieces of information we want for all kinds of
691
* processors CpuType and CacheBits. The CPUTYPE was passed in from booter
692
* and is converted here from a booter type definition to a separate bit
693
* number which allows for the standard is_0x0 macro tests.
694
*/
695
movel %pc@(m68k_cputype),%d0
696
/*
697
* Assume it's an 030
698
*/
699
clrl %d1
700
701
/*
702
* Test the BootInfo cputype for 060
703
*/
704
btst #CPUB_68060,%d0
705
jeq 1f
706
bset #CPUTYPE_060,%d1
707
bset #CPUTYPE_0460,%d1
708
jra 3f
709
1:
710
/*
711
* Test the BootInfo cputype for 040
712
*/
713
btst #CPUB_68040,%d0
714
jeq 2f
715
bset #CPUTYPE_040,%d1
716
bset #CPUTYPE_0460,%d1
717
jra 3f
718
2:
719
/*
720
* Test the BootInfo cputype for 020
721
*/
722
btst #CPUB_68020,%d0
723
jeq 3f
724
bset #CPUTYPE_020,%d1
725
jra 3f
726
3:
727
/*
728
* Record the cpu type
729
*/
730
lea %pc@(L(cputype)),%a0
731
movel %d1,%a0@
732
733
/*
734
* NOTE:
735
*
736
* Now the macros are valid:
737
* is_040_or_060
738
* is_not_040_or_060
739
* is_040
740
* is_060
741
* is_not_060
742
*/
743
744
/*
745
* Determine the cache mode for pages holding MMU tables
746
* and for supervisor mode, unused for '020 and '030
747
*/
748
clrl %d0
749
clrl %d1
750
751
is_not_040_or_060(L(save_cachetype))
752
753
/*
754
* '040 or '060
755
* d1 := cacheable write-through
756
* NOTE: The 68040 manual strongly recommends non-cached for MMU tables,
757
* but we have been using write-through since at least 2.0.29 so I
758
* guess it is OK.
759
*/
760
#ifdef CONFIG_060_WRITETHROUGH
761
/*
762
* If this is a 68060 board using drivers with cache coherency
763
* problems, then supervisor memory accesses need to be write-through
764
* also; otherwise, we want copyback.
765
*/
766
767
is_not_060(1f)
768
movel #_PAGE_CACHE040W,%d0
769
jra L(save_cachetype)
770
#endif /* CONFIG_060_WRITETHROUGH */
771
1:
772
movew #_PAGE_CACHE040,%d0
773
774
movel #_PAGE_CACHE040W,%d1
775
776
L(save_cachetype):
777
/* Save cache mode for supervisor mode and page tables
778
*/
779
lea %pc@(m68k_supervisor_cachemode),%a0
780
movel %d0,%a0@
781
lea %pc@(m68k_pgtable_cachemode),%a0
782
movel %d1,%a0@
783
784
/*
785
* raise interrupt level
786
*/
787
movew #0x2700,%sr
788
789
/*
790
If running on an Atari, determine the I/O base of the
791
serial port and test if we are running on a Medusa or Hades.
792
This test is necessary here, because on the Hades the serial
793
port is only accessible in the high I/O memory area.
794
795
The test whether it is a Medusa is done by writing to the byte at
796
phys. 0x0. This should result in a bus error on all other machines.
797
798
...should, but doesn't. The Afterburner040 for the Falcon has the
799
same behaviour (0x0..0x7 are no ROM shadow). So we have to do
800
another test to distinguish Medusa and AB040. This is a
801
read attempt for 0x00ff82fe phys. that should bus error on a Falcon
802
(+AB040), but is in the range where the Medusa always asserts DTACK.
803
804
The test for the Hades is done by reading address 0xb0000000. This
805
should give a bus error on the Medusa.
806
*/
807
808
#ifdef CONFIG_ATARI
809
is_not_atari(L(notypetest))
810
811
/* get special machine type (Medusa/Hades/AB40) */
812
moveq #0,%d3 /* default if tag doesn't exist */
813
get_bi_record BI_ATARI_MCH_TYPE
814
tstl %d0
815
jbmi 1f
816
movel %a0@,%d3
817
lea %pc@(atari_mch_type),%a0
818
movel %d3,%a0@
819
1:
820
/* On the Hades, the iobase must be set up before opening the
821
* serial port. There are no I/O regs at 0x00ffxxxx at all. */
822
moveq #0,%d0
823
cmpl #ATARI_MACH_HADES,%d3
824
jbne 1f
825
movel #0xff000000,%d0 /* Hades I/O base addr: 0xff000000 */
826
1: lea %pc@(L(iobase)),%a0
827
movel %d0,%a0@
828
829
L(notypetest):
830
#endif
831
832
#ifdef CONFIG_VME
833
is_mvme147(L(getvmetype))
834
is_bvme6000(L(getvmetype))
835
is_not_mvme16x(L(gvtdone))
836
837
/* See if the loader has specified the BI_VME_TYPE tag. Recent
838
* versions of VMELILO and TFTPLILO do this. We have to do this
839
* early so we know how to handle console output. If the tag
840
* doesn't exist then we use the Bug for output on MVME16x.
841
*/
842
L(getvmetype):
843
get_bi_record BI_VME_TYPE
844
tstl %d0
845
jbmi 1f
846
movel %a0@,%d3
847
lea %pc@(vme_brdtype),%a0
848
movel %d3,%a0@
849
1:
850
#ifdef CONFIG_MVME16x
851
is_not_mvme16x(L(gvtdone))
852
853
/* Need to get the BRD_ID info to differentiate between 162, 167,
854
* etc. This is available as a BI_VME_BRDINFO tag with later
855
* versions of VMELILO and TFTPLILO, otherwise we call the Bug.
856
*/
857
get_bi_record BI_VME_BRDINFO
858
tstl %d0
859
jpl 1f
860
861
/* Get pointer to board ID data from Bug */
862
movel %d2,%sp@-
863
trap #15
864
.word 0x70 /* trap 0x70 - .BRD_ID */
865
movel %sp@+,%a0
866
1:
867
lea %pc@(mvme_bdid),%a1
868
/* Structure is 32 bytes long */
869
movel %a0@+,%a1@+
870
movel %a0@+,%a1@+
871
movel %a0@+,%a1@+
872
movel %a0@+,%a1@+
873
movel %a0@+,%a1@+
874
movel %a0@+,%a1@+
875
movel %a0@+,%a1@+
876
movel %a0@+,%a1@+
877
#endif
878
879
L(gvtdone):
880
881
#endif
882
883
#ifdef CONFIG_HP300
884
is_not_hp300(L(nothp))
885
886
/* Get the address of the UART for serial debugging */
887
get_bi_record BI_HP300_UART_ADDR
888
tstl %d0
889
jbmi 1f
890
movel %a0@,%d3
891
lea %pc@(L(uartbase)),%a0
892
movel %d3,%a0@
893
get_bi_record BI_HP300_UART_SCODE
894
tstl %d0
895
jbmi 1f
896
movel %a0@,%d3
897
lea %pc@(L(uart_scode)),%a0
898
movel %d3,%a0@
899
1:
900
L(nothp):
901
#endif
902
903
/*
904
* Initialize serial port
905
*/
906
jbsr L(serial_init)
907
908
/*
909
* Initialize console
910
*/
911
#ifdef CONFIG_MAC
912
is_not_mac(L(nocon))
913
#ifdef CONSOLE
914
console_init
915
#ifdef CONSOLE_PENGUIN
916
console_put_penguin
917
#endif /* CONSOLE_PENGUIN */
918
console_put_stats
919
#endif /* CONSOLE */
920
L(nocon):
921
#endif /* CONFIG_MAC */
922
923
924
putc '\n'
925
putc 'A'
926
leds 0x2
927
dputn %pc@(L(cputype))
928
dputn %pc@(m68k_supervisor_cachemode)
929
dputn %pc@(m68k_pgtable_cachemode)
930
dputc '\n'
931
932
/*
933
* Save physical start address of kernel
934
*/
935
lea %pc@(L(phys_kernel_start)),%a0
936
lea %pc@(_stext),%a1
937
subl #_stext,%a1
938
addl #PAGE_OFFSET,%a1
939
movel %a1,%a0@
940
941
putc 'B'
942
943
leds 0x4
944
945
/*
946
* mmu_init
947
*
948
* This block of code does what's necessary to map in the various kinds
949
* of machines for execution of Linux.
950
* First map the first 4 MB of kernel code & data
951
*/
952
953
mmu_map #PAGE_OFFSET,%pc@(L(phys_kernel_start)),#4*1024*1024,\
954
%pc@(m68k_supervisor_cachemode)
955
956
putc 'C'
957
958
#ifdef CONFIG_AMIGA
959
960
L(mmu_init_amiga):
961
962
is_not_amiga(L(mmu_init_not_amiga))
963
/*
964
* mmu_init_amiga
965
*/
966
967
putc 'D'
968
969
is_not_040_or_060(1f)
970
971
/*
972
* 040: Map the 16Meg range physical 0x0 up to logical 0x8000.0000
973
*/
974
mmu_map #0x80000000,#0,#0x01000000,#_PAGE_NOCACHE_S
975
/*
976
* Map the Zorro III I/O space with transparent translation
977
* for frame buffer memory etc.
978
*/
979
mmu_map_tt #1,#0x40000000,#0x20000000,#_PAGE_NOCACHE_S
980
981
jbra L(mmu_init_done)
982
983
1:
984
/*
985
* 030: Map the 32Meg range physical 0x0 up to logical 0x8000.0000
986
*/
987
mmu_map #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
988
mmu_map_tt #1,#0x40000000,#0x20000000,#_PAGE_NOCACHE030
989
990
jbra L(mmu_init_done)
991
992
L(mmu_init_not_amiga):
993
#endif
994
995
#ifdef CONFIG_ATARI
996
997
L(mmu_init_atari):
998
999
is_not_atari(L(mmu_init_not_atari))
1000
1001
putc 'E'
1002
1003
/* On the Atari, we map the I/O region (phys. 0x00ffxxxx) by mapping
1004
the last 16 MB of virtual address space to the first 16 MB (i.e.
1005
0xffxxxxxx -> 0x00xxxxxx). For this, an additional pointer table is
1006
needed. I/O ranges are marked non-cachable.
1007
1008
For the Medusa it is better to map the I/O region transparently
1009
(i.e. 0xffxxxxxx -> 0xffxxxxxx), because some I/O registers are
1010
accessible only in the high area.
1011
1012
On the Hades all I/O registers are only accessible in the high
1013
area.
1014
*/
1015
1016
/* I/O base addr for non-Medusa, non-Hades: 0x00000000 */
1017
moveq #0,%d0
1018
movel %pc@(atari_mch_type),%d3
1019
cmpl #ATARI_MACH_MEDUSA,%d3
1020
jbeq 2f
1021
cmpl #ATARI_MACH_HADES,%d3
1022
jbne 1f
1023
2: movel #0xff000000,%d0 /* Medusa/Hades base addr: 0xff000000 */
1024
1: movel %d0,%d3
1025
1026
is_040_or_060(L(spata68040))
1027
1028
/* Map everything non-cacheable, though not all parts really
1029
* need to disable caches (crucial only for 0xff8000..0xffffff
1030
* (standard I/O) and 0xf00000..0xf3ffff (IDE)). The remainder
1031
* isn't really used, except for sometimes peeking into the
1032
* ROMs (mirror at phys. 0x0), so caching isn't necessary for
1033
* this. */
1034
mmu_map #0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE030
1035
1036
jbra L(mmu_init_done)
1037
1038
L(spata68040):
1039
1040
mmu_map #0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE_S
1041
1042
jbra L(mmu_init_done)
1043
1044
L(mmu_init_not_atari):
1045
#endif
1046
1047
#ifdef CONFIG_Q40
1048
is_not_q40(L(notq40))
1049
/*
1050
* add transparent mapping for 0xff00 0000 - 0xffff ffff
1051
* non-cached serialized etc..
1052
* this includes master chip, DAC, RTC and ISA ports
1053
* 0xfe000000-0xfeffffff is for screen and ROM
1054
*/
1055
1056
putc 'Q'
1057
1058
mmu_map_tt #0,#0xfe000000,#0x01000000,#_PAGE_CACHE040W
1059
mmu_map_tt #1,#0xff000000,#0x01000000,#_PAGE_NOCACHE_S
1060
1061
jbra L(mmu_init_done)
1062
1063
L(notq40):
1064
#endif
1065
1066
#ifdef CONFIG_HP300
1067
is_not_hp300(L(nothp300))
1068
1069
/* On the HP300, we map the ROM, INTIO and DIO regions (phys. 0x00xxxxxx)
1070
* by mapping 32MB (on 020/030) or 16 MB (on 040) from 0xf0xxxxxx -> 0x00xxxxxx).
1071
* The ROM mapping is needed because the LEDs are mapped there too.
1072
*/
1073
1074
is_040(1f)
1075
1076
/*
1077
* 030: Map the 32Meg range physical 0x0 up to logical 0xf000.0000
1078
*/
1079
mmu_map #0xf0000000,#0,#0x02000000,#_PAGE_NOCACHE030
1080
1081
jbra L(mmu_init_done)
1082
1083
1:
1084
/*
1085
* 040: Map the 16Meg range physical 0x0 up to logical 0xf000.0000
1086
*/
1087
mmu_map #0xf0000000,#0,#0x01000000,#_PAGE_NOCACHE_S
1088
1089
jbra L(mmu_init_done)
1090
1091
L(nothp300):
1092
#endif /* CONFIG_HP300 */
1093
1094
#ifdef CONFIG_MVME147
1095
1096
is_not_mvme147(L(not147))
1097
1098
/*
1099
* On MVME147 we have already created kernel page tables for
1100
* 4MB of RAM at address 0, so now need to do a transparent
1101
* mapping of the top of memory space. Make it 0.5GByte for now,
1102
* so we can access on-board i/o areas.
1103
*/
1104
1105
mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE030
1106
1107
jbra L(mmu_init_done)
1108
1109
L(not147):
1110
#endif /* CONFIG_MVME147 */
1111
1112
#ifdef CONFIG_MVME16x
1113
1114
is_not_mvme16x(L(not16x))
1115
1116
/*
1117
* On MVME16x we have already created kernel page tables for
1118
* 4MB of RAM at address 0, so now need to do a transparent
1119
* mapping of the top of memory space. Make it 0.5GByte for now.
1120
* Supervisor only access, so transparent mapping doesn't
1121
* clash with User code virtual address space.
1122
* this covers IO devices, PROM and SRAM. The PROM and SRAM
1123
* mapping is needed to allow 167Bug to run.
1124
* IO is in the range 0xfff00000 to 0xfffeffff.
1125
* PROM is 0xff800000->0xffbfffff and SRAM is
1126
* 0xffe00000->0xffe1ffff.
1127
*/
1128
1129
mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1130
1131
jbra L(mmu_init_done)
1132
1133
L(not16x):
1134
#endif /* CONFIG_MVME162 | CONFIG_MVME167 */
1135
1136
#ifdef CONFIG_BVME6000
1137
1138
is_not_bvme6000(L(not6000))
1139
1140
/*
1141
* On BVME6000 we have already created kernel page tables for
1142
* 4MB of RAM at address 0, so now need to do a transparent
1143
* mapping of the top of memory space. Make it 0.5GByte for now,
1144
* so we can access on-board i/o areas.
1145
* Supervisor only access, so transparent mapping doesn't
1146
* clash with User code virtual address space.
1147
*/
1148
1149
mmu_map_tt #1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1150
1151
jbra L(mmu_init_done)
1152
1153
L(not6000):
1154
#endif /* CONFIG_BVME6000 */
1155
1156
/*
1157
* mmu_init_mac
1158
*
1159
* The Macintosh mappings are less clear.
1160
*
1161
* Even as of this writing, it is unclear how the
1162
* Macintosh mappings will be done. However, as
1163
* the first author of this code I'm proposing the
1164
* following model:
1165
*
1166
* Map the kernel (that's already done),
1167
* Map the I/O (on most machines that's the
1168
* 0x5000.0000 ... 0x5300.0000 range,
1169
* Map the video frame buffer using as few pages
1170
* as absolutely (this requirement mostly stems from
1171
* the fact that when the frame buffer is at
1172
* 0x0000.0000 then we know there is valid RAM just
1173
* above the screen that we don't want to waste!).
1174
*
1175
* By the way, if the frame buffer is at 0x0000.0000
1176
* then the Macintosh is known as an RBV based Mac.
1177
*
1178
* By the way 2, the code currently maps in a bunch of
1179
* regions. But I'd like to cut that out. (And move most
1180
* of the mappings up into the kernel proper ... or only
1181
* map what's necessary.)
1182
*/
1183
1184
#ifdef CONFIG_MAC
1185
1186
L(mmu_init_mac):
1187
1188
is_not_mac(L(mmu_init_not_mac))
1189
1190
putc 'F'
1191
1192
is_not_040_or_060(1f)
1193
1194
moveq #_PAGE_NOCACHE_S,%d3
1195
jbra 2f
1196
1:
1197
moveq #_PAGE_NOCACHE030,%d3
1198
2:
1199
/*
1200
* Mac Note: screen address of logical 0xF000.0000 -> <screen physical>
1201
* we simply map the 4MB that contains the videomem
1202
*/
1203
1204
movel #VIDEOMEMMASK,%d0
1205
andl %pc@(L(mac_videobase)),%d0
1206
1207
mmu_map #VIDEOMEMBASE,%d0,#VIDEOMEMSIZE,%d3
1208
/* ROM from 4000 0000 to 4200 0000 (only for mac_reset()) */
1209
mmu_map_eq #0x40000000,#0x02000000,%d3
1210
/* IO devices (incl. serial port) from 5000 0000 to 5300 0000 */
1211
mmu_map_eq #0x50000000,#0x03000000,%d3
1212
/* Nubus slot space (video at 0xF0000000, rom at 0xF0F80000) */
1213
mmu_map_tt #1,#0xf8000000,#0x08000000,%d3
1214
1215
jbra L(mmu_init_done)
1216
1217
L(mmu_init_not_mac):
1218
#endif
1219
1220
#ifdef CONFIG_SUN3X
1221
is_not_sun3x(L(notsun3x))
1222
1223
/* oh, the pain.. We're gonna want the prom code after
1224
* starting the MMU, so we copy the mappings, translating
1225
* from 8k -> 4k pages as we go.
1226
*/
1227
1228
/* copy maps from 0xfee00000 to 0xff000000 */
1229
movel #0xfee00000, %d0
1230
moveq #ROOT_INDEX_SHIFT, %d1
1231
lsrl %d1,%d0
1232
mmu_get_root_table_entry %d0
1233
1234
movel #0xfee00000, %d0
1235
moveq #PTR_INDEX_SHIFT, %d1
1236
lsrl %d1,%d0
1237
andl #PTR_TABLE_SIZE-1, %d0
1238
mmu_get_ptr_table_entry %a0,%d0
1239
1240
movel #0xfee00000, %d0
1241
moveq #PAGE_INDEX_SHIFT, %d1
1242
lsrl %d1,%d0
1243
andl #PAGE_TABLE_SIZE-1, %d0
1244
mmu_get_page_table_entry %a0,%d0
1245
1246
/* this is where the prom page table lives */
1247
movel 0xfefe00d4, %a1
1248
movel %a1@, %a1
1249
1250
movel #((0x200000 >> 13)-1), %d1
1251
1252
1:
1253
movel %a1@+, %d3
1254
movel %d3,%a0@+
1255
addl #0x1000,%d3
1256
movel %d3,%a0@+
1257
1258
dbra %d1,1b
1259
1260
/* setup tt1 for I/O */
1261
mmu_map_tt #1,#0x40000000,#0x40000000,#_PAGE_NOCACHE_S
1262
jbra L(mmu_init_done)
1263
1264
L(notsun3x):
1265
#endif
1266
1267
#ifdef CONFIG_APOLLO
1268
is_not_apollo(L(notapollo))
1269
1270
putc 'P'
1271
mmu_map #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
1272
1273
L(notapollo):
1274
jbra L(mmu_init_done)
1275
#endif
1276
1277
L(mmu_init_done):
1278
1279
putc 'G'
1280
leds 0x8
1281
1282
/*
1283
* mmu_fixup
1284
*
1285
* On the 040 class machines, all pages that are used for the
1286
* mmu have to be fixed up. According to Motorola, pages holding mmu
1287
* tables should be non-cacheable on a '040 and write-through on a
1288
* '060. But analysis of the reasons for this, and practical
1289
* experience, showed that write-through also works on a '040.
1290
*
1291
* Allocated memory so far goes from kernel_end to memory_start that
1292
* is used for all kind of tables, for that the cache attributes
1293
* are now fixed.
1294
*/
1295
L(mmu_fixup):
1296
1297
is_not_040_or_060(L(mmu_fixup_done))
1298
1299
#ifdef MMU_NOCACHE_KERNEL
1300
jbra L(mmu_fixup_done)
1301
#endif
1302
1303
/* first fix the page at the start of the kernel, that
1304
* contains also kernel_pg_dir.
1305
*/
1306
movel %pc@(L(phys_kernel_start)),%d0
1307
subl #PAGE_OFFSET,%d0
1308
lea %pc@(_stext),%a0
1309
subl %d0,%a0
1310
mmu_fixup_page_mmu_cache %a0
1311
1312
movel %pc@(L(kernel_end)),%a0
1313
subl %d0,%a0
1314
movel %pc@(L(memory_start)),%a1
1315
subl %d0,%a1
1316
bra 2f
1317
1:
1318
mmu_fixup_page_mmu_cache %a0
1319
addw #PAGESIZE,%a0
1320
2:
1321
cmpl %a0,%a1
1322
jgt 1b
1323
1324
L(mmu_fixup_done):
1325
1326
#ifdef MMU_PRINT
1327
mmu_print
1328
#endif
1329
1330
/*
1331
* mmu_engage
1332
*
1333
* This chunk of code performs the gruesome task of engaging the MMU.
1334
* The reason its gruesome is because when the MMU becomes engaged it
1335
* maps logical addresses to physical addresses. The Program Counter
1336
* register is then passed through the MMU before the next instruction
1337
* is fetched (the instruction following the engage MMU instruction).
1338
* This may mean one of two things:
1339
* 1. The Program Counter falls within the logical address space of
1340
* the kernel of which there are two sub-possibilities:
1341
* A. The PC maps to the correct instruction (logical PC == physical
1342
* code location), or
1343
* B. The PC does not map through and the processor will read some
1344
* data (or instruction) which is not the logically next instr.
1345
* As you can imagine, A is good and B is bad.
1346
* Alternatively,
1347
* 2. The Program Counter does not map through the MMU. The processor
1348
* will take a Bus Error.
1349
* Clearly, 2 is bad.
1350
* It doesn't take a wiz kid to figure you want 1.A.
1351
* This code creates that possibility.
1352
* There are two possible 1.A. states (we now ignore the other above states):
1353
* A. The kernel is located at physical memory addressed the same as
1354
* the logical memory for the kernel, i.e., 0x01000.
1355
* B. The kernel is located some where else. e.g., 0x0400.0000
1356
*
1357
* Under some conditions the Macintosh can look like A or B.
1358
* [A friend and I once noted that Apple hardware engineers should be
1359
* wacked twice each day: once when they show up at work (as in, Whack!,
1360
* "This is for the screwy hardware we know you're going to design today."),
1361
* and also at the end of the day (as in, Whack! "I don't know what
1362
* you designed today, but I'm sure it wasn't good."). -- rst]
1363
*
1364
* This code works on the following premise:
1365
* If the kernel start (%d5) is within the first 16 Meg of RAM,
1366
* then create a mapping for the kernel at logical 0x8000.0000 to
1367
* the physical location of the pc. And, create a transparent
1368
* translation register for the first 16 Meg. Then, after the MMU
1369
* is engaged, the PC can be moved up into the 0x8000.0000 range
1370
* and then the transparent translation can be turned off and then
1371
* the PC can jump to the correct logical location and it will be
1372
* home (finally). This is essentially the code that the Amiga used
1373
* to use. Now, it's generalized for all processors. Which means
1374
* that a fresh (but temporary) mapping has to be created. The mapping
1375
* is made in page 0 (an as of yet unused location -- except for the
1376
* stack!). This temporary mapping will only require 1 pointer table
1377
* and a single page table (it can map 256K).
1378
*
1379
* OK, alternatively, imagine that the Program Counter is not within
1380
* the first 16 Meg. Then, just use Transparent Translation registers
1381
* to do the right thing.
1382
*
1383
* Last, if _start is already at 0x01000, then there's nothing special
1384
* to do (in other words, in a degenerate case of the first case above,
1385
* do nothing).
1386
*
1387
* Let's do it.
1388
*
1389
*
1390
*/
1391
1392
putc 'H'
1393
1394
mmu_engage
1395
1396
/*
1397
* After this point no new memory is allocated and
1398
* the start of available memory is stored in availmem.
1399
* (The bootmem allocator requires now the physicall address.)
1400
*/
1401
1402
movel L(memory_start),availmem
1403
1404
#ifdef CONFIG_AMIGA
1405
is_not_amiga(1f)
1406
/* fixup the Amiga custom register location before printing */
1407
clrl L(custom)
1408
1:
1409
#endif
1410
1411
#ifdef CONFIG_ATARI
1412
is_not_atari(1f)
1413
/* fixup the Atari iobase register location before printing */
1414
movel #0xff000000,L(iobase)
1415
1:
1416
#endif
1417
1418
#ifdef CONFIG_MAC
1419
is_not_mac(1f)
1420
movel #~VIDEOMEMMASK,%d0
1421
andl L(mac_videobase),%d0
1422
addl #VIDEOMEMBASE,%d0
1423
movel %d0,L(mac_videobase)
1424
#if defined(CONSOLE)
1425
movel %pc@(L(phys_kernel_start)),%d0
1426
subl #PAGE_OFFSET,%d0
1427
subl %d0,L(console_font)
1428
subl %d0,L(console_font_data)
1429
#endif
1430
#ifdef MAC_SERIAL_DEBUG
1431
orl #0x50000000,L(mac_sccbase)
1432
#endif
1433
1:
1434
#endif
1435
1436
#ifdef CONFIG_HP300
1437
is_not_hp300(2f)
1438
/*
1439
* Fix up the iobase register to point to the new location of the LEDs.
1440
*/
1441
movel #0xf0000000,L(iobase)
1442
1443
/*
1444
* Energise the FPU and caches.
1445
*/
1446
is_040(1f)
1447
movel #0x60,0xf05f400c
1448
jbra 2f
1449
1450
/*
1451
* 040: slightly different, apparently.
1452
*/
1453
1: movew #0,0xf05f400e
1454
movew #0x64,0xf05f400e
1455
2:
1456
#endif
1457
1458
#ifdef CONFIG_SUN3X
1459
is_not_sun3x(1f)
1460
1461
/* enable copro */
1462
oriw #0x4000,0x61000000
1463
1:
1464
#endif
1465
1466
#ifdef CONFIG_APOLLO
1467
is_not_apollo(1f)
1468
1469
/*
1470
* Fix up the iobase before printing
1471
*/
1472
movel #0x80000000,L(iobase)
1473
1:
1474
#endif
1475
1476
putc 'I'
1477
leds 0x10
1478
1479
/*
1480
* Enable caches
1481
*/
1482
1483
is_not_040_or_060(L(cache_not_680460))
1484
1485
L(cache680460):
1486
.chip 68040
1487
nop
1488
cpusha %bc
1489
nop
1490
1491
is_060(L(cache68060))
1492
1493
movel #CC6_ENABLE_D+CC6_ENABLE_I,%d0
1494
/* MMU stuff works in copyback mode now, so enable the cache */
1495
movec %d0,%cacr
1496
jra L(cache_done)
1497
1498
L(cache68060):
1499
movel #CC6_ENABLE_D+CC6_ENABLE_I+CC6_ENABLE_SB+CC6_PUSH_DPI+CC6_ENABLE_B+CC6_CLRA_B,%d0
1500
/* MMU stuff works in copyback mode now, so enable the cache */
1501
movec %d0,%cacr
1502
/* enable superscalar dispatch in PCR */
1503
moveq #1,%d0
1504
.chip 68060
1505
movec %d0,%pcr
1506
1507
jbra L(cache_done)
1508
L(cache_not_680460):
1509
L(cache68030):
1510
.chip 68030
1511
movel #CC3_ENABLE_DB+CC3_CLR_D+CC3_ENABLE_D+CC3_ENABLE_IB+CC3_CLR_I+CC3_ENABLE_I,%d0
1512
movec %d0,%cacr
1513
1514
jra L(cache_done)
1515
.chip 68k
1516
L(cache_done):
1517
1518
putc 'J'
1519
1520
/*
1521
* Setup initial stack pointer
1522
*/
1523
lea init_task,%curptr
1524
lea init_thread_union+THREAD_SIZE,%sp
1525
1526
putc 'K'
1527
1528
subl %a6,%a6 /* clear a6 for gdb */
1529
1530
/*
1531
* The new 64bit printf support requires an early exception initialization.
1532
*/
1533
jbsr base_trap_init
1534
1535
/* jump to the kernel start */
1536
1537
putc '\n'
1538
leds 0x55
1539
1540
jbsr start_kernel
1541
1542
/*
1543
* Find a tag record in the bootinfo structure
1544
* The bootinfo structure is located right after the kernel bss
1545
* Returns: d0: size (-1 if not found)
1546
* a0: data pointer (end-of-records if not found)
1547
*/
1548
func_start get_bi_record,%d1
1549
1550
movel ARG1,%d0
1551
lea %pc@(_end),%a0
1552
1: tstw %a0@(BIR_TAG)
1553
jeq 3f
1554
cmpw %a0@(BIR_TAG),%d0
1555
jeq 2f
1556
addw %a0@(BIR_SIZE),%a0
1557
jra 1b
1558
2: moveq #0,%d0
1559
movew %a0@(BIR_SIZE),%d0
1560
lea %a0@(BIR_DATA),%a0
1561
jra 4f
1562
3: moveq #-1,%d0
1563
lea %a0@(BIR_SIZE),%a0
1564
4:
1565
func_return get_bi_record
1566
1567
1568
/*
1569
* MMU Initialization Begins Here
1570
*
1571
* The structure of the MMU tables on the 68k machines
1572
* is thus:
1573
* Root Table
1574
* Logical addresses are translated through
1575
* a hierarchical translation mechanism where the high-order
1576
* seven bits of the logical address (LA) are used as an
1577
* index into the "root table." Each entry in the root
1578
* table has a bit which specifies if it's a valid pointer to a
1579
* pointer table. Each entry defines a 32KMeg range of memory.
1580
* If an entry is invalid then that logical range of 32M is
1581
* invalid and references to that range of memory (when the MMU
1582
* is enabled) will fault. If the entry is valid, then it does
1583
* one of two things. On 040/060 class machines, it points to
1584
* a pointer table which then describes more finely the memory
1585
* within that 32M range. On 020/030 class machines, a technique
1586
* called "early terminating descriptors" are used. This technique
1587
* allows an entire 32Meg to be described by a single entry in the
1588
* root table. Thus, this entry in the root table, contains the
1589
* physical address of the memory or I/O at the logical address
1590
* which the entry represents and it also contains the necessary
1591
* cache bits for this region.
1592
*
1593
* Pointer Tables
1594
* Per the Root Table, there will be one or more
1595
* pointer tables. Each pointer table defines a 32M range.
1596
* Not all of the 32M range need be defined. Again, the next
1597
* seven bits of the logical address are used an index into
1598
* the pointer table to point to page tables (if the pointer
1599
* is valid). There will undoubtedly be more than one
1600
* pointer table for the kernel because each pointer table
1601
* defines a range of only 32M. Valid pointer table entries
1602
* point to page tables, or are early terminating entries
1603
* themselves.
1604
*
1605
* Page Tables
1606
* Per the Pointer Tables, each page table entry points
1607
* to the physical page in memory that supports the logical
1608
* address that translates to the particular index.
1609
*
1610
* In short, the Logical Address gets translated as follows:
1611
* bits 31..26 - index into the Root Table
1612
* bits 25..18 - index into the Pointer Table
1613
* bits 17..12 - index into the Page Table
1614
* bits 11..0 - offset into a particular 4K page
1615
*
1616
* The algorithms which follows do one thing: they abstract
1617
* the MMU hardware. For example, there are three kinds of
1618
* cache settings that are relevant. Either, memory is
1619
* being mapped in which case it is either Kernel Code (or
1620
* the RamDisk) or it is MMU data. On the 030, the MMU data
1621
* option also describes the kernel. Or, I/O is being mapped
1622
* in which case it has its own kind of cache bits. There
1623
* are constants which abstract these notions from the code that
1624
* actually makes the call to map some range of memory.
1625
*
1626
*
1627
*
1628
*/
1629
1630
#ifdef MMU_PRINT
1631
/*
1632
* mmu_print
1633
*
1634
* This algorithm will print out the current MMU mappings.
1635
*
1636
* Input:
1637
* %a5 points to the root table. Everything else is calculated
1638
* from this.
1639
*/
1640
1641
#define mmu_next_valid 0
1642
#define mmu_start_logical 4
1643
#define mmu_next_logical 8
1644
#define mmu_start_physical 12
1645
#define mmu_next_physical 16
1646
1647
#define MMU_PRINT_INVALID -1
1648
#define MMU_PRINT_VALID 1
1649
#define MMU_PRINT_UNINITED 0
1650
1651
#define putZc(z,n) jbne 1f; putc z; jbra 2f; 1: putc n; 2:
1652
1653
func_start mmu_print,%a0-%a6/%d0-%d7
1654
1655
movel %pc@(L(kernel_pgdir_ptr)),%a5
1656
lea %pc@(L(mmu_print_data)),%a0
1657
movel #MMU_PRINT_UNINITED,%a0@(mmu_next_valid)
1658
1659
is_not_040_or_060(mmu_030_print)
1660
1661
mmu_040_print:
1662
puts "\nMMU040\n"
1663
puts "rp:"
1664
putn %a5
1665
putc '\n'
1666
#if 0
1667
/*
1668
* The following #if/#endif block is a tight algorithm for dumping the 040
1669
* MMU Map in gory detail. It really isn't that practical unless the
1670
* MMU Map algorithm appears to go awry and you need to debug it at the
1671
* entry per entry level.
1672
*/
1673
movel #ROOT_TABLE_SIZE,%d5
1674
#if 0
1675
movel %a5@+,%d7 | Burn an entry to skip the kernel mappings,
1676
subql #1,%d5 | they (might) work
1677
#endif
1678
1: tstl %d5
1679
jbeq mmu_print_done
1680
subq #1,%d5
1681
movel %a5@+,%d7
1682
btst #1,%d7
1683
jbeq 1b
1684
1685
2: putn %d7
1686
andil #0xFFFFFE00,%d7
1687
movel %d7,%a4
1688
movel #PTR_TABLE_SIZE,%d4
1689
putc ' '
1690
3: tstl %d4
1691
jbeq 11f
1692
subq #1,%d4
1693
movel %a4@+,%d7
1694
btst #1,%d7
1695
jbeq 3b
1696
1697
4: putn %d7
1698
andil #0xFFFFFF00,%d7
1699
movel %d7,%a3
1700
movel #PAGE_TABLE_SIZE,%d3
1701
5: movel #8,%d2
1702
6: tstl %d3
1703
jbeq 31f
1704
subq #1,%d3
1705
movel %a3@+,%d6
1706
btst #0,%d6
1707
jbeq 6b
1708
7: tstl %d2
1709
jbeq 8f
1710
subq #1,%d2
1711
putc ' '
1712
jbra 91f
1713
8: putc '\n'
1714
movel #8+1+8+1+1,%d2
1715
9: putc ' '
1716
dbra %d2,9b
1717
movel #7,%d2
1718
91: putn %d6
1719
jbra 6b
1720
1721
31: putc '\n'
1722
movel #8+1,%d2
1723
32: putc ' '
1724
dbra %d2,32b
1725
jbra 3b
1726
1727
11: putc '\n'
1728
jbra 1b
1729
#endif /* MMU 040 Dumping code that's gory and detailed */
1730
1731
lea %pc@(kernel_pg_dir),%a5
1732
movel %a5,%a0 /* a0 has the address of the root table ptr */
1733
movel #0x00000000,%a4 /* logical address */
1734
moveql #0,%d0
1735
40:
1736
/* Increment the logical address and preserve in d5 */
1737
movel %a4,%d5
1738
addil #PAGESIZE<<13,%d5
1739
movel %a0@+,%d6
1740
btst #1,%d6
1741
jbne 41f
1742
jbsr mmu_print_tuple_invalidate
1743
jbra 48f
1744
41:
1745
movel #0,%d1
1746
andil #0xfffffe00,%d6
1747
movel %d6,%a1
1748
42:
1749
movel %a4,%d5
1750
addil #PAGESIZE<<6,%d5
1751
movel %a1@+,%d6
1752
btst #1,%d6
1753
jbne 43f
1754
jbsr mmu_print_tuple_invalidate
1755
jbra 47f
1756
43:
1757
movel #0,%d2
1758
andil #0xffffff00,%d6
1759
movel %d6,%a2
1760
44:
1761
movel %a4,%d5
1762
addil #PAGESIZE,%d5
1763
movel %a2@+,%d6
1764
btst #0,%d6
1765
jbne 45f
1766
jbsr mmu_print_tuple_invalidate
1767
jbra 46f
1768
45:
1769
moveml %d0-%d1,%sp@-
1770
movel %a4,%d0
1771
movel %d6,%d1
1772
andil #0xfffff4e0,%d1
1773
lea %pc@(mmu_040_print_flags),%a6
1774
jbsr mmu_print_tuple
1775
moveml %sp@+,%d0-%d1
1776
46:
1777
movel %d5,%a4
1778
addq #1,%d2
1779
cmpib #64,%d2
1780
jbne 44b
1781
47:
1782
movel %d5,%a4
1783
addq #1,%d1
1784
cmpib #128,%d1
1785
jbne 42b
1786
48:
1787
movel %d5,%a4 /* move to the next logical address */
1788
addq #1,%d0
1789
cmpib #128,%d0
1790
jbne 40b
1791
1792
.chip 68040
1793
movec %dtt1,%d0
1794
movel %d0,%d1
1795
andiw #0x8000,%d1 /* is it valid ? */
1796
jbeq 1f /* No, bail out */
1797
1798
movel %d0,%d1
1799
andil #0xff000000,%d1 /* Get the address */
1800
putn %d1
1801
puts "=="
1802
putn %d1
1803
1804
movel %d0,%d6
1805
jbsr mmu_040_print_flags_tt
1806
1:
1807
movec %dtt0,%d0
1808
movel %d0,%d1
1809
andiw #0x8000,%d1 /* is it valid ? */
1810
jbeq 1f /* No, bail out */
1811
1812
movel %d0,%d1
1813
andil #0xff000000,%d1 /* Get the address */
1814
putn %d1
1815
puts "=="
1816
putn %d1
1817
1818
movel %d0,%d6
1819
jbsr mmu_040_print_flags_tt
1820
1:
1821
.chip 68k
1822
1823
jbra mmu_print_done
1824
1825
mmu_040_print_flags:
1826
btstl #10,%d6
1827
putZc(' ','G') /* global bit */
1828
btstl #7,%d6
1829
putZc(' ','S') /* supervisor bit */
1830
mmu_040_print_flags_tt:
1831
btstl #6,%d6
1832
jbne 3f
1833
putc 'C'
1834
btstl #5,%d6
1835
putZc('w','c') /* write through or copy-back */
1836
jbra 4f
1837
3:
1838
putc 'N'
1839
btstl #5,%d6
1840
putZc('s',' ') /* serialized non-cacheable, or non-cacheable */
1841
4:
1842
rts
1843
1844
mmu_030_print_flags:
1845
btstl #6,%d6
1846
putZc('C','I') /* write through or copy-back */
1847
rts
1848
1849
mmu_030_print:
1850
puts "\nMMU030\n"
1851
puts "\nrp:"
1852
putn %a5
1853
putc '\n'
1854
movel %a5,%d0
1855
andil #0xfffffff0,%d0
1856
movel %d0,%a0
1857
movel #0x00000000,%a4 /* logical address */
1858
movel #0,%d0
1859
30:
1860
movel %a4,%d5
1861
addil #PAGESIZE<<13,%d5
1862
movel %a0@+,%d6
1863
btst #1,%d6 /* is it a table ptr? */
1864
jbne 31f /* yes */
1865
btst #0,%d6 /* is it early terminating? */
1866
jbeq 1f /* no */
1867
jbsr mmu_030_print_helper
1868
jbra 38f
1869
1:
1870
jbsr mmu_print_tuple_invalidate
1871
jbra 38f
1872
31:
1873
movel #0,%d1
1874
andil #0xfffffff0,%d6
1875
movel %d6,%a1
1876
32:
1877
movel %a4,%d5
1878
addil #PAGESIZE<<6,%d5
1879
movel %a1@+,%d6
1880
btst #1,%d6 /* is it a table ptr? */
1881
jbne 33f /* yes */
1882
btst #0,%d6 /* is it a page descriptor? */
1883
jbeq 1f /* no */
1884
jbsr mmu_030_print_helper
1885
jbra 37f
1886
1:
1887
jbsr mmu_print_tuple_invalidate
1888
jbra 37f
1889
33:
1890
movel #0,%d2
1891
andil #0xfffffff0,%d6
1892
movel %d6,%a2
1893
34:
1894
movel %a4,%d5
1895
addil #PAGESIZE,%d5
1896
movel %a2@+,%d6
1897
btst #0,%d6
1898
jbne 35f
1899
jbsr mmu_print_tuple_invalidate
1900
jbra 36f
1901
35:
1902
jbsr mmu_030_print_helper
1903
36:
1904
movel %d5,%a4
1905
addq #1,%d2
1906
cmpib #64,%d2
1907
jbne 34b
1908
37:
1909
movel %d5,%a4
1910
addq #1,%d1
1911
cmpib #128,%d1
1912
jbne 32b
1913
38:
1914
movel %d5,%a4 /* move to the next logical address */
1915
addq #1,%d0
1916
cmpib #128,%d0
1917
jbne 30b
1918
1919
mmu_print_done:
1920
puts "\n\n"
1921
1922
func_return mmu_print
1923
1924
1925
mmu_030_print_helper:
1926
moveml %d0-%d1,%sp@-
1927
movel %a4,%d0
1928
movel %d6,%d1
1929
lea %pc@(mmu_030_print_flags),%a6
1930
jbsr mmu_print_tuple
1931
moveml %sp@+,%d0-%d1
1932
rts
1933
1934
mmu_print_tuple_invalidate:
1935
moveml %a0/%d7,%sp@-
1936
1937
lea %pc@(L(mmu_print_data)),%a0
1938
tstl %a0@(mmu_next_valid)
1939
jbmi mmu_print_tuple_invalidate_exit
1940
1941
movel #MMU_PRINT_INVALID,%a0@(mmu_next_valid)
1942
1943
putn %a4
1944
1945
puts "##\n"
1946
1947
mmu_print_tuple_invalidate_exit:
1948
moveml %sp@+,%a0/%d7
1949
rts
1950
1951
1952
mmu_print_tuple:
1953
moveml %d0-%d7/%a0,%sp@-
1954
1955
lea %pc@(L(mmu_print_data)),%a0
1956
1957
tstl %a0@(mmu_next_valid)
1958
jble mmu_print_tuple_print
1959
1960
cmpl %a0@(mmu_next_physical),%d1
1961
jbeq mmu_print_tuple_increment
1962
1963
mmu_print_tuple_print:
1964
putn %d0
1965
puts "->"
1966
putn %d1
1967
1968
movel %d1,%d6
1969
jbsr %a6@
1970
1971
mmu_print_tuple_record:
1972
movel #MMU_PRINT_VALID,%a0@(mmu_next_valid)
1973
1974
movel %d1,%a0@(mmu_next_physical)
1975
1976
mmu_print_tuple_increment:
1977
movel %d5,%d7
1978
subl %a4,%d7
1979
addl %d7,%a0@(mmu_next_physical)
1980
1981
mmu_print_tuple_exit:
1982
moveml %sp@+,%d0-%d7/%a0
1983
rts
1984
1985
mmu_print_machine_cpu_types:
1986
puts "machine: "
1987
1988
is_not_amiga(1f)
1989
puts "amiga"
1990
jbra 9f
1991
1:
1992
is_not_atari(2f)
1993
puts "atari"
1994
jbra 9f
1995
2:
1996
is_not_mac(3f)
1997
puts "macintosh"
1998
jbra 9f
1999
3: puts "unknown"
2000
9: putc '\n'
2001
2002
puts "cputype: 0"
2003
is_not_060(1f)
2004
putc '6'
2005
jbra 9f
2006
1:
2007
is_not_040_or_060(2f)
2008
putc '4'
2009
jbra 9f
2010
2: putc '3'
2011
9: putc '0'
2012
putc '\n'
2013
2014
rts
2015
#endif /* MMU_PRINT */
2016
2017
/*
2018
* mmu_map_tt
2019
*
2020
* This is a specific function which works on all 680x0 machines.
2021
* On 030, 040 & 060 it will attempt to use Transparent Translation
2022
* registers (tt1).
2023
* On 020 it will call the standard mmu_map which will use early
2024
* terminating descriptors.
2025
*/
2026
func_start mmu_map_tt,%d0/%d1/%a0,4
2027
2028
dputs "mmu_map_tt:"
2029
dputn ARG1
2030
dputn ARG2
2031
dputn ARG3
2032
dputn ARG4
2033
dputc '\n'
2034
2035
is_020(L(do_map))
2036
2037
/* Extract the highest bit set
2038
*/
2039
bfffo ARG3{#0,#32},%d1
2040
cmpw #8,%d1
2041
jcc L(do_map)
2042
2043
/* And get the mask
2044
*/
2045
moveq #-1,%d0
2046
lsrl %d1,%d0
2047
lsrl #1,%d0
2048
2049
/* Mask the address
2050
*/
2051
movel %d0,%d1
2052
notl %d1
2053
andl ARG2,%d1
2054
2055
/* Generate the upper 16bit of the tt register
2056
*/
2057
lsrl #8,%d0
2058
orl %d0,%d1
2059
clrw %d1
2060
2061
is_040_or_060(L(mmu_map_tt_040))
2062
2063
/* set 030 specific bits (read/write access for supervisor mode
2064
* (highest function code set, lower two bits masked))
2065
*/
2066
orw #TTR_ENABLE+TTR_RWM+TTR_FCB2+TTR_FCM1+TTR_FCM0,%d1
2067
movel ARG4,%d0
2068
btst #6,%d0
2069
jeq 1f
2070
orw #TTR_CI,%d1
2071
2072
1: lea STACK,%a0
2073
dputn %d1
2074
movel %d1,%a0@
2075
.chip 68030
2076
tstl ARG1
2077
jne 1f
2078
pmove %a0@,%tt0
2079
jra 2f
2080
1: pmove %a0@,%tt1
2081
2: .chip 68k
2082
jra L(mmu_map_tt_done)
2083
2084
/* set 040 specific bits
2085
*/
2086
L(mmu_map_tt_040):
2087
orw #TTR_ENABLE+TTR_KERNELMODE,%d1
2088
orl ARG4,%d1
2089
dputn %d1
2090
2091
.chip 68040
2092
tstl ARG1
2093
jne 1f
2094
movec %d1,%itt0
2095
movec %d1,%dtt0
2096
jra 2f
2097
1: movec %d1,%itt1
2098
movec %d1,%dtt1
2099
2: .chip 68k
2100
2101
jra L(mmu_map_tt_done)
2102
2103
L(do_map):
2104
mmu_map_eq ARG2,ARG3,ARG4
2105
2106
L(mmu_map_tt_done):
2107
2108
func_return mmu_map_tt
2109
2110
/*
2111
* mmu_map
2112
*
2113
* This routine will map a range of memory using a pointer
2114
* table and allocating the pages on the fly from the kernel.
2115
* The pointer table does not have to be already linked into
2116
* the root table, this routine will do that if necessary.
2117
*
2118
* NOTE
2119
* This routine will assert failure and use the serial_putc
2120
* routines in the case of a run-time error. For example,
2121
* if the address is already mapped.
2122
*
2123
* NOTE-2
2124
* This routine will use early terminating descriptors
2125
* where possible for the 68020+68851 and 68030 type
2126
* processors.
2127
*/
2128
func_start mmu_map,%d0-%d4/%a0-%a4
2129
2130
dputs "\nmmu_map:"
2131
dputn ARG1
2132
dputn ARG2
2133
dputn ARG3
2134
dputn ARG4
2135
dputc '\n'
2136
2137
/* Get logical address and round it down to 256KB
2138
*/
2139
movel ARG1,%d0
2140
andl #-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2141
movel %d0,%a3
2142
2143
/* Get the end address
2144
*/
2145
movel ARG1,%a4
2146
addl ARG3,%a4
2147
subql #1,%a4
2148
2149
/* Get physical address and round it down to 256KB
2150
*/
2151
movel ARG2,%d0
2152
andl #-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2153
movel %d0,%a2
2154
2155
/* Add page attributes to the physical address
2156
*/
2157
movel ARG4,%d0
2158
orw #_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2159
addw %d0,%a2
2160
2161
dputn %a2
2162
dputn %a3
2163
dputn %a4
2164
2165
is_not_040_or_060(L(mmu_map_030))
2166
2167
addw #_PAGE_GLOBAL040,%a2
2168
/*
2169
* MMU 040 & 060 Support
2170
*
2171
* The MMU usage for the 040 and 060 is different enough from
2172
* the 030 and 68851 that there is separate code. This comment
2173
* block describes the data structures and algorithms built by
2174
* this code.
2175
*
2176
* The 040 does not support early terminating descriptors, as
2177
* the 030 does. Therefore, a third level of table is needed
2178
* for the 040, and that would be the page table. In Linux,
2179
* page tables are allocated directly from the memory above the
2180
* kernel.
2181
*
2182
*/
2183
2184
L(mmu_map_040):
2185
/* Calculate the offset into the root table
2186
*/
2187
movel %a3,%d0
2188
moveq #ROOT_INDEX_SHIFT,%d1
2189
lsrl %d1,%d0
2190
mmu_get_root_table_entry %d0
2191
2192
/* Calculate the offset into the pointer table
2193
*/
2194
movel %a3,%d0
2195
moveq #PTR_INDEX_SHIFT,%d1
2196
lsrl %d1,%d0
2197
andl #PTR_TABLE_SIZE-1,%d0
2198
mmu_get_ptr_table_entry %a0,%d0
2199
2200
/* Calculate the offset into the page table
2201
*/
2202
movel %a3,%d0
2203
moveq #PAGE_INDEX_SHIFT,%d1
2204
lsrl %d1,%d0
2205
andl #PAGE_TABLE_SIZE-1,%d0
2206
mmu_get_page_table_entry %a0,%d0
2207
2208
/* The page table entry must not no be busy
2209
*/
2210
tstl %a0@
2211
jne L(mmu_map_error)
2212
2213
/* Do the mapping and advance the pointers
2214
*/
2215
movel %a2,%a0@
2216
2:
2217
addw #PAGESIZE,%a2
2218
addw #PAGESIZE,%a3
2219
2220
/* Ready with mapping?
2221
*/
2222
lea %a3@(-1),%a0
2223
cmpl %a0,%a4
2224
jhi L(mmu_map_040)
2225
jra L(mmu_map_done)
2226
2227
L(mmu_map_030):
2228
/* Calculate the offset into the root table
2229
*/
2230
movel %a3,%d0
2231
moveq #ROOT_INDEX_SHIFT,%d1
2232
lsrl %d1,%d0
2233
mmu_get_root_table_entry %d0
2234
2235
/* Check if logical address 32MB aligned,
2236
* so we can try to map it once
2237
*/
2238
movel %a3,%d0
2239
andl #(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1)&(-ROOT_TABLE_SIZE),%d0
2240
jne 1f
2241
2242
/* Is there enough to map for 32MB at once
2243
*/
2244
lea %a3@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1),%a1
2245
cmpl %a1,%a4
2246
jcs 1f
2247
2248
addql #1,%a1
2249
2250
/* The root table entry must not no be busy
2251
*/
2252
tstl %a0@
2253
jne L(mmu_map_error)
2254
2255
/* Do the mapping and advance the pointers
2256
*/
2257
dputs "early term1"
2258
dputn %a2
2259
dputn %a3
2260
dputn %a1
2261
dputc '\n'
2262
movel %a2,%a0@
2263
2264
movel %a1,%a3
2265
lea %a2@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE),%a2
2266
jra L(mmu_mapnext_030)
2267
1:
2268
/* Calculate the offset into the pointer table
2269
*/
2270
movel %a3,%d0
2271
moveq #PTR_INDEX_SHIFT,%d1
2272
lsrl %d1,%d0
2273
andl #PTR_TABLE_SIZE-1,%d0
2274
mmu_get_ptr_table_entry %a0,%d0
2275
2276
/* The pointer table entry must not no be busy
2277
*/
2278
tstl %a0@
2279
jne L(mmu_map_error)
2280
2281
/* Do the mapping and advance the pointers
2282
*/
2283
dputs "early term2"
2284
dputn %a2
2285
dputn %a3
2286
dputc '\n'
2287
movel %a2,%a0@
2288
2289
addl #PAGE_TABLE_SIZE*PAGESIZE,%a2
2290
addl #PAGE_TABLE_SIZE*PAGESIZE,%a3
2291
2292
L(mmu_mapnext_030):
2293
/* Ready with mapping?
2294
*/
2295
lea %a3@(-1),%a0
2296
cmpl %a0,%a4
2297
jhi L(mmu_map_030)
2298
jra L(mmu_map_done)
2299
2300
L(mmu_map_error):
2301
2302
dputs "mmu_map error:"
2303
dputn %a2
2304
dputn %a3
2305
dputc '\n'
2306
2307
L(mmu_map_done):
2308
2309
func_return mmu_map
2310
2311
/*
2312
* mmu_fixup
2313
*
2314
* On the 040 class machines, all pages that are used for the
2315
* mmu have to be fixed up.
2316
*/
2317
2318
func_start mmu_fixup_page_mmu_cache,%d0/%a0
2319
2320
dputs "mmu_fixup_page_mmu_cache"
2321
dputn ARG1
2322
2323
/* Calculate the offset into the root table
2324
*/
2325
movel ARG1,%d0
2326
moveq #ROOT_INDEX_SHIFT,%d1
2327
lsrl %d1,%d0
2328
mmu_get_root_table_entry %d0
2329
2330
/* Calculate the offset into the pointer table
2331
*/
2332
movel ARG1,%d0
2333
moveq #PTR_INDEX_SHIFT,%d1
2334
lsrl %d1,%d0
2335
andl #PTR_TABLE_SIZE-1,%d0
2336
mmu_get_ptr_table_entry %a0,%d0
2337
2338
/* Calculate the offset into the page table
2339
*/
2340
movel ARG1,%d0
2341
moveq #PAGE_INDEX_SHIFT,%d1
2342
lsrl %d1,%d0
2343
andl #PAGE_TABLE_SIZE-1,%d0
2344
mmu_get_page_table_entry %a0,%d0
2345
2346
movel %a0@,%d0
2347
andil #_CACHEMASK040,%d0
2348
orl %pc@(m68k_pgtable_cachemode),%d0
2349
movel %d0,%a0@
2350
2351
dputc '\n'
2352
2353
func_return mmu_fixup_page_mmu_cache
2354
2355
/*
2356
* mmu_temp_map
2357
*
2358
* create a temporary mapping to enable the mmu,
2359
* this we don't need any transparation translation tricks.
2360
*/
2361
2362
func_start mmu_temp_map,%d0/%d1/%a0/%a1
2363
2364
dputs "mmu_temp_map"
2365
dputn ARG1
2366
dputn ARG2
2367
dputc '\n'
2368
2369
lea %pc@(L(temp_mmap_mem)),%a1
2370
2371
/* Calculate the offset in the root table
2372
*/
2373
movel ARG2,%d0
2374
moveq #ROOT_INDEX_SHIFT,%d1
2375
lsrl %d1,%d0
2376
mmu_get_root_table_entry %d0
2377
2378
/* Check if the table is temporary allocated, so we have to reuse it
2379
*/
2380
movel %a0@,%d0
2381
cmpl %pc@(L(memory_start)),%d0
2382
jcc 1f
2383
2384
/* Temporary allocate a ptr table and insert it into the root table
2385
*/
2386
movel %a1@,%d0
2387
addl #PTR_TABLE_SIZE*4,%a1@
2388
orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2389
movel %d0,%a0@
2390
dputs " (new)"
2391
1:
2392
dputn %d0
2393
/* Mask the root table entry for the ptr table
2394
*/
2395
andw #-ROOT_TABLE_SIZE,%d0
2396
movel %d0,%a0
2397
2398
/* Calculate the offset into the pointer table
2399
*/
2400
movel ARG2,%d0
2401
moveq #PTR_INDEX_SHIFT,%d1
2402
lsrl %d1,%d0
2403
andl #PTR_TABLE_SIZE-1,%d0
2404
lea %a0@(%d0*4),%a0
2405
dputn %a0
2406
2407
/* Check if a temporary page table is already allocated
2408
*/
2409
movel %a0@,%d0
2410
jne 1f
2411
2412
/* Temporary allocate a page table and insert it into the ptr table
2413
*/
2414
movel %a1@,%d0
2415
/* The 512 should be PAGE_TABLE_SIZE*4, but that violates the
2416
alignment restriction for pointer tables on the '0[46]0. */
2417
addl #512,%a1@
2418
orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2419
movel %d0,%a0@
2420
dputs " (new)"
2421
1:
2422
dputn %d0
2423
/* Mask the ptr table entry for the page table
2424
*/
2425
andw #-PTR_TABLE_SIZE,%d0
2426
movel %d0,%a0
2427
2428
/* Calculate the offset into the page table
2429
*/
2430
movel ARG2,%d0
2431
moveq #PAGE_INDEX_SHIFT,%d1
2432
lsrl %d1,%d0
2433
andl #PAGE_TABLE_SIZE-1,%d0
2434
lea %a0@(%d0*4),%a0
2435
dputn %a0
2436
2437
/* Insert the address into the page table
2438
*/
2439
movel ARG1,%d0
2440
andw #-PAGESIZE,%d0
2441
orw #_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2442
movel %d0,%a0@
2443
dputn %d0
2444
2445
dputc '\n'
2446
2447
func_return mmu_temp_map
2448
2449
func_start mmu_engage,%d0-%d2/%a0-%a3
2450
2451
moveq #ROOT_TABLE_SIZE-1,%d0
2452
/* Temporarily use a different root table. */
2453
lea %pc@(L(kernel_pgdir_ptr)),%a0
2454
movel %a0@,%a2
2455
movel %pc@(L(memory_start)),%a1
2456
movel %a1,%a0@
2457
movel %a2,%a0
2458
1:
2459
movel %a0@+,%a1@+
2460
dbra %d0,1b
2461
2462
lea %pc@(L(temp_mmap_mem)),%a0
2463
movel %a1,%a0@
2464
2465
movew #PAGESIZE-1,%d0
2466
1:
2467
clrl %a1@+
2468
dbra %d0,1b
2469
2470
lea %pc@(1b),%a0
2471
movel #1b,%a1
2472
/* Skip temp mappings if phys == virt */
2473
cmpl %a0,%a1
2474
jeq 1f
2475
2476
mmu_temp_map %a0,%a0
2477
mmu_temp_map %a0,%a1
2478
2479
addw #PAGESIZE,%a0
2480
addw #PAGESIZE,%a1
2481
mmu_temp_map %a0,%a0
2482
mmu_temp_map %a0,%a1
2483
1:
2484
movel %pc@(L(memory_start)),%a3
2485
movel %pc@(L(phys_kernel_start)),%d2
2486
2487
is_not_040_or_060(L(mmu_engage_030))
2488
2489
L(mmu_engage_040):
2490
.chip 68040
2491
nop
2492
cinva %bc
2493
nop
2494
pflusha
2495
nop
2496
movec %a3,%srp
2497
movel #TC_ENABLE+TC_PAGE4K,%d0
2498
movec %d0,%tc /* enable the MMU */
2499
jmp 1f:l
2500
1: nop
2501
movec %a2,%srp
2502
nop
2503
cinva %bc
2504
nop
2505
pflusha
2506
.chip 68k
2507
jra L(mmu_engage_cleanup)
2508
2509
L(mmu_engage_030_temp):
2510
.space 12
2511
L(mmu_engage_030):
2512
.chip 68030
2513
lea %pc@(L(mmu_engage_030_temp)),%a0
2514
movel #0x80000002,%a0@
2515
movel %a3,%a0@(4)
2516
movel #0x0808,%d0
2517
movec %d0,%cacr
2518
pmove %a0@,%srp
2519
pflusha
2520
/*
2521
* enable,super root enable,4096 byte pages,7 bit root index,
2522
* 7 bit pointer index, 6 bit page table index.
2523
*/
2524
movel #0x82c07760,%a0@(8)
2525
pmove %a0@(8),%tc /* enable the MMU */
2526
jmp 1f:l
2527
1: movel %a2,%a0@(4)
2528
movel #0x0808,%d0
2529
movec %d0,%cacr
2530
pmove %a0@,%srp
2531
pflusha
2532
.chip 68k
2533
2534
L(mmu_engage_cleanup):
2535
subl #PAGE_OFFSET,%d2
2536
subl %d2,%a2
2537
movel %a2,L(kernel_pgdir_ptr)
2538
subl %d2,%fp
2539
subl %d2,%sp
2540
subl %d2,ARG0
2541
2542
func_return mmu_engage
2543
2544
func_start mmu_get_root_table_entry,%d0/%a1
2545
2546
#if 0
2547
dputs "mmu_get_root_table_entry:"
2548
dputn ARG1
2549
dputs " ="
2550
#endif
2551
2552
movel %pc@(L(kernel_pgdir_ptr)),%a0
2553
tstl %a0
2554
jne 2f
2555
2556
dputs "\nmmu_init:"
2557
2558
/* Find the start of free memory, get_bi_record does this for us,
2559
* as the bootinfo structure is located directly behind the kernel
2560
* and and we simply search for the last entry.
2561
*/
2562
get_bi_record BI_LAST
2563
addw #PAGESIZE-1,%a0
2564
movel %a0,%d0
2565
andw #-PAGESIZE,%d0
2566
2567
dputn %d0
2568
2569
lea %pc@(L(memory_start)),%a0
2570
movel %d0,%a0@
2571
lea %pc@(L(kernel_end)),%a0
2572
movel %d0,%a0@
2573
2574
/* we have to return the first page at _stext since the init code
2575
* in mm/init.c simply expects kernel_pg_dir there, the rest of
2576
* page is used for further ptr tables in get_ptr_table.
2577
*/
2578
lea %pc@(_stext),%a0
2579
lea %pc@(L(mmu_cached_pointer_tables)),%a1
2580
movel %a0,%a1@
2581
addl #ROOT_TABLE_SIZE*4,%a1@
2582
2583
lea %pc@(L(mmu_num_pointer_tables)),%a1
2584
addql #1,%a1@
2585
2586
/* clear the page
2587
*/
2588
movel %a0,%a1
2589
movew #PAGESIZE/4-1,%d0
2590
1:
2591
clrl %a1@+
2592
dbra %d0,1b
2593
2594
lea %pc@(L(kernel_pgdir_ptr)),%a1
2595
movel %a0,%a1@
2596
2597
dputn %a0
2598
dputc '\n'
2599
2:
2600
movel ARG1,%d0
2601
lea %a0@(%d0*4),%a0
2602
2603
#if 0
2604
dputn %a0
2605
dputc '\n'
2606
#endif
2607
2608
func_return mmu_get_root_table_entry
2609
2610
2611
2612
func_start mmu_get_ptr_table_entry,%d0/%a1
2613
2614
#if 0
2615
dputs "mmu_get_ptr_table_entry:"
2616
dputn ARG1
2617
dputn ARG2
2618
dputs " ="
2619
#endif
2620
2621
movel ARG1,%a0
2622
movel %a0@,%d0
2623
jne 2f
2624
2625
/* Keep track of the number of pointer tables we use
2626
*/
2627
dputs "\nmmu_get_new_ptr_table:"
2628
lea %pc@(L(mmu_num_pointer_tables)),%a0
2629
movel %a0@,%d0
2630
addql #1,%a0@
2631
2632
/* See if there is a free pointer table in our cache of pointer tables
2633
*/
2634
lea %pc@(L(mmu_cached_pointer_tables)),%a1
2635
andw #7,%d0
2636
jne 1f
2637
2638
/* Get a new pointer table page from above the kernel memory
2639
*/
2640
get_new_page
2641
movel %a0,%a1@
2642
1:
2643
/* There is an unused pointer table in our cache... use it
2644
*/
2645
movel %a1@,%d0
2646
addl #PTR_TABLE_SIZE*4,%a1@
2647
2648
dputn %d0
2649
dputc '\n'
2650
2651
/* Insert the new pointer table into the root table
2652
*/
2653
movel ARG1,%a0
2654
orw #_PAGE_TABLE+_PAGE_ACCESSED,%d0
2655
movel %d0,%a0@
2656
2:
2657
/* Extract the pointer table entry
2658
*/
2659
andw #-PTR_TABLE_SIZE,%d0
2660
movel %d0,%a0
2661
movel ARG2,%d0
2662
lea %a0@(%d0*4),%a0
2663
2664
#if 0
2665
dputn %a0
2666
dputc '\n'
2667
#endif
2668
2669
func_return mmu_get_ptr_table_entry
2670
2671
2672
func_start mmu_get_page_table_entry,%d0/%a1
2673
2674
#if 0
2675
dputs "mmu_get_page_table_entry:"
2676
dputn ARG1
2677
dputn ARG2
2678
dputs " ="
2679
#endif
2680
2681
movel ARG1,%a0
2682
movel %a0@,%d0
2683
jne 2f
2684
2685
/* If the page table entry doesn't exist, we allocate a complete new
2686
* page and use it as one continues big page table which can cover
2687
* 4MB of memory, nearly almost all mappings have that alignment.
2688
*/
2689
get_new_page
2690
addw #_PAGE_TABLE+_PAGE_ACCESSED,%a0
2691
2692
/* align pointer table entry for a page of page tables
2693
*/
2694
movel ARG1,%d0
2695
andw #-(PAGESIZE/PAGE_TABLE_SIZE),%d0
2696
movel %d0,%a1
2697
2698
/* Insert the page tables into the pointer entries
2699
*/
2700
moveq #PAGESIZE/PAGE_TABLE_SIZE/4-1,%d0
2701
1:
2702
movel %a0,%a1@+
2703
lea %a0@(PAGE_TABLE_SIZE*4),%a0
2704
dbra %d0,1b
2705
2706
/* Now we can get the initialized pointer table entry
2707
*/
2708
movel ARG1,%a0
2709
movel %a0@,%d0
2710
2:
2711
/* Extract the page table entry
2712
*/
2713
andw #-PAGE_TABLE_SIZE,%d0
2714
movel %d0,%a0
2715
movel ARG2,%d0
2716
lea %a0@(%d0*4),%a0
2717
2718
#if 0
2719
dputn %a0
2720
dputc '\n'
2721
#endif
2722
2723
func_return mmu_get_page_table_entry
2724
2725
/*
2726
* get_new_page
2727
*
2728
* Return a new page from the memory start and clear it.
2729
*/
2730
func_start get_new_page,%d0/%a1
2731
2732
dputs "\nget_new_page:"
2733
2734
/* allocate the page and adjust memory_start
2735
*/
2736
lea %pc@(L(memory_start)),%a0
2737
movel %a0@,%a1
2738
addl #PAGESIZE,%a0@
2739
2740
/* clear the new page
2741
*/
2742
movel %a1,%a0
2743
movew #PAGESIZE/4-1,%d0
2744
1:
2745
clrl %a1@+
2746
dbra %d0,1b
2747
2748
dputn %a0
2749
dputc '\n'
2750
2751
func_return get_new_page
2752
2753
2754
2755
/*
2756
* Debug output support
2757
* Atarians have a choice between the parallel port, the serial port
2758
* from the MFP or a serial port of the SCC
2759
*/
2760
2761
#ifdef CONFIG_MAC
2762
2763
L(scc_initable_mac):
2764
.byte 9,12 /* Reset */
2765
.byte 4,0x44 /* x16, 1 stopbit, no parity */
2766
.byte 3,0xc0 /* receiver: 8 bpc */
2767
.byte 5,0xe2 /* transmitter: 8 bpc, assert dtr/rts */
2768
.byte 9,0 /* no interrupts */
2769
.byte 10,0 /* NRZ */
2770
.byte 11,0x50 /* use baud rate generator */
2771
.byte 12,10,13,0 /* 9600 baud */
2772
.byte 14,1 /* Baud rate generator enable */
2773
.byte 3,0xc1 /* enable receiver */
2774
.byte 5,0xea /* enable transmitter */
2775
.byte -1
2776
.even
2777
#endif
2778
2779
#ifdef CONFIG_ATARI
2780
/* #define USE_PRINTER */
2781
/* #define USE_SCC_B */
2782
/* #define USE_SCC_A */
2783
#define USE_MFP
2784
2785
#if defined(USE_SCC_A) || defined(USE_SCC_B)
2786
#define USE_SCC
2787
/* Initialisation table for SCC */
2788
L(scc_initable):
2789
.byte 9,12 /* Reset */
2790
.byte 4,0x44 /* x16, 1 stopbit, no parity */
2791
.byte 3,0xc0 /* receiver: 8 bpc */
2792
.byte 5,0xe2 /* transmitter: 8 bpc, assert dtr/rts */
2793
.byte 9,0 /* no interrupts */
2794
.byte 10,0 /* NRZ */
2795
.byte 11,0x50 /* use baud rate generator */
2796
.byte 12,24,13,0 /* 9600 baud */
2797
.byte 14,2,14,3 /* use master clock for BRG, enable */
2798
.byte 3,0xc1 /* enable receiver */
2799
.byte 5,0xea /* enable transmitter */
2800
.byte -1
2801
.even
2802
#endif
2803
2804
#ifdef USE_PRINTER
2805
2806
LPSG_SELECT = 0xff8800
2807
LPSG_READ = 0xff8800
2808
LPSG_WRITE = 0xff8802
2809
LPSG_IO_A = 14
2810
LPSG_IO_B = 15
2811
LPSG_CONTROL = 7
2812
LSTMFP_GPIP = 0xfffa01
2813
LSTMFP_DDR = 0xfffa05
2814
LSTMFP_IERB = 0xfffa09
2815
2816
#elif defined(USE_SCC_B)
2817
2818
LSCC_CTRL = 0xff8c85
2819
LSCC_DATA = 0xff8c87
2820
2821
#elif defined(USE_SCC_A)
2822
2823
LSCC_CTRL = 0xff8c81
2824
LSCC_DATA = 0xff8c83
2825
2826
#elif defined(USE_MFP)
2827
2828
LMFP_UCR = 0xfffa29
2829
LMFP_TDCDR = 0xfffa1d
2830
LMFP_TDDR = 0xfffa25
2831
LMFP_TSR = 0xfffa2d
2832
LMFP_UDR = 0xfffa2f
2833
2834
#endif
2835
#endif /* CONFIG_ATARI */
2836
2837
/*
2838
* Serial port output support.
2839
*/
2840
2841
/*
2842
* Initialize serial port hardware for 9600/8/1
2843
*/
2844
func_start serial_init,%d0/%d1/%a0/%a1
2845
/*
2846
* Some of the register usage that follows
2847
* CONFIG_AMIGA
2848
* a0 = pointer to boot info record
2849
* d0 = boot info offset
2850
* CONFIG_ATARI
2851
* a0 = address of SCC
2852
* a1 = Liobase address/address of scc_initable
2853
* d0 = init data for serial port
2854
* CONFIG_MAC
2855
* a0 = address of SCC
2856
* a1 = address of scc_initable_mac
2857
* d0 = init data for serial port
2858
*/
2859
2860
#ifdef CONFIG_AMIGA
2861
#define SERIAL_DTR 7
2862
#define SERIAL_CNTRL CIABBASE+C_PRA
2863
2864
is_not_amiga(1f)
2865
lea %pc@(L(custom)),%a0
2866
movel #-ZTWOBASE,%a0@
2867
bclr #SERIAL_DTR,SERIAL_CNTRL-ZTWOBASE
2868
get_bi_record BI_AMIGA_SERPER
2869
movew %a0@,CUSTOMBASE+C_SERPER-ZTWOBASE
2870
| movew #61,CUSTOMBASE+C_SERPER-ZTWOBASE
2871
1:
2872
#endif
2873
#ifdef CONFIG_ATARI
2874
is_not_atari(4f)
2875
movel %pc@(L(iobase)),%a1
2876
#if defined(USE_PRINTER)
2877
bclr #0,%a1@(LSTMFP_IERB)
2878
bclr #0,%a1@(LSTMFP_DDR)
2879
moveb #LPSG_CONTROL,%a1@(LPSG_SELECT)
2880
moveb #0xff,%a1@(LPSG_WRITE)
2881
moveb #LPSG_IO_B,%a1@(LPSG_SELECT)
2882
clrb %a1@(LPSG_WRITE)
2883
moveb #LPSG_IO_A,%a1@(LPSG_SELECT)
2884
moveb %a1@(LPSG_READ),%d0
2885
bset #5,%d0
2886
moveb %d0,%a1@(LPSG_WRITE)
2887
#elif defined(USE_SCC)
2888
lea %a1@(LSCC_CTRL),%a0
2889
lea %pc@(L(scc_initable)),%a1
2890
2: moveb %a1@+,%d0
2891
jmi 3f
2892
moveb %d0,%a0@
2893
moveb %a1@+,%a0@
2894
jra 2b
2895
3: clrb %a0@
2896
#elif defined(USE_MFP)
2897
bclr #1,%a1@(LMFP_TSR)
2898
moveb #0x88,%a1@(LMFP_UCR)
2899
andb #0x70,%a1@(LMFP_TDCDR)
2900
moveb #2,%a1@(LMFP_TDDR)
2901
orb #1,%a1@(LMFP_TDCDR)
2902
bset #1,%a1@(LMFP_TSR)
2903
#endif
2904
jra L(serial_init_done)
2905
4:
2906
#endif
2907
#ifdef CONFIG_MAC
2908
is_not_mac(L(serial_init_not_mac))
2909
#ifdef MAC_SERIAL_DEBUG
2910
#if !defined(MAC_USE_SCC_A) && !defined(MAC_USE_SCC_B)
2911
#define MAC_USE_SCC_B
2912
#endif
2913
#define mac_scc_cha_b_ctrl_offset 0x0
2914
#define mac_scc_cha_a_ctrl_offset 0x2
2915
#define mac_scc_cha_b_data_offset 0x4
2916
#define mac_scc_cha_a_data_offset 0x6
2917
2918
#ifdef MAC_USE_SCC_A
2919
/* Initialize channel A */
2920
movel %pc@(L(mac_sccbase)),%a0
2921
lea %pc@(L(scc_initable_mac)),%a1
2922
5: moveb %a1@+,%d0
2923
jmi 6f
2924
moveb %d0,%a0@(mac_scc_cha_a_ctrl_offset)
2925
moveb %a1@+,%a0@(mac_scc_cha_a_ctrl_offset)
2926
jra 5b
2927
6:
2928
#endif /* MAC_USE_SCC_A */
2929
2930
#ifdef MAC_USE_SCC_B
2931
/* Initialize channel B */
2932
#ifndef MAC_USE_SCC_A /* Load mac_sccbase only if needed */
2933
movel %pc@(L(mac_sccbase)),%a0
2934
#endif /* MAC_USE_SCC_A */
2935
lea %pc@(L(scc_initable_mac)),%a1
2936
7: moveb %a1@+,%d0
2937
jmi 8f
2938
moveb %d0,%a0@(mac_scc_cha_b_ctrl_offset)
2939
moveb %a1@+,%a0@(mac_scc_cha_b_ctrl_offset)
2940
jra 7b
2941
8:
2942
#endif /* MAC_USE_SCC_B */
2943
#endif /* MAC_SERIAL_DEBUG */
2944
2945
jra L(serial_init_done)
2946
L(serial_init_not_mac):
2947
#endif /* CONFIG_MAC */
2948
2949
#ifdef CONFIG_Q40
2950
is_not_q40(2f)
2951
/* debug output goes into SRAM, so we don't do it unless requested
2952
- check for '%LX$' signature in SRAM */
2953
lea %pc@(q40_mem_cptr),%a1
2954
move.l #0xff020010,%a1@ /* must be inited - also used by debug=mem */
2955
move.l #0xff020000,%a1
2956
cmp.b #'%',%a1@
2957
bne 2f /*nodbg*/
2958
addq.w #4,%a1
2959
cmp.b #'L',%a1@
2960
bne 2f /*nodbg*/
2961
addq.w #4,%a1
2962
cmp.b #'X',%a1@
2963
bne 2f /*nodbg*/
2964
addq.w #4,%a1
2965
cmp.b #'$',%a1@
2966
bne 2f /*nodbg*/
2967
/* signature OK */
2968
lea %pc@(L(q40_do_debug)),%a1
2969
tas %a1@
2970
/*nodbg: q40_do_debug is 0 by default*/
2971
2:
2972
#endif
2973
2974
#ifdef CONFIG_APOLLO
2975
/* We count on the PROM initializing SIO1 */
2976
#endif
2977
2978
#ifdef CONFIG_HP300
2979
/* We count on the boot loader initialising the UART */
2980
#endif
2981
2982
L(serial_init_done):
2983
func_return serial_init
2984
2985
/*
2986
* Output character on serial port.
2987
*/
2988
func_start serial_putc,%d0/%d1/%a0/%a1
2989
2990
movel ARG1,%d0
2991
cmpib #'\n',%d0
2992
jbne 1f
2993
2994
/* A little safe recursion is good for the soul */
2995
serial_putc #'\r'
2996
1:
2997
2998
#ifdef CONFIG_AMIGA
2999
is_not_amiga(2f)
3000
andw #0x00ff,%d0
3001
oriw #0x0100,%d0
3002
movel %pc@(L(custom)),%a0
3003
movew %d0,%a0@(CUSTOMBASE+C_SERDAT)
3004
1: movew %a0@(CUSTOMBASE+C_SERDATR),%d0
3005
andw #0x2000,%d0
3006
jeq 1b
3007
jra L(serial_putc_done)
3008
2:
3009
#endif
3010
3011
#ifdef CONFIG_MAC
3012
is_not_mac(5f)
3013
3014
#ifdef MAC_SERIAL_DEBUG
3015
3016
#ifdef MAC_USE_SCC_A
3017
movel %pc@(L(mac_sccbase)),%a1
3018
3: btst #2,%a1@(mac_scc_cha_a_ctrl_offset)
3019
jeq 3b
3020
moveb %d0,%a1@(mac_scc_cha_a_data_offset)
3021
#endif /* MAC_USE_SCC_A */
3022
3023
#ifdef MAC_USE_SCC_B
3024
#ifndef MAC_USE_SCC_A /* Load mac_sccbase only if needed */
3025
movel %pc@(L(mac_sccbase)),%a1
3026
#endif /* MAC_USE_SCC_A */
3027
4: btst #2,%a1@(mac_scc_cha_b_ctrl_offset)
3028
jeq 4b
3029
moveb %d0,%a1@(mac_scc_cha_b_data_offset)
3030
#endif /* MAC_USE_SCC_B */
3031
3032
#endif /* MAC_SERIAL_DEBUG */
3033
3034
jra L(serial_putc_done)
3035
5:
3036
#endif /* CONFIG_MAC */
3037
3038
#ifdef CONFIG_ATARI
3039
is_not_atari(4f)
3040
movel %pc@(L(iobase)),%a1
3041
#if defined(USE_PRINTER)
3042
3: btst #0,%a1@(LSTMFP_GPIP)
3043
jne 3b
3044
moveb #LPSG_IO_B,%a1@(LPSG_SELECT)
3045
moveb %d0,%a1@(LPSG_WRITE)
3046
moveb #LPSG_IO_A,%a1@(LPSG_SELECT)
3047
moveb %a1@(LPSG_READ),%d0
3048
bclr #5,%d0
3049
moveb %d0,%a1@(LPSG_WRITE)
3050
nop
3051
nop
3052
bset #5,%d0
3053
moveb %d0,%a1@(LPSG_WRITE)
3054
#elif defined(USE_SCC)
3055
3: btst #2,%a1@(LSCC_CTRL)
3056
jeq 3b
3057
moveb %d0,%a1@(LSCC_DATA)
3058
#elif defined(USE_MFP)
3059
3: btst #7,%a1@(LMFP_TSR)
3060
jeq 3b
3061
moveb %d0,%a1@(LMFP_UDR)
3062
#endif
3063
jra L(serial_putc_done)
3064
4:
3065
#endif /* CONFIG_ATARI */
3066
3067
#ifdef CONFIG_MVME147
3068
is_not_mvme147(2f)
3069
1: btst #2,M147_SCC_CTRL_A
3070
jeq 1b
3071
moveb %d0,M147_SCC_DATA_A
3072
jbra L(serial_putc_done)
3073
2:
3074
#endif
3075
3076
#ifdef CONFIG_MVME16x
3077
is_not_mvme16x(2f)
3078
/*
3079
* If the loader gave us a board type then we can use that to
3080
* select an appropriate output routine; otherwise we just use
3081
* the Bug code. If we have to use the Bug that means the Bug
3082
* workspace has to be valid, which means the Bug has to use
3083
* the SRAM, which is non-standard.
3084
*/
3085
moveml %d0-%d7/%a2-%a6,%sp@-
3086
movel vme_brdtype,%d1
3087
jeq 1f | No tag - use the Bug
3088
cmpi #VME_TYPE_MVME162,%d1
3089
jeq 6f
3090
cmpi #VME_TYPE_MVME172,%d1
3091
jne 5f
3092
/* 162/172; it's an SCC */
3093
6: btst #2,M162_SCC_CTRL_A
3094
nop
3095
nop
3096
nop
3097
jeq 6b
3098
moveb #8,M162_SCC_CTRL_A
3099
nop
3100
nop
3101
nop
3102
moveb %d0,M162_SCC_CTRL_A
3103
jra 3f
3104
5:
3105
/* 166/167/177; it's a CD2401 */
3106
moveb #0,M167_CYCAR
3107
moveb M167_CYIER,%d2
3108
moveb #0x02,M167_CYIER
3109
7:
3110
btst #5,M167_PCSCCTICR
3111
jeq 7b
3112
moveb M167_PCTPIACKR,%d1
3113
moveb M167_CYLICR,%d1
3114
jeq 8f
3115
moveb #0x08,M167_CYTEOIR
3116
jra 7b
3117
8:
3118
moveb %d0,M167_CYTDR
3119
moveb #0,M167_CYTEOIR
3120
moveb %d2,M167_CYIER
3121
jra 3f
3122
1:
3123
moveb %d0,%sp@-
3124
trap #15
3125
.word 0x0020 /* TRAP 0x020 */
3126
3:
3127
moveml %sp@+,%d0-%d7/%a2-%a6
3128
jbra L(serial_putc_done)
3129
2:
3130
#endif /* CONFIG_MVME16x */
3131
3132
#ifdef CONFIG_BVME6000
3133
is_not_bvme6000(2f)
3134
/*
3135
* The BVME6000 machine has a serial port ...
3136
*/
3137
1: btst #2,BVME_SCC_CTRL_A
3138
jeq 1b
3139
moveb %d0,BVME_SCC_DATA_A
3140
jbra L(serial_putc_done)
3141
2:
3142
#endif
3143
3144
#ifdef CONFIG_SUN3X
3145
is_not_sun3x(2f)
3146
movel %d0,-(%sp)
3147
movel 0xFEFE0018,%a1
3148
jbsr (%a1)
3149
addq #4,%sp
3150
jbra L(serial_putc_done)
3151
2:
3152
#endif
3153
3154
#ifdef CONFIG_Q40
3155
is_not_q40(2f)
3156
tst.l %pc@(L(q40_do_debug)) /* only debug if requested */
3157
beq 2f
3158
lea %pc@(q40_mem_cptr),%a1
3159
move.l %a1@,%a0
3160
move.b %d0,%a0@
3161
addq.l #4,%a0
3162
move.l %a0,%a1@
3163
jbra L(serial_putc_done)
3164
2:
3165
#endif
3166
3167
#ifdef CONFIG_APOLLO
3168
is_not_apollo(2f)
3169
movl %pc@(L(iobase)),%a1
3170
moveb %d0,%a1@(LTHRB0)
3171
1: moveb %a1@(LSRB0),%d0
3172
andb #0x4,%d0
3173
beq 1b
3174
jbra L(serial_putc_done)
3175
2:
3176
#endif
3177
3178
#ifdef CONFIG_HP300
3179
is_not_hp300(3f)
3180
movl %pc@(L(iobase)),%a1
3181
addl %pc@(L(uartbase)),%a1
3182
movel %pc@(L(uart_scode)),%d1 /* Check the scode */
3183
jmi 3f /* Unset? Exit */
3184
cmpi #256,%d1 /* APCI scode? */
3185
jeq 2f
3186
1: moveb %a1@(DCALSR),%d1 /* Output to DCA */
3187
andb #0x20,%d1
3188
beq 1b
3189
moveb %d0,%a1@(DCADATA)
3190
jbra L(serial_putc_done)
3191
2: moveb %a1@(APCILSR),%d1 /* Output to APCI */
3192
andb #0x20,%d1
3193
beq 2b
3194
moveb %d0,%a1@(APCIDATA)
3195
jbra L(serial_putc_done)
3196
3:
3197
#endif
3198
3199
L(serial_putc_done):
3200
func_return serial_putc
3201
3202
/*
3203
* Output a string.
3204
*/
3205
func_start puts,%d0/%a0
3206
3207
movel ARG1,%a0
3208
jra 2f
3209
1:
3210
#ifdef CONSOLE
3211
console_putc %d0
3212
#endif
3213
#ifdef SERIAL_DEBUG
3214
serial_putc %d0
3215
#endif
3216
2: moveb %a0@+,%d0
3217
jne 1b
3218
3219
func_return puts
3220
3221
/*
3222
* Output number in hex notation.
3223
*/
3224
3225
func_start putn,%d0-%d2
3226
3227
putc ' '
3228
3229
movel ARG1,%d0
3230
moveq #7,%d1
3231
1: roll #4,%d0
3232
move %d0,%d2
3233
andb #0x0f,%d2
3234
addb #'0',%d2
3235
cmpb #'9',%d2
3236
jls 2f
3237
addb #'A'-('9'+1),%d2
3238
2:
3239
#ifdef CONSOLE
3240
console_putc %d2
3241
#endif
3242
#ifdef SERIAL_DEBUG
3243
serial_putc %d2
3244
#endif
3245
dbra %d1,1b
3246
3247
func_return putn
3248
3249
#ifdef CONFIG_MAC
3250
/*
3251
* mac_serial_print
3252
*
3253
* This routine takes its parameters on the stack. It then
3254
* turns around and calls the internal routine. This routine
3255
* is used until the Linux console driver initializes itself.
3256
*
3257
* The calling parameters are:
3258
* void mac_serial_print(const char *str);
3259
*
3260
* This routine does NOT understand variable arguments only
3261
* simple strings!
3262
*/
3263
ENTRY(mac_serial_print)
3264
moveml %d0/%a0,%sp@-
3265
#if 1
3266
move %sr,%sp@-
3267
ori #0x0700,%sr
3268
#endif
3269
movel %sp@(10),%a0 /* fetch parameter */
3270
jra 2f
3271
1: serial_putc %d0
3272
2: moveb %a0@+,%d0
3273
jne 1b
3274
#if 1
3275
move %sp@+,%sr
3276
#endif
3277
moveml %sp@+,%d0/%a0
3278
rts
3279
#endif /* CONFIG_MAC */
3280
3281
#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3282
func_start set_leds,%d0/%a0
3283
movel ARG1,%d0
3284
#ifdef CONFIG_HP300
3285
is_not_hp300(1f)
3286
movel %pc@(L(iobase)),%a0
3287
moveb %d0,%a0@(0x1ffff)
3288
jra 2f
3289
#endif
3290
1:
3291
#ifdef CONFIG_APOLLO
3292
movel %pc@(L(iobase)),%a0
3293
lsll #8,%d0
3294
eorw #0xff00,%d0
3295
moveb %d0,%a0@(LCPUCTRL)
3296
#endif
3297
2:
3298
func_return set_leds
3299
#endif
3300
3301
#ifdef CONSOLE
3302
/*
3303
* For continuity, see the data alignment
3304
* to which this structure is tied.
3305
*/
3306
#define Lconsole_struct_cur_column 0
3307
#define Lconsole_struct_cur_row 4
3308
#define Lconsole_struct_num_columns 8
3309
#define Lconsole_struct_num_rows 12
3310
#define Lconsole_struct_left_edge 16
3311
#define Lconsole_struct_penguin_putc 20
3312
3313
func_start console_init,%a0-%a4/%d0-%d7
3314
/*
3315
* Some of the register usage that follows
3316
* a0 = pointer to boot_info
3317
* a1 = pointer to screen
3318
* a2 = pointer to Lconsole_globals
3319
* d3 = pixel width of screen
3320
* d4 = pixel height of screen
3321
* (d3,d4) ~= (x,y) of a point just below
3322
* and to the right of the screen
3323
* NOT on the screen!
3324
* d5 = number of bytes per scan line
3325
* d6 = number of bytes on the entire screen
3326
*/
3327
3328
lea %pc@(L(console_globals)),%a2
3329
movel %pc@(L(mac_videobase)),%a1
3330
movel %pc@(L(mac_rowbytes)),%d5
3331
movel %pc@(L(mac_dimensions)),%d3 /* -> low byte */
3332
movel %d3,%d4
3333
swap %d4 /* -> high byte */
3334
andl #0xffff,%d3 /* d3 = screen width in pixels */
3335
andl #0xffff,%d4 /* d4 = screen height in pixels */
3336
3337
movel %d5,%d6
3338
| subl #20,%d6
3339
mulul %d4,%d6 /* scan line bytes x num scan lines */
3340
divul #8,%d6 /* we'll clear 8 bytes at a time */
3341
moveq #-1,%d0 /* Mac_black */
3342
subq #1,%d6
3343
3344
L(console_clear_loop):
3345
movel %d0,%a1@+
3346
movel %d0,%a1@+
3347
dbra %d6,L(console_clear_loop)
3348
3349
/* Calculate font size */
3350
3351
#if defined(FONT_8x8) && defined(CONFIG_FONT_8x8)
3352
lea %pc@(font_vga_8x8),%a0
3353
#elif defined(FONT_8x16) && defined(CONFIG_FONT_8x16)
3354
lea %pc@(font_vga_8x16),%a0
3355
#elif defined(FONT_6x11) && defined(CONFIG_FONT_6x11)
3356
lea %pc@(font_vga_6x11),%a0
3357
#elif defined(CONFIG_FONT_8x8) /* default */
3358
lea %pc@(font_vga_8x8),%a0
3359
#else /* no compiled-in font */
3360
lea 0,%a0
3361
#endif
3362
3363
/*
3364
* At this point we make a shift in register usage
3365
* a1 = address of console_font pointer
3366
*/
3367
lea %pc@(L(console_font)),%a1
3368
movel %a0,%a1@ /* store pointer to struct fbcon_font_desc in console_font */
3369
tstl %a0
3370
jeq 1f
3371
lea %pc@(L(console_font_data)),%a4
3372
movel %a0@(FONT_DESC_DATA),%d0
3373
subl #L(console_font),%a1
3374
addl %a1,%d0
3375
movel %d0,%a4@
3376
3377
/*
3378
* Calculate global maxs
3379
* Note - we can use either an
3380
* 8 x 16 or 8 x 8 character font
3381
* 6 x 11 also supported
3382
*/
3383
/* ASSERT: a0 = contents of Lconsole_font */
3384
movel %d3,%d0 /* screen width in pixels */
3385
divul %a0@(FONT_DESC_WIDTH),%d0 /* d0 = max num chars per row */
3386
3387
movel %d4,%d1 /* screen height in pixels */
3388
divul %a0@(FONT_DESC_HEIGHT),%d1 /* d1 = max num rows */
3389
3390
movel %d0,%a2@(Lconsole_struct_num_columns)
3391
movel %d1,%a2@(Lconsole_struct_num_rows)
3392
3393
/*
3394
* Clear the current row and column
3395
*/
3396
clrl %a2@(Lconsole_struct_cur_column)
3397
clrl %a2@(Lconsole_struct_cur_row)
3398
clrl %a2@(Lconsole_struct_left_edge)
3399
3400
/*
3401
* Initialization is complete
3402
*/
3403
1:
3404
func_return console_init
3405
3406
func_start console_put_stats,%a0/%d7
3407
/*
3408
* Some of the register usage that follows
3409
* a0 = pointer to boot_info
3410
* d7 = value of boot_info fields
3411
*/
3412
puts "\nMacLinux\n\n"
3413
3414
#ifdef SERIAL_DEBUG
3415
puts " vidaddr:"
3416
putn %pc@(L(mac_videobase)) /* video addr. */
3417
3418
puts "\n _stext:"
3419
lea %pc@(_stext),%a0
3420
putn %a0
3421
3422
puts "\nbootinfo:"
3423
lea %pc@(_end),%a0
3424
putn %a0
3425
3426
puts "\ncpuid:"
3427
putn %pc@(L(cputype))
3428
putc '\n'
3429
3430
#ifdef MAC_SERIAL_DEBUG
3431
putn %pc@(L(mac_sccbase))
3432
putc '\n'
3433
#endif
3434
# if defined(MMU_PRINT)
3435
jbsr mmu_print_machine_cpu_types
3436
# endif /* MMU_PRINT */
3437
#endif /* SERIAL_DEBUG */
3438
3439
func_return console_put_stats
3440
3441
#ifdef CONSOLE_PENGUIN
3442
func_start console_put_penguin,%a0-%a1/%d0-%d7
3443
/*
3444
* Get 'that_penguin' onto the screen in the upper right corner
3445
* penguin is 64 x 74 pixels, align against right edge of screen
3446
*/
3447
lea %pc@(L(mac_dimensions)),%a0
3448
movel %a0@,%d0
3449
andil #0xffff,%d0
3450
subil #64,%d0 /* snug up against the right edge */
3451
clrl %d1 /* start at the top */
3452
movel #73,%d7
3453
lea %pc@(L(that_penguin)),%a1
3454
L(console_penguin_row):
3455
movel #31,%d6
3456
L(console_penguin_pixel_pair):
3457
moveb %a1@,%d2
3458
lsrb #4,%d2
3459
console_plot_pixel %d0,%d1,%d2
3460
addq #1,%d0
3461
moveb %a1@+,%d2
3462
console_plot_pixel %d0,%d1,%d2
3463
addq #1,%d0
3464
dbra %d6,L(console_penguin_pixel_pair)
3465
3466
subil #64,%d0
3467
addq #1,%d1
3468
dbra %d7,L(console_penguin_row)
3469
3470
func_return console_put_penguin
3471
3472
/* include penguin bitmap */
3473
L(that_penguin):
3474
#include "../mac/mac_penguin.S"
3475
#endif
3476
3477
/*
3478
* Calculate source and destination addresses
3479
* output a1 = dest
3480
* a2 = source
3481
*/
3482
3483
func_start console_scroll,%a0-%a4/%d0-%d7
3484
lea %pc@(L(mac_videobase)),%a0
3485
movel %a0@,%a1
3486
movel %a1,%a2
3487
lea %pc@(L(mac_rowbytes)),%a0
3488
movel %a0@,%d5
3489
movel %pc@(L(console_font)),%a0
3490
tstl %a0
3491
jeq 1f
3492
mulul %a0@(FONT_DESC_HEIGHT),%d5 /* account for # scan lines per character */
3493
addal %d5,%a2
3494
3495
/*
3496
* Get dimensions
3497
*/
3498
lea %pc@(L(mac_dimensions)),%a0
3499
movel %a0@,%d3
3500
movel %d3,%d4
3501
swap %d4
3502
andl #0xffff,%d3 /* d3 = screen width in pixels */
3503
andl #0xffff,%d4 /* d4 = screen height in pixels */
3504
3505
/*
3506
* Calculate number of bytes to move
3507
*/
3508
lea %pc@(L(mac_rowbytes)),%a0
3509
movel %a0@,%d6
3510
movel %pc@(L(console_font)),%a0
3511
subl %a0@(FONT_DESC_HEIGHT),%d4 /* we're not scrolling the top row! */
3512
mulul %d4,%d6 /* scan line bytes x num scan lines */
3513
divul #32,%d6 /* we'll move 8 longs at a time */
3514
subq #1,%d6
3515
3516
L(console_scroll_loop):
3517
movel %a2@+,%a1@+
3518
movel %a2@+,%a1@+
3519
movel %a2@+,%a1@+
3520
movel %a2@+,%a1@+
3521
movel %a2@+,%a1@+
3522
movel %a2@+,%a1@+
3523
movel %a2@+,%a1@+
3524
movel %a2@+,%a1@+
3525
dbra %d6,L(console_scroll_loop)
3526
3527
lea %pc@(L(mac_rowbytes)),%a0
3528
movel %a0@,%d6
3529
movel %pc@(L(console_font)),%a0
3530
mulul %a0@(FONT_DESC_HEIGHT),%d6 /* scan line bytes x font height */
3531
divul #32,%d6 /* we'll move 8 words at a time */
3532
subq #1,%d6
3533
3534
moveq #-1,%d0
3535
L(console_scroll_clear_loop):
3536
movel %d0,%a1@+
3537
movel %d0,%a1@+
3538
movel %d0,%a1@+
3539
movel %d0,%a1@+
3540
movel %d0,%a1@+
3541
movel %d0,%a1@+
3542
movel %d0,%a1@+
3543
movel %d0,%a1@+
3544
dbra %d6,L(console_scroll_clear_loop)
3545
3546
1:
3547
func_return console_scroll
3548
3549
3550
func_start console_putc,%a0/%a1/%d0-%d7
3551
3552
is_not_mac(L(console_exit))
3553
tstl %pc@(L(console_font))
3554
jeq L(console_exit)
3555
3556
/* Output character in d7 on console.
3557
*/
3558
movel ARG1,%d7
3559
cmpib #'\n',%d7
3560
jbne 1f
3561
3562
/* A little safe recursion is good for the soul */
3563
console_putc #'\r'
3564
1:
3565
lea %pc@(L(console_globals)),%a0
3566
3567
cmpib #10,%d7
3568
jne L(console_not_lf)
3569
movel %a0@(Lconsole_struct_cur_row),%d0
3570
addil #1,%d0
3571
movel %d0,%a0@(Lconsole_struct_cur_row)
3572
movel %a0@(Lconsole_struct_num_rows),%d1
3573
cmpl %d1,%d0
3574
jcs 1f
3575
subil #1,%d0
3576
movel %d0,%a0@(Lconsole_struct_cur_row)
3577
console_scroll
3578
1:
3579
jra L(console_exit)
3580
3581
L(console_not_lf):
3582
cmpib #13,%d7
3583
jne L(console_not_cr)
3584
clrl %a0@(Lconsole_struct_cur_column)
3585
jra L(console_exit)
3586
3587
L(console_not_cr):
3588
cmpib #1,%d7
3589
jne L(console_not_home)
3590
clrl %a0@(Lconsole_struct_cur_row)
3591
clrl %a0@(Lconsole_struct_cur_column)
3592
jra L(console_exit)
3593
3594
/*
3595
* At this point we know that the %d7 character is going to be
3596
* rendered on the screen. Register usage is -
3597
* a0 = pointer to console globals
3598
* a1 = font data
3599
* d0 = cursor column
3600
* d1 = cursor row to draw the character
3601
* d7 = character number
3602
*/
3603
L(console_not_home):
3604
movel %a0@(Lconsole_struct_cur_column),%d0
3605
addql #1,%a0@(Lconsole_struct_cur_column)
3606
movel %a0@(Lconsole_struct_num_columns),%d1
3607
cmpl %d1,%d0
3608
jcs 1f
3609
console_putc #'\n' /* recursion is OK! */
3610
1:
3611
movel %a0@(Lconsole_struct_cur_row),%d1
3612
3613
/*
3614
* At this point we make a shift in register usage
3615
* a0 = address of pointer to font data (fbcon_font_desc)
3616
*/
3617
movel %pc@(L(console_font)),%a0
3618
movel %pc@(L(console_font_data)),%a1 /* Load fbcon_font_desc.data into a1 */
3619
andl #0x000000ff,%d7
3620
/* ASSERT: a0 = contents of Lconsole_font */
3621
mulul %a0@(FONT_DESC_HEIGHT),%d7 /* d7 = index into font data */
3622
addl %d7,%a1 /* a1 = points to char image */
3623
3624
/*
3625
* At this point we make a shift in register usage
3626
* d0 = pixel coordinate, x
3627
* d1 = pixel coordinate, y
3628
* d2 = (bit 0) 1/0 for white/black (!) pixel on screen
3629
* d3 = font scan line data (8 pixels)
3630
* d6 = count down for the font's pixel width (8)
3631
* d7 = count down for the font's pixel count in height
3632
*/
3633
/* ASSERT: a0 = contents of Lconsole_font */
3634
mulul %a0@(FONT_DESC_WIDTH),%d0
3635
mulul %a0@(FONT_DESC_HEIGHT),%d1
3636
movel %a0@(FONT_DESC_HEIGHT),%d7 /* Load fbcon_font_desc.height into d7 */
3637
subq #1,%d7
3638
L(console_read_char_scanline):
3639
moveb %a1@+,%d3
3640
3641
/* ASSERT: a0 = contents of Lconsole_font */
3642
movel %a0@(FONT_DESC_WIDTH),%d6 /* Load fbcon_font_desc.width into d6 */
3643
subql #1,%d6
3644
3645
L(console_do_font_scanline):
3646
lslb #1,%d3
3647
scsb %d2 /* convert 1 bit into a byte */
3648
console_plot_pixel %d0,%d1,%d2
3649
addq #1,%d0
3650
dbra %d6,L(console_do_font_scanline)
3651
3652
/* ASSERT: a0 = contents of Lconsole_font */
3653
subl %a0@(FONT_DESC_WIDTH),%d0
3654
addq #1,%d1
3655
dbra %d7,L(console_read_char_scanline)
3656
3657
L(console_exit):
3658
func_return console_putc
3659
3660
/*
3661
* Input:
3662
* d0 = x coordinate
3663
* d1 = y coordinate
3664
* d2 = (bit 0) 1/0 for white/black (!)
3665
* All registers are preserved
3666
*/
3667
func_start console_plot_pixel,%a0-%a1/%d0-%d4
3668
3669
movel %pc@(L(mac_videobase)),%a1
3670
movel %pc@(L(mac_videodepth)),%d3
3671
movel ARG1,%d0
3672
movel ARG2,%d1
3673
mulul %pc@(L(mac_rowbytes)),%d1
3674
movel ARG3,%d2
3675
3676
/*
3677
* Register usage:
3678
* d0 = x coord becomes byte offset into frame buffer
3679
* d1 = y coord
3680
* d2 = black or white (0/1)
3681
* d3 = video depth
3682
* d4 = temp of x (d0) for many bit depths
3683
*/
3684
L(test_1bit):
3685
cmpb #1,%d3
3686
jbne L(test_2bit)
3687
movel %d0,%d4 /* we need the low order 3 bits! */
3688
divul #8,%d0
3689
addal %d0,%a1
3690
addal %d1,%a1
3691
andb #7,%d4
3692
eorb #7,%d4 /* reverse the x-coordinate w/ screen-bit # */
3693
andb #1,%d2
3694
jbne L(white_1)
3695
bsetb %d4,%a1@
3696
jbra L(console_plot_pixel_exit)
3697
L(white_1):
3698
bclrb %d4,%a1@
3699
jbra L(console_plot_pixel_exit)
3700
3701
L(test_2bit):
3702
cmpb #2,%d3
3703
jbne L(test_4bit)
3704
movel %d0,%d4 /* we need the low order 2 bits! */
3705
divul #4,%d0
3706
addal %d0,%a1
3707
addal %d1,%a1
3708
andb #3,%d4
3709
eorb #3,%d4 /* reverse the x-coordinate w/ screen-bit # */
3710
lsll #1,%d4 /* ! */
3711
andb #1,%d2
3712
jbne L(white_2)
3713
bsetb %d4,%a1@
3714
addq #1,%d4
3715
bsetb %d4,%a1@
3716
jbra L(console_plot_pixel_exit)
3717
L(white_2):
3718
bclrb %d4,%a1@
3719
addq #1,%d4
3720
bclrb %d4,%a1@
3721
jbra L(console_plot_pixel_exit)
3722
3723
L(test_4bit):
3724
cmpb #4,%d3
3725
jbne L(test_8bit)
3726
movel %d0,%d4 /* we need the low order bit! */
3727
divul #2,%d0
3728
addal %d0,%a1
3729
addal %d1,%a1
3730
andb #1,%d4
3731
eorb #1,%d4
3732
lsll #2,%d4 /* ! */
3733
andb #1,%d2
3734
jbne L(white_4)
3735
bsetb %d4,%a1@
3736
addq #1,%d4
3737
bsetb %d4,%a1@
3738
addq #1,%d4
3739
bsetb %d4,%a1@
3740
addq #1,%d4
3741
bsetb %d4,%a1@
3742
jbra L(console_plot_pixel_exit)
3743
L(white_4):
3744
bclrb %d4,%a1@
3745
addq #1,%d4
3746
bclrb %d4,%a1@
3747
addq #1,%d4
3748
bclrb %d4,%a1@
3749
addq #1,%d4
3750
bclrb %d4,%a1@
3751
jbra L(console_plot_pixel_exit)
3752
3753
L(test_8bit):
3754
cmpb #8,%d3
3755
jbne L(test_16bit)
3756
addal %d0,%a1
3757
addal %d1,%a1
3758
andb #1,%d2
3759
jbne L(white_8)
3760
moveb #0xff,%a1@
3761
jbra L(console_plot_pixel_exit)
3762
L(white_8):
3763
clrb %a1@
3764
jbra L(console_plot_pixel_exit)
3765
3766
L(test_16bit):
3767
cmpb #16,%d3
3768
jbne L(console_plot_pixel_exit)
3769
addal %d0,%a1
3770
addal %d0,%a1
3771
addal %d1,%a1
3772
andb #1,%d2
3773
jbne L(white_16)
3774
clrw %a1@
3775
jbra L(console_plot_pixel_exit)
3776
L(white_16):
3777
movew #0x0fff,%a1@
3778
jbra L(console_plot_pixel_exit)
3779
3780
L(console_plot_pixel_exit):
3781
func_return console_plot_pixel
3782
#endif /* CONSOLE */
3783
3784
#if 0
3785
/*
3786
* This is some old code lying around. I don't believe
3787
* it's used or important anymore. My guess is it contributed
3788
* to getting to this point, but it's done for now.
3789
* It was still in the 2.1.77 head.S, so it's still here.
3790
* (And still not used!)
3791
*/
3792
L(showtest):
3793
moveml %a0/%d7,%sp@-
3794
puts "A="
3795
putn %a1
3796
3797
.long 0xf0119f15 | ptestr #5,%a1@,#7,%a0
3798
3799
puts "DA="
3800
putn %a0
3801
3802
puts "D="
3803
putn %a0@
3804
3805
puts "S="
3806
lea %pc@(L(mmu)),%a0
3807
.long 0xf0106200 | pmove %psr,%a0@
3808
clrl %d7
3809
movew %a0@,%d7
3810
putn %d7
3811
3812
putc '\n'
3813
moveml %sp@+,%a0/%d7
3814
rts
3815
#endif /* 0 */
3816
3817
__INITDATA
3818
.align 4
3819
3820
#if defined(CONFIG_ATARI) || defined(CONFIG_AMIGA) || \
3821
defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3822
L(custom):
3823
L(iobase):
3824
.long 0
3825
#endif
3826
3827
#if defined(CONSOLE)
3828
L(console_globals):
3829
.long 0 /* cursor column */
3830
.long 0 /* cursor row */
3831
.long 0 /* max num columns */
3832
.long 0 /* max num rows */
3833
.long 0 /* left edge */
3834
.long 0 /* mac putc */
3835
L(console_font):
3836
.long 0 /* pointer to console font (struct font_desc) */
3837
L(console_font_data):
3838
.long 0 /* pointer to console font data */
3839
#endif /* CONSOLE */
3840
3841
#if defined(MMU_PRINT)
3842
L(mmu_print_data):
3843
.long 0 /* valid flag */
3844
.long 0 /* start logical */
3845
.long 0 /* next logical */
3846
.long 0 /* start physical */
3847
.long 0 /* next physical */
3848
#endif /* MMU_PRINT */
3849
3850
L(cputype):
3851
.long 0
3852
L(mmu_cached_pointer_tables):
3853
.long 0
3854
L(mmu_num_pointer_tables):
3855
.long 0
3856
L(phys_kernel_start):
3857
.long 0
3858
L(kernel_end):
3859
.long 0
3860
L(memory_start):
3861
.long 0
3862
L(kernel_pgdir_ptr):
3863
.long 0
3864
L(temp_mmap_mem):
3865
.long 0
3866
3867
#if defined (CONFIG_MVME147)
3868
M147_SCC_CTRL_A = 0xfffe3002
3869
M147_SCC_DATA_A = 0xfffe3003
3870
#endif
3871
3872
#if defined (CONFIG_MVME16x)
3873
M162_SCC_CTRL_A = 0xfff45005
3874
M167_CYCAR = 0xfff450ee
3875
M167_CYIER = 0xfff45011
3876
M167_CYLICR = 0xfff45026
3877
M167_CYTEOIR = 0xfff45085
3878
M167_CYTDR = 0xfff450f8
3879
M167_PCSCCTICR = 0xfff4201e
3880
M167_PCTPIACKR = 0xfff42025
3881
#endif
3882
3883
#if defined (CONFIG_BVME6000)
3884
BVME_SCC_CTRL_A = 0xffb0000b
3885
BVME_SCC_DATA_A = 0xffb0000f
3886
#endif
3887
3888
#if defined(CONFIG_MAC)
3889
L(mac_booter_data):
3890
.long 0
3891
L(mac_videobase):
3892
.long 0
3893
L(mac_videodepth):
3894
.long 0
3895
L(mac_dimensions):
3896
.long 0
3897
L(mac_rowbytes):
3898
.long 0
3899
#ifdef MAC_SERIAL_DEBUG
3900
L(mac_sccbase):
3901
.long 0
3902
#endif /* MAC_SERIAL_DEBUG */
3903
#endif
3904
3905
#if defined (CONFIG_APOLLO)
3906
LSRB0 = 0x10412
3907
LTHRB0 = 0x10416
3908
LCPUCTRL = 0x10100
3909
#endif
3910
3911
#if defined(CONFIG_HP300)
3912
DCADATA = 0x11
3913
DCALSR = 0x1b
3914
APCIDATA = 0x00
3915
APCILSR = 0x14
3916
L(uartbase):
3917
.long 0
3918
L(uart_scode):
3919
.long -1
3920
#endif
3921
3922
__FINIT
3923
.data
3924
.align 4
3925
3926
availmem:
3927
.long 0
3928
m68k_pgtable_cachemode:
3929
.long 0
3930
m68k_supervisor_cachemode:
3931
.long 0
3932
#if defined(CONFIG_MVME16x)
3933
mvme_bdid:
3934
.long 0,0,0,0,0,0,0,0
3935
#endif
3936
#if defined(CONFIG_Q40)
3937
q40_mem_cptr:
3938
.long 0
3939
L(q40_do_debug):
3940
.long 0
3941
#endif
3942
3943