Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/m68k/math-emu/fp_util.S
10817 views
1
/*
2
* fp_util.S
3
*
4
* Copyright Roman Zippel, 1997. All rights reserved.
5
*
6
* Redistribution and use in source and binary forms, with or without
7
* modification, are permitted provided that the following conditions
8
* are met:
9
* 1. Redistributions of source code must retain the above copyright
10
* notice, and the entire permission notice in its entirety,
11
* including the disclaimer of warranties.
12
* 2. Redistributions in binary form must reproduce the above copyright
13
* notice, this list of conditions and the following disclaimer in the
14
* documentation and/or other materials provided with the distribution.
15
* 3. The name of the author may not be used to endorse or promote
16
* products derived from this software without specific prior
17
* written permission.
18
*
19
* ALTERNATIVELY, this product may be distributed under the terms of
20
* the GNU General Public License, in which case the provisions of the GPL are
21
* required INSTEAD OF the above restrictions. (This clause is
22
* necessary due to a potential bad interaction between the GPL and
23
* the restrictions contained in a BSD-style copyright.)
24
*
25
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
27
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
29
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
30
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
31
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
33
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
35
* OF THE POSSIBILITY OF SUCH DAMAGE.
36
*/
37
38
#include "fp_emu.h"
39
40
/*
41
* Here are lots of conversion and normalization functions mainly
42
* used by fp_scan.S
43
* Note that these functions are optimized for "normal" numbers,
44
* these are handled first and exit as fast as possible, this is
45
* especially important for fp_normalize_ext/fp_conv_ext2ext, as
46
* it's called very often.
47
* The register usage is optimized for fp_scan.S and which register
48
* is currently at that time unused, be careful if you want change
49
* something here. %d0 and %d1 is always usable, sometimes %d2 (or
50
* only the lower half) most function have to return the %a0
51
* unmodified, so that the caller can immediately reuse it.
52
*/
53
54
.globl fp_ill, fp_end
55
56
| exits from fp_scan:
57
| illegal instruction
58
fp_ill:
59
printf ,"fp_illegal\n"
60
rts
61
| completed instruction
62
fp_end:
63
tst.l (TASK_MM-8,%a2)
64
jmi 1f
65
tst.l (TASK_MM-4,%a2)
66
jmi 1f
67
tst.l (TASK_MM,%a2)
68
jpl 2f
69
1: printf ,"oops:%p,%p,%p\n",3,%a2@(TASK_MM-8),%a2@(TASK_MM-4),%a2@(TASK_MM)
70
2: clr.l %d0
71
rts
72
73
.globl fp_conv_long2ext, fp_conv_single2ext
74
.globl fp_conv_double2ext, fp_conv_ext2ext
75
.globl fp_normalize_ext, fp_normalize_double
76
.globl fp_normalize_single, fp_normalize_single_fast
77
.globl fp_conv_ext2double, fp_conv_ext2single
78
.globl fp_conv_ext2long, fp_conv_ext2short
79
.globl fp_conv_ext2byte
80
.globl fp_finalrounding_single, fp_finalrounding_single_fast
81
.globl fp_finalrounding_double
82
.globl fp_finalrounding, fp_finaltest, fp_final
83
84
/*
85
* First several conversion functions from a source operand
86
* into the extended format. Note, that only fp_conv_ext2ext
87
* normalizes the number and is always called after the other
88
* conversion functions, which only move the information into
89
* fp_ext structure.
90
*/
91
92
| fp_conv_long2ext:
93
|
94
| args: %d0 = source (32-bit long)
95
| %a0 = destination (ptr to struct fp_ext)
96
97
fp_conv_long2ext:
98
printf PCONV,"l2e: %p -> %p(",2,%d0,%a0
99
clr.l %d1 | sign defaults to zero
100
tst.l %d0
101
jeq fp_l2e_zero | is source zero?
102
jpl 1f | positive?
103
moveq #1,%d1
104
neg.l %d0
105
1: swap %d1
106
move.w #0x3fff+31,%d1
107
move.l %d1,(%a0)+ | set sign / exp
108
move.l %d0,(%a0)+ | set mantissa
109
clr.l (%a0)
110
subq.l #8,%a0 | restore %a0
111
printx PCONV,%a0@
112
printf PCONV,")\n"
113
rts
114
| source is zero
115
fp_l2e_zero:
116
clr.l (%a0)+
117
clr.l (%a0)+
118
clr.l (%a0)
119
subq.l #8,%a0
120
printx PCONV,%a0@
121
printf PCONV,")\n"
122
rts
123
124
| fp_conv_single2ext
125
| args: %d0 = source (single-precision fp value)
126
| %a0 = dest (struct fp_ext *)
127
128
fp_conv_single2ext:
129
printf PCONV,"s2e: %p -> %p(",2,%d0,%a0
130
move.l %d0,%d1
131
lsl.l #8,%d0 | shift mantissa
132
lsr.l #8,%d1 | exponent / sign
133
lsr.l #7,%d1
134
lsr.w #8,%d1
135
jeq fp_s2e_small | zero / denormal?
136
cmp.w #0xff,%d1 | NaN / Inf?
137
jeq fp_s2e_large
138
bset #31,%d0 | set explizit bit
139
add.w #0x3fff-0x7f,%d1 | re-bias the exponent.
140
9: move.l %d1,(%a0)+ | fp_ext.sign, fp_ext.exp
141
move.l %d0,(%a0)+ | high lword of fp_ext.mant
142
clr.l (%a0) | low lword = 0
143
subq.l #8,%a0
144
printx PCONV,%a0@
145
printf PCONV,")\n"
146
rts
147
| zeros and denormalized
148
fp_s2e_small:
149
| exponent is zero, so explizit bit is already zero too
150
tst.l %d0
151
jeq 9b
152
move.w #0x4000-0x7f,%d1
153
jra 9b
154
| infinities and NAN
155
fp_s2e_large:
156
bclr #31,%d0 | clear explizit bit
157
move.w #0x7fff,%d1
158
jra 9b
159
160
fp_conv_double2ext:
161
#ifdef FPU_EMU_DEBUG
162
getuser.l %a1@(0),%d0,fp_err_ua2,%a1
163
getuser.l %a1@(4),%d1,fp_err_ua2,%a1
164
printf PCONV,"d2e: %p%p -> %p(",3,%d0,%d1,%a0
165
#endif
166
getuser.l (%a1)+,%d0,fp_err_ua2,%a1
167
move.l %d0,%d1
168
lsl.l #8,%d0 | shift high mantissa
169
lsl.l #3,%d0
170
lsr.l #8,%d1 | exponent / sign
171
lsr.l #7,%d1
172
lsr.w #5,%d1
173
jeq fp_d2e_small | zero / denormal?
174
cmp.w #0x7ff,%d1 | NaN / Inf?
175
jeq fp_d2e_large
176
bset #31,%d0 | set explizit bit
177
add.w #0x3fff-0x3ff,%d1 | re-bias the exponent.
178
9: move.l %d1,(%a0)+ | fp_ext.sign, fp_ext.exp
179
move.l %d0,(%a0)+
180
getuser.l (%a1)+,%d0,fp_err_ua2,%a1
181
move.l %d0,%d1
182
lsl.l #8,%d0
183
lsl.l #3,%d0
184
move.l %d0,(%a0)
185
moveq #21,%d0
186
lsr.l %d0,%d1
187
or.l %d1,-(%a0)
188
subq.l #4,%a0
189
printx PCONV,%a0@
190
printf PCONV,")\n"
191
rts
192
| zeros and denormalized
193
fp_d2e_small:
194
| exponent is zero, so explizit bit is already zero too
195
tst.l %d0
196
jeq 9b
197
move.w #0x4000-0x3ff,%d1
198
jra 9b
199
| infinities and NAN
200
fp_d2e_large:
201
bclr #31,%d0 | clear explizit bit
202
move.w #0x7fff,%d1
203
jra 9b
204
205
| fp_conv_ext2ext:
206
| originally used to get longdouble from userspace, now it's
207
| called before arithmetic operations to make sure the number
208
| is normalized [maybe rename it?].
209
| args: %a0 = dest (struct fp_ext *)
210
| returns 0 in %d0 for a NaN, otherwise 1
211
212
fp_conv_ext2ext:
213
printf PCONV,"e2e: %p(",1,%a0
214
printx PCONV,%a0@
215
printf PCONV,"), "
216
move.l (%a0)+,%d0
217
cmp.w #0x7fff,%d0 | Inf / NaN?
218
jeq fp_e2e_large
219
move.l (%a0),%d0
220
jpl fp_e2e_small | zero / denorm?
221
| The high bit is set, so normalization is irrelevant.
222
fp_e2e_checkround:
223
subq.l #4,%a0
224
#ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
225
move.b (%a0),%d0
226
jne fp_e2e_round
227
#endif
228
printf PCONV,"%p(",1,%a0
229
printx PCONV,%a0@
230
printf PCONV,")\n"
231
moveq #1,%d0
232
rts
233
#ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
234
fp_e2e_round:
235
fp_set_sr FPSR_EXC_INEX2
236
clr.b (%a0)
237
move.w (FPD_RND,FPDATA),%d2
238
jne fp_e2e_roundother | %d2 == 0, round to nearest
239
tst.b %d0 | test guard bit
240
jpl 9f | zero is closer
241
btst #0,(11,%a0) | test lsb bit
242
jne fp_e2e_doroundup | round to infinity
243
lsl.b #1,%d0 | check low bits
244
jeq 9f | round to zero
245
fp_e2e_doroundup:
246
addq.l #1,(8,%a0)
247
jcc 9f
248
addq.l #1,(4,%a0)
249
jcc 9f
250
move.w #0x8000,(4,%a0)
251
addq.w #1,(2,%a0)
252
9: printf PNORM,"%p(",1,%a0
253
printx PNORM,%a0@
254
printf PNORM,")\n"
255
rts
256
fp_e2e_roundother:
257
subq.w #2,%d2
258
jcs 9b | %d2 < 2, round to zero
259
jhi 1f | %d2 > 2, round to +infinity
260
tst.b (1,%a0) | to -inf
261
jne fp_e2e_doroundup | negative, round to infinity
262
jra 9b | positive, round to zero
263
1: tst.b (1,%a0) | to +inf
264
jeq fp_e2e_doroundup | positive, round to infinity
265
jra 9b | negative, round to zero
266
#endif
267
| zeros and subnormals:
268
| try to normalize these anyway.
269
fp_e2e_small:
270
jne fp_e2e_small1 | high lword zero?
271
move.l (4,%a0),%d0
272
jne fp_e2e_small2
273
#ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
274
clr.l %d0
275
move.b (-4,%a0),%d0
276
jne fp_e2e_small3
277
#endif
278
| Genuine zero.
279
clr.w -(%a0)
280
subq.l #2,%a0
281
printf PNORM,"%p(",1,%a0
282
printx PNORM,%a0@
283
printf PNORM,")\n"
284
moveq #1,%d0
285
rts
286
| definitely subnormal, need to shift all 64 bits
287
fp_e2e_small1:
288
bfffo %d0{#0,#32},%d1
289
move.w -(%a0),%d2
290
sub.w %d1,%d2
291
jcc 1f
292
| Pathologically small, denormalize.
293
add.w %d2,%d1
294
clr.w %d2
295
1: move.w %d2,(%a0)+
296
move.w %d1,%d2
297
jeq fp_e2e_checkround
298
| fancy 64-bit double-shift begins here
299
lsl.l %d2,%d0
300
move.l %d0,(%a0)+
301
move.l (%a0),%d0
302
move.l %d0,%d1
303
lsl.l %d2,%d0
304
move.l %d0,(%a0)
305
neg.w %d2
306
and.w #0x1f,%d2
307
lsr.l %d2,%d1
308
or.l %d1,-(%a0)
309
#ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
310
fp_e2e_extra1:
311
clr.l %d0
312
move.b (-4,%a0),%d0
313
neg.w %d2
314
add.w #24,%d2
315
jcc 1f
316
clr.b (-4,%a0)
317
lsl.l %d2,%d0
318
or.l %d0,(4,%a0)
319
jra fp_e2e_checkround
320
1: addq.w #8,%d2
321
lsl.l %d2,%d0
322
move.b %d0,(-4,%a0)
323
lsr.l #8,%d0
324
or.l %d0,(4,%a0)
325
#endif
326
jra fp_e2e_checkround
327
| pathologically small subnormal
328
fp_e2e_small2:
329
bfffo %d0{#0,#32},%d1
330
add.w #32,%d1
331
move.w -(%a0),%d2
332
sub.w %d1,%d2
333
jcc 1f
334
| Beyond pathologically small, denormalize.
335
add.w %d2,%d1
336
clr.w %d2
337
1: move.w %d2,(%a0)+
338
ext.l %d1
339
jeq fp_e2e_checkround
340
clr.l (4,%a0)
341
sub.w #32,%d2
342
jcs 1f
343
lsl.l %d1,%d0 | lower lword needs only to be shifted
344
move.l %d0,(%a0) | into the higher lword
345
#ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
346
clr.l %d0
347
move.b (-4,%a0),%d0
348
clr.b (-4,%a0)
349
neg.w %d1
350
add.w #32,%d1
351
bfins %d0,(%a0){%d1,#8}
352
#endif
353
jra fp_e2e_checkround
354
1: neg.w %d1 | lower lword is splitted between
355
bfins %d0,(%a0){%d1,#32} | higher and lower lword
356
#ifndef CONFIG_M68KFPU_EMU_EXTRAPREC
357
jra fp_e2e_checkround
358
#else
359
move.w %d1,%d2
360
jra fp_e2e_extra1
361
| These are extremely small numbers, that will mostly end up as zero
362
| anyway, so this is only important for correct rounding.
363
fp_e2e_small3:
364
bfffo %d0{#24,#8},%d1
365
add.w #40,%d1
366
move.w -(%a0),%d2
367
sub.w %d1,%d2
368
jcc 1f
369
| Pathologically small, denormalize.
370
add.w %d2,%d1
371
clr.w %d2
372
1: move.w %d2,(%a0)+
373
ext.l %d1
374
jeq fp_e2e_checkround
375
cmp.w #8,%d1
376
jcs 2f
377
1: clr.b (-4,%a0)
378
sub.w #64,%d1
379
jcs 1f
380
add.w #24,%d1
381
lsl.l %d1,%d0
382
move.l %d0,(%a0)
383
jra fp_e2e_checkround
384
1: neg.w %d1
385
bfins %d0,(%a0){%d1,#8}
386
jra fp_e2e_checkround
387
2: lsl.l %d1,%d0
388
move.b %d0,(-4,%a0)
389
lsr.l #8,%d0
390
move.b %d0,(7,%a0)
391
jra fp_e2e_checkround
392
#endif
393
1: move.l %d0,%d1 | lower lword is splitted between
394
lsl.l %d2,%d0 | higher and lower lword
395
move.l %d0,(%a0)
396
move.l %d1,%d0
397
neg.w %d2
398
add.w #32,%d2
399
lsr.l %d2,%d0
400
move.l %d0,-(%a0)
401
jra fp_e2e_checkround
402
| Infinities and NaNs
403
fp_e2e_large:
404
move.l (%a0)+,%d0
405
jne 3f
406
1: tst.l (%a0)
407
jne 4f
408
moveq #1,%d0
409
2: subq.l #8,%a0
410
printf PCONV,"%p(",1,%a0
411
printx PCONV,%a0@
412
printf PCONV,")\n"
413
rts
414
| we have maybe a NaN, shift off the highest bit
415
3: lsl.l #1,%d0
416
jeq 1b
417
| we have a NaN, clear the return value
418
4: clrl %d0
419
jra 2b
420
421
422
/*
423
* Normalization functions. Call these on the output of general
424
* FP operators, and before any conversion into the destination
425
* formats. fp_normalize_ext has always to be called first, the
426
* following conversion functions expect an already normalized
427
* number.
428
*/
429
430
| fp_normalize_ext:
431
| normalize an extended in extended (unpacked) format, basically
432
| it does the same as fp_conv_ext2ext, additionally it also does
433
| the necessary postprocessing checks.
434
| args: %a0 (struct fp_ext *)
435
| NOTE: it does _not_ modify %a0/%a1 and the upper word of %d2
436
437
fp_normalize_ext:
438
printf PNORM,"ne: %p(",1,%a0
439
printx PNORM,%a0@
440
printf PNORM,"), "
441
move.l (%a0)+,%d0
442
cmp.w #0x7fff,%d0 | Inf / NaN?
443
jeq fp_ne_large
444
move.l (%a0),%d0
445
jpl fp_ne_small | zero / denorm?
446
| The high bit is set, so normalization is irrelevant.
447
fp_ne_checkround:
448
subq.l #4,%a0
449
#ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
450
move.b (%a0),%d0
451
jne fp_ne_round
452
#endif
453
printf PNORM,"%p(",1,%a0
454
printx PNORM,%a0@
455
printf PNORM,")\n"
456
rts
457
#ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
458
fp_ne_round:
459
fp_set_sr FPSR_EXC_INEX2
460
clr.b (%a0)
461
move.w (FPD_RND,FPDATA),%d2
462
jne fp_ne_roundother | %d2 == 0, round to nearest
463
tst.b %d0 | test guard bit
464
jpl 9f | zero is closer
465
btst #0,(11,%a0) | test lsb bit
466
jne fp_ne_doroundup | round to infinity
467
lsl.b #1,%d0 | check low bits
468
jeq 9f | round to zero
469
fp_ne_doroundup:
470
addq.l #1,(8,%a0)
471
jcc 9f
472
addq.l #1,(4,%a0)
473
jcc 9f
474
addq.w #1,(2,%a0)
475
move.w #0x8000,(4,%a0)
476
9: printf PNORM,"%p(",1,%a0
477
printx PNORM,%a0@
478
printf PNORM,")\n"
479
rts
480
fp_ne_roundother:
481
subq.w #2,%d2
482
jcs 9b | %d2 < 2, round to zero
483
jhi 1f | %d2 > 2, round to +infinity
484
tst.b (1,%a0) | to -inf
485
jne fp_ne_doroundup | negative, round to infinity
486
jra 9b | positive, round to zero
487
1: tst.b (1,%a0) | to +inf
488
jeq fp_ne_doroundup | positive, round to infinity
489
jra 9b | negative, round to zero
490
#endif
491
| Zeros and subnormal numbers
492
| These are probably merely subnormal, rather than "denormalized"
493
| numbers, so we will try to make them normal again.
494
fp_ne_small:
495
jne fp_ne_small1 | high lword zero?
496
move.l (4,%a0),%d0
497
jne fp_ne_small2
498
#ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
499
clr.l %d0
500
move.b (-4,%a0),%d0
501
jne fp_ne_small3
502
#endif
503
| Genuine zero.
504
clr.w -(%a0)
505
subq.l #2,%a0
506
printf PNORM,"%p(",1,%a0
507
printx PNORM,%a0@
508
printf PNORM,")\n"
509
rts
510
| Subnormal.
511
fp_ne_small1:
512
bfffo %d0{#0,#32},%d1
513
move.w -(%a0),%d2
514
sub.w %d1,%d2
515
jcc 1f
516
| Pathologically small, denormalize.
517
add.w %d2,%d1
518
clr.w %d2
519
fp_set_sr FPSR_EXC_UNFL
520
1: move.w %d2,(%a0)+
521
move.w %d1,%d2
522
jeq fp_ne_checkround
523
| This is exactly the same 64-bit double shift as seen above.
524
lsl.l %d2,%d0
525
move.l %d0,(%a0)+
526
move.l (%a0),%d0
527
move.l %d0,%d1
528
lsl.l %d2,%d0
529
move.l %d0,(%a0)
530
neg.w %d2
531
and.w #0x1f,%d2
532
lsr.l %d2,%d1
533
or.l %d1,-(%a0)
534
#ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
535
fp_ne_extra1:
536
clr.l %d0
537
move.b (-4,%a0),%d0
538
neg.w %d2
539
add.w #24,%d2
540
jcc 1f
541
clr.b (-4,%a0)
542
lsl.l %d2,%d0
543
or.l %d0,(4,%a0)
544
jra fp_ne_checkround
545
1: addq.w #8,%d2
546
lsl.l %d2,%d0
547
move.b %d0,(-4,%a0)
548
lsr.l #8,%d0
549
or.l %d0,(4,%a0)
550
#endif
551
jra fp_ne_checkround
552
| May or may not be subnormal, if so, only 32 bits to shift.
553
fp_ne_small2:
554
bfffo %d0{#0,#32},%d1
555
add.w #32,%d1
556
move.w -(%a0),%d2
557
sub.w %d1,%d2
558
jcc 1f
559
| Beyond pathologically small, denormalize.
560
add.w %d2,%d1
561
clr.w %d2
562
fp_set_sr FPSR_EXC_UNFL
563
1: move.w %d2,(%a0)+
564
ext.l %d1
565
jeq fp_ne_checkround
566
clr.l (4,%a0)
567
sub.w #32,%d1
568
jcs 1f
569
lsl.l %d1,%d0 | lower lword needs only to be shifted
570
move.l %d0,(%a0) | into the higher lword
571
#ifdef CONFIG_M68KFPU_EMU_EXTRAPREC
572
clr.l %d0
573
move.b (-4,%a0),%d0
574
clr.b (-4,%a0)
575
neg.w %d1
576
add.w #32,%d1
577
bfins %d0,(%a0){%d1,#8}
578
#endif
579
jra fp_ne_checkround
580
1: neg.w %d1 | lower lword is splitted between
581
bfins %d0,(%a0){%d1,#32} | higher and lower lword
582
#ifndef CONFIG_M68KFPU_EMU_EXTRAPREC
583
jra fp_ne_checkround
584
#else
585
move.w %d1,%d2
586
jra fp_ne_extra1
587
| These are extremely small numbers, that will mostly end up as zero
588
| anyway, so this is only important for correct rounding.
589
fp_ne_small3:
590
bfffo %d0{#24,#8},%d1
591
add.w #40,%d1
592
move.w -(%a0),%d2
593
sub.w %d1,%d2
594
jcc 1f
595
| Pathologically small, denormalize.
596
add.w %d2,%d1
597
clr.w %d2
598
1: move.w %d2,(%a0)+
599
ext.l %d1
600
jeq fp_ne_checkround
601
cmp.w #8,%d1
602
jcs 2f
603
1: clr.b (-4,%a0)
604
sub.w #64,%d1
605
jcs 1f
606
add.w #24,%d1
607
lsl.l %d1,%d0
608
move.l %d0,(%a0)
609
jra fp_ne_checkround
610
1: neg.w %d1
611
bfins %d0,(%a0){%d1,#8}
612
jra fp_ne_checkround
613
2: lsl.l %d1,%d0
614
move.b %d0,(-4,%a0)
615
lsr.l #8,%d0
616
move.b %d0,(7,%a0)
617
jra fp_ne_checkround
618
#endif
619
| Infinities and NaNs, again, same as above.
620
fp_ne_large:
621
move.l (%a0)+,%d0
622
jne 3f
623
1: tst.l (%a0)
624
jne 4f
625
2: subq.l #8,%a0
626
printf PNORM,"%p(",1,%a0
627
printx PNORM,%a0@
628
printf PNORM,")\n"
629
rts
630
| we have maybe a NaN, shift off the highest bit
631
3: move.l %d0,%d1
632
lsl.l #1,%d1
633
jne 4f
634
clr.l (-4,%a0)
635
jra 1b
636
| we have a NaN, test if it is signaling
637
4: bset #30,%d0
638
jne 2b
639
fp_set_sr FPSR_EXC_SNAN
640
move.l %d0,(-4,%a0)
641
jra 2b
642
643
| these next two do rounding as per the IEEE standard.
644
| values for the rounding modes appear to be:
645
| 0: Round to nearest
646
| 1: Round to zero
647
| 2: Round to -Infinity
648
| 3: Round to +Infinity
649
| both functions expect that fp_normalize was already
650
| called (and extended argument is already normalized
651
| as far as possible), these are used if there is different
652
| rounding precision is selected and before converting
653
| into single/double
654
655
| fp_normalize_double:
656
| normalize an extended with double (52-bit) precision
657
| args: %a0 (struct fp_ext *)
658
659
fp_normalize_double:
660
printf PNORM,"nd: %p(",1,%a0
661
printx PNORM,%a0@
662
printf PNORM,"), "
663
move.l (%a0)+,%d2
664
tst.w %d2
665
jeq fp_nd_zero | zero / denormalized
666
cmp.w #0x7fff,%d2
667
jeq fp_nd_huge | NaN / infinitive.
668
sub.w #0x4000-0x3ff,%d2 | will the exponent fit?
669
jcs fp_nd_small | too small.
670
cmp.w #0x7fe,%d2
671
jcc fp_nd_large | too big.
672
addq.l #4,%a0
673
move.l (%a0),%d0 | low lword of mantissa
674
| now, round off the low 11 bits.
675
fp_nd_round:
676
moveq #21,%d1
677
lsl.l %d1,%d0 | keep 11 low bits.
678
jne fp_nd_checkround | Are they non-zero?
679
| nothing to do here
680
9: subq.l #8,%a0
681
printf PNORM,"%p(",1,%a0
682
printx PNORM,%a0@
683
printf PNORM,")\n"
684
rts
685
| Be careful with the X bit! It contains the lsb
686
| from the shift above, it is needed for round to nearest.
687
fp_nd_checkround:
688
fp_set_sr FPSR_EXC_INEX2 | INEX2 bit
689
and.w #0xf800,(2,%a0) | clear bits 0-10
690
move.w (FPD_RND,FPDATA),%d2 | rounding mode
691
jne 2f | %d2 == 0, round to nearest
692
tst.l %d0 | test guard bit
693
jpl 9b | zero is closer
694
| here we test the X bit by adding it to %d2
695
clr.w %d2 | first set z bit, addx only clears it
696
addx.w %d2,%d2 | test lsb bit
697
| IEEE754-specified "round to even" behaviour. If the guard
698
| bit is set, then the number is odd, so rounding works like
699
| in grade-school arithmetic (i.e. 1.5 rounds to 2.0)
700
| Otherwise, an equal distance rounds towards zero, so as not
701
| to produce an odd number. This is strange, but it is what
702
| the standard says.
703
jne fp_nd_doroundup | round to infinity
704
lsl.l #1,%d0 | check low bits
705
jeq 9b | round to zero
706
fp_nd_doroundup:
707
| round (the mantissa, that is) towards infinity
708
add.l #0x800,(%a0)
709
jcc 9b | no overflow, good.
710
addq.l #1,-(%a0) | extend to high lword
711
jcc 1f | no overflow, good.
712
| Yow! we have managed to overflow the mantissa. Since this
713
| only happens when %d1 was 0xfffff800, it is now zero, so
714
| reset the high bit, and increment the exponent.
715
move.w #0x8000,(%a0)
716
addq.w #1,-(%a0)
717
cmp.w #0x43ff,(%a0)+ | exponent now overflown?
718
jeq fp_nd_large | yes, so make it infinity.
719
1: subq.l #4,%a0
720
printf PNORM,"%p(",1,%a0
721
printx PNORM,%a0@
722
printf PNORM,")\n"
723
rts
724
2: subq.w #2,%d2
725
jcs 9b | %d2 < 2, round to zero
726
jhi 3f | %d2 > 2, round to +infinity
727
| Round to +Inf or -Inf. High word of %d2 contains the
728
| sign of the number, by the way.
729
swap %d2 | to -inf
730
tst.b %d2
731
jne fp_nd_doroundup | negative, round to infinity
732
jra 9b | positive, round to zero
733
3: swap %d2 | to +inf
734
tst.b %d2
735
jeq fp_nd_doroundup | positive, round to infinity
736
jra 9b | negative, round to zero
737
| Exponent underflow. Try to make a denormal, and set it to
738
| the smallest possible fraction if this fails.
739
fp_nd_small:
740
fp_set_sr FPSR_EXC_UNFL | set UNFL bit
741
move.w #0x3c01,(-2,%a0) | 2**-1022
742
neg.w %d2 | degree of underflow
743
cmp.w #32,%d2 | single or double shift?
744
jcc 1f
745
| Again, another 64-bit double shift.
746
move.l (%a0),%d0
747
move.l %d0,%d1
748
lsr.l %d2,%d0
749
move.l %d0,(%a0)+
750
move.l (%a0),%d0
751
lsr.l %d2,%d0
752
neg.w %d2
753
add.w #32,%d2
754
lsl.l %d2,%d1
755
or.l %d1,%d0
756
move.l (%a0),%d1
757
move.l %d0,(%a0)
758
| Check to see if we shifted off any significant bits
759
lsl.l %d2,%d1
760
jeq fp_nd_round | Nope, round.
761
bset #0,%d0 | Yes, so set the "sticky bit".
762
jra fp_nd_round | Now, round.
763
| Another 64-bit single shift and store
764
1: sub.w #32,%d2
765
cmp.w #32,%d2 | Do we really need to shift?
766
jcc 2f | No, the number is too small.
767
move.l (%a0),%d0
768
clr.l (%a0)+
769
move.l %d0,%d1
770
lsr.l %d2,%d0
771
neg.w %d2
772
add.w #32,%d2
773
| Again, check to see if we shifted off any significant bits.
774
tst.l (%a0)
775
jeq 1f
776
bset #0,%d0 | Sticky bit.
777
1: move.l %d0,(%a0)
778
lsl.l %d2,%d1
779
jeq fp_nd_round
780
bset #0,%d0
781
jra fp_nd_round
782
| Sorry, the number is just too small.
783
2: clr.l (%a0)+
784
clr.l (%a0)
785
moveq #1,%d0 | Smallest possible fraction,
786
jra fp_nd_round | round as desired.
787
| zero and denormalized
788
fp_nd_zero:
789
tst.l (%a0)+
790
jne 1f
791
tst.l (%a0)
792
jne 1f
793
subq.l #8,%a0
794
printf PNORM,"%p(",1,%a0
795
printx PNORM,%a0@
796
printf PNORM,")\n"
797
rts | zero. nothing to do.
798
| These are not merely subnormal numbers, but true denormals,
799
| i.e. pathologically small (exponent is 2**-16383) numbers.
800
| It is clearly impossible for even a normal extended number
801
| with that exponent to fit into double precision, so just
802
| write these ones off as "too darn small".
803
1: fp_set_sr FPSR_EXC_UNFL | Set UNFL bit
804
clr.l (%a0)
805
clr.l -(%a0)
806
move.w #0x3c01,-(%a0) | i.e. 2**-1022
807
addq.l #6,%a0
808
moveq #1,%d0
809
jra fp_nd_round | round.
810
| Exponent overflow. Just call it infinity.
811
fp_nd_large:
812
move.w #0x7ff,%d0
813
and.w (6,%a0),%d0
814
jeq 1f
815
fp_set_sr FPSR_EXC_INEX2
816
1: fp_set_sr FPSR_EXC_OVFL
817
move.w (FPD_RND,FPDATA),%d2
818
jne 3f | %d2 = 0 round to nearest
819
1: move.w #0x7fff,(-2,%a0)
820
clr.l (%a0)+
821
clr.l (%a0)
822
2: subq.l #8,%a0
823
printf PNORM,"%p(",1,%a0
824
printx PNORM,%a0@
825
printf PNORM,")\n"
826
rts
827
3: subq.w #2,%d2
828
jcs 5f | %d2 < 2, round to zero
829
jhi 4f | %d2 > 2, round to +infinity
830
tst.b (-3,%a0) | to -inf
831
jne 1b
832
jra 5f
833
4: tst.b (-3,%a0) | to +inf
834
jeq 1b
835
5: move.w #0x43fe,(-2,%a0)
836
moveq #-1,%d0
837
move.l %d0,(%a0)+
838
move.w #0xf800,%d0
839
move.l %d0,(%a0)
840
jra 2b
841
| Infinities or NaNs
842
fp_nd_huge:
843
subq.l #4,%a0
844
printf PNORM,"%p(",1,%a0
845
printx PNORM,%a0@
846
printf PNORM,")\n"
847
rts
848
849
| fp_normalize_single:
850
| normalize an extended with single (23-bit) precision
851
| args: %a0 (struct fp_ext *)
852
853
fp_normalize_single:
854
printf PNORM,"ns: %p(",1,%a0
855
printx PNORM,%a0@
856
printf PNORM,") "
857
addq.l #2,%a0
858
move.w (%a0)+,%d2
859
jeq fp_ns_zero | zero / denormalized
860
cmp.w #0x7fff,%d2
861
jeq fp_ns_huge | NaN / infinitive.
862
sub.w #0x4000-0x7f,%d2 | will the exponent fit?
863
jcs fp_ns_small | too small.
864
cmp.w #0xfe,%d2
865
jcc fp_ns_large | too big.
866
move.l (%a0)+,%d0 | get high lword of mantissa
867
fp_ns_round:
868
tst.l (%a0) | check the low lword
869
jeq 1f
870
| Set a sticky bit if it is non-zero. This should only
871
| affect the rounding in what would otherwise be equal-
872
| distance situations, which is what we want it to do.
873
bset #0,%d0
874
1: clr.l (%a0) | zap it from memory.
875
| now, round off the low 8 bits of the hi lword.
876
tst.b %d0 | 8 low bits.
877
jne fp_ns_checkround | Are they non-zero?
878
| nothing to do here
879
subq.l #8,%a0
880
printf PNORM,"%p(",1,%a0
881
printx PNORM,%a0@
882
printf PNORM,")\n"
883
rts
884
fp_ns_checkround:
885
fp_set_sr FPSR_EXC_INEX2 | INEX2 bit
886
clr.b -(%a0) | clear low byte of high lword
887
subq.l #3,%a0
888
move.w (FPD_RND,FPDATA),%d2 | rounding mode
889
jne 2f | %d2 == 0, round to nearest
890
tst.b %d0 | test guard bit
891
jpl 9f | zero is closer
892
btst #8,%d0 | test lsb bit
893
| round to even behaviour, see above.
894
jne fp_ns_doroundup | round to infinity
895
lsl.b #1,%d0 | check low bits
896
jeq 9f | round to zero
897
fp_ns_doroundup:
898
| round (the mantissa, that is) towards infinity
899
add.l #0x100,(%a0)
900
jcc 9f | no overflow, good.
901
| Overflow. This means that the %d1 was 0xffffff00, so it
902
| is now zero. We will set the mantissa to reflect this, and
903
| increment the exponent (checking for overflow there too)
904
move.w #0x8000,(%a0)
905
addq.w #1,-(%a0)
906
cmp.w #0x407f,(%a0)+ | exponent now overflown?
907
jeq fp_ns_large | yes, so make it infinity.
908
9: subq.l #4,%a0
909
printf PNORM,"%p(",1,%a0
910
printx PNORM,%a0@
911
printf PNORM,")\n"
912
rts
913
| check nondefault rounding modes
914
2: subq.w #2,%d2
915
jcs 9b | %d2 < 2, round to zero
916
jhi 3f | %d2 > 2, round to +infinity
917
tst.b (-3,%a0) | to -inf
918
jne fp_ns_doroundup | negative, round to infinity
919
jra 9b | positive, round to zero
920
3: tst.b (-3,%a0) | to +inf
921
jeq fp_ns_doroundup | positive, round to infinity
922
jra 9b | negative, round to zero
923
| Exponent underflow. Try to make a denormal, and set it to
924
| the smallest possible fraction if this fails.
925
fp_ns_small:
926
fp_set_sr FPSR_EXC_UNFL | set UNFL bit
927
move.w #0x3f81,(-2,%a0) | 2**-126
928
neg.w %d2 | degree of underflow
929
cmp.w #32,%d2 | single or double shift?
930
jcc 2f
931
| a 32-bit shift.
932
move.l (%a0),%d0
933
move.l %d0,%d1
934
lsr.l %d2,%d0
935
move.l %d0,(%a0)+
936
| Check to see if we shifted off any significant bits.
937
neg.w %d2
938
add.w #32,%d2
939
lsl.l %d2,%d1
940
jeq 1f
941
bset #0,%d0 | Sticky bit.
942
| Check the lower lword
943
1: tst.l (%a0)
944
jeq fp_ns_round
945
clr (%a0)
946
bset #0,%d0 | Sticky bit.
947
jra fp_ns_round
948
| Sorry, the number is just too small.
949
2: clr.l (%a0)+
950
clr.l (%a0)
951
moveq #1,%d0 | Smallest possible fraction,
952
jra fp_ns_round | round as desired.
953
| Exponent overflow. Just call it infinity.
954
fp_ns_large:
955
tst.b (3,%a0)
956
jeq 1f
957
fp_set_sr FPSR_EXC_INEX2
958
1: fp_set_sr FPSR_EXC_OVFL
959
move.w (FPD_RND,FPDATA),%d2
960
jne 3f | %d2 = 0 round to nearest
961
1: move.w #0x7fff,(-2,%a0)
962
clr.l (%a0)+
963
clr.l (%a0)
964
2: subq.l #8,%a0
965
printf PNORM,"%p(",1,%a0
966
printx PNORM,%a0@
967
printf PNORM,")\n"
968
rts
969
3: subq.w #2,%d2
970
jcs 5f | %d2 < 2, round to zero
971
jhi 4f | %d2 > 2, round to +infinity
972
tst.b (-3,%a0) | to -inf
973
jne 1b
974
jra 5f
975
4: tst.b (-3,%a0) | to +inf
976
jeq 1b
977
5: move.w #0x407e,(-2,%a0)
978
move.l #0xffffff00,(%a0)+
979
clr.l (%a0)
980
jra 2b
981
| zero and denormalized
982
fp_ns_zero:
983
tst.l (%a0)+
984
jne 1f
985
tst.l (%a0)
986
jne 1f
987
subq.l #8,%a0
988
printf PNORM,"%p(",1,%a0
989
printx PNORM,%a0@
990
printf PNORM,")\n"
991
rts | zero. nothing to do.
992
| These are not merely subnormal numbers, but true denormals,
993
| i.e. pathologically small (exponent is 2**-16383) numbers.
994
| It is clearly impossible for even a normal extended number
995
| with that exponent to fit into single precision, so just
996
| write these ones off as "too darn small".
997
1: fp_set_sr FPSR_EXC_UNFL | Set UNFL bit
998
clr.l (%a0)
999
clr.l -(%a0)
1000
move.w #0x3f81,-(%a0) | i.e. 2**-126
1001
addq.l #6,%a0
1002
moveq #1,%d0
1003
jra fp_ns_round | round.
1004
| Infinities or NaNs
1005
fp_ns_huge:
1006
subq.l #4,%a0
1007
printf PNORM,"%p(",1,%a0
1008
printx PNORM,%a0@
1009
printf PNORM,")\n"
1010
rts
1011
1012
| fp_normalize_single_fast:
1013
| normalize an extended with single (23-bit) precision
1014
| this is only used by fsgldiv/fsgdlmul, where the
1015
| operand is not completly normalized.
1016
| args: %a0 (struct fp_ext *)
1017
1018
fp_normalize_single_fast:
1019
printf PNORM,"nsf: %p(",1,%a0
1020
printx PNORM,%a0@
1021
printf PNORM,") "
1022
addq.l #2,%a0
1023
move.w (%a0)+,%d2
1024
cmp.w #0x7fff,%d2
1025
jeq fp_nsf_huge | NaN / infinitive.
1026
move.l (%a0)+,%d0 | get high lword of mantissa
1027
fp_nsf_round:
1028
tst.l (%a0) | check the low lword
1029
jeq 1f
1030
| Set a sticky bit if it is non-zero. This should only
1031
| affect the rounding in what would otherwise be equal-
1032
| distance situations, which is what we want it to do.
1033
bset #0,%d0
1034
1: clr.l (%a0) | zap it from memory.
1035
| now, round off the low 8 bits of the hi lword.
1036
tst.b %d0 | 8 low bits.
1037
jne fp_nsf_checkround | Are they non-zero?
1038
| nothing to do here
1039
subq.l #8,%a0
1040
printf PNORM,"%p(",1,%a0
1041
printx PNORM,%a0@
1042
printf PNORM,")\n"
1043
rts
1044
fp_nsf_checkround:
1045
fp_set_sr FPSR_EXC_INEX2 | INEX2 bit
1046
clr.b -(%a0) | clear low byte of high lword
1047
subq.l #3,%a0
1048
move.w (FPD_RND,FPDATA),%d2 | rounding mode
1049
jne 2f | %d2 == 0, round to nearest
1050
tst.b %d0 | test guard bit
1051
jpl 9f | zero is closer
1052
btst #8,%d0 | test lsb bit
1053
| round to even behaviour, see above.
1054
jne fp_nsf_doroundup | round to infinity
1055
lsl.b #1,%d0 | check low bits
1056
jeq 9f | round to zero
1057
fp_nsf_doroundup:
1058
| round (the mantissa, that is) towards infinity
1059
add.l #0x100,(%a0)
1060
jcc 9f | no overflow, good.
1061
| Overflow. This means that the %d1 was 0xffffff00, so it
1062
| is now zero. We will set the mantissa to reflect this, and
1063
| increment the exponent (checking for overflow there too)
1064
move.w #0x8000,(%a0)
1065
addq.w #1,-(%a0)
1066
cmp.w #0x407f,(%a0)+ | exponent now overflown?
1067
jeq fp_nsf_large | yes, so make it infinity.
1068
9: subq.l #4,%a0
1069
printf PNORM,"%p(",1,%a0
1070
printx PNORM,%a0@
1071
printf PNORM,")\n"
1072
rts
1073
| check nondefault rounding modes
1074
2: subq.w #2,%d2
1075
jcs 9b | %d2 < 2, round to zero
1076
jhi 3f | %d2 > 2, round to +infinity
1077
tst.b (-3,%a0) | to -inf
1078
jne fp_nsf_doroundup | negative, round to infinity
1079
jra 9b | positive, round to zero
1080
3: tst.b (-3,%a0) | to +inf
1081
jeq fp_nsf_doroundup | positive, round to infinity
1082
jra 9b | negative, round to zero
1083
| Exponent overflow. Just call it infinity.
1084
fp_nsf_large:
1085
tst.b (3,%a0)
1086
jeq 1f
1087
fp_set_sr FPSR_EXC_INEX2
1088
1: fp_set_sr FPSR_EXC_OVFL
1089
move.w (FPD_RND,FPDATA),%d2
1090
jne 3f | %d2 = 0 round to nearest
1091
1: move.w #0x7fff,(-2,%a0)
1092
clr.l (%a0)+
1093
clr.l (%a0)
1094
2: subq.l #8,%a0
1095
printf PNORM,"%p(",1,%a0
1096
printx PNORM,%a0@
1097
printf PNORM,")\n"
1098
rts
1099
3: subq.w #2,%d2
1100
jcs 5f | %d2 < 2, round to zero
1101
jhi 4f | %d2 > 2, round to +infinity
1102
tst.b (-3,%a0) | to -inf
1103
jne 1b
1104
jra 5f
1105
4: tst.b (-3,%a0) | to +inf
1106
jeq 1b
1107
5: move.w #0x407e,(-2,%a0)
1108
move.l #0xffffff00,(%a0)+
1109
clr.l (%a0)
1110
jra 2b
1111
| Infinities or NaNs
1112
fp_nsf_huge:
1113
subq.l #4,%a0
1114
printf PNORM,"%p(",1,%a0
1115
printx PNORM,%a0@
1116
printf PNORM,")\n"
1117
rts
1118
1119
| conv_ext2int (macro):
1120
| Generates a subroutine that converts an extended value to an
1121
| integer of a given size, again, with the appropriate type of
1122
| rounding.
1123
1124
| Macro arguments:
1125
| s: size, as given in an assembly instruction.
1126
| b: number of bits in that size.
1127
1128
| Subroutine arguments:
1129
| %a0: source (struct fp_ext *)
1130
1131
| Returns the integer in %d0 (like it should)
1132
1133
.macro conv_ext2int s,b
1134
.set inf,(1<<(\b-1))-1 | i.e. MAXINT
1135
printf PCONV,"e2i%d: %p(",2,#\b,%a0
1136
printx PCONV,%a0@
1137
printf PCONV,") "
1138
addq.l #2,%a0
1139
move.w (%a0)+,%d2 | exponent
1140
jeq fp_e2i_zero\b | zero / denorm (== 0, here)
1141
cmp.w #0x7fff,%d2
1142
jeq fp_e2i_huge\b | Inf / NaN
1143
sub.w #0x3ffe,%d2
1144
jcs fp_e2i_small\b
1145
cmp.w #\b,%d2
1146
jhi fp_e2i_large\b
1147
move.l (%a0),%d0
1148
move.l %d0,%d1
1149
lsl.l %d2,%d1
1150
jne fp_e2i_round\b
1151
tst.l (4,%a0)
1152
jne fp_e2i_round\b
1153
neg.w %d2
1154
add.w #32,%d2
1155
lsr.l %d2,%d0
1156
9: tst.w (-4,%a0)
1157
jne 1f
1158
tst.\s %d0
1159
jmi fp_e2i_large\b
1160
printf PCONV,"-> %p\n",1,%d0
1161
rts
1162
1: neg.\s %d0
1163
jeq 1f
1164
jpl fp_e2i_large\b
1165
1: printf PCONV,"-> %p\n",1,%d0
1166
rts
1167
fp_e2i_round\b:
1168
fp_set_sr FPSR_EXC_INEX2 | INEX2 bit
1169
neg.w %d2
1170
add.w #32,%d2
1171
.if \b>16
1172
jeq 5f
1173
.endif
1174
lsr.l %d2,%d0
1175
move.w (FPD_RND,FPDATA),%d2 | rounding mode
1176
jne 2f | %d2 == 0, round to nearest
1177
tst.l %d1 | test guard bit
1178
jpl 9b | zero is closer
1179
btst %d2,%d0 | test lsb bit (%d2 still 0)
1180
jne fp_e2i_doroundup\b
1181
lsl.l #1,%d1 | check low bits
1182
jne fp_e2i_doroundup\b
1183
tst.l (4,%a0)
1184
jeq 9b
1185
fp_e2i_doroundup\b:
1186
addq.l #1,%d0
1187
jra 9b
1188
| check nondefault rounding modes
1189
2: subq.w #2,%d2
1190
jcs 9b | %d2 < 2, round to zero
1191
jhi 3f | %d2 > 2, round to +infinity
1192
tst.w (-4,%a0) | to -inf
1193
jne fp_e2i_doroundup\b | negative, round to infinity
1194
jra 9b | positive, round to zero
1195
3: tst.w (-4,%a0) | to +inf
1196
jeq fp_e2i_doroundup\b | positive, round to infinity
1197
jra 9b | negative, round to zero
1198
| we are only want -2**127 get correctly rounded here,
1199
| since the guard bit is in the lower lword.
1200
| everything else ends up anyway as overflow.
1201
.if \b>16
1202
5: move.w (FPD_RND,FPDATA),%d2 | rounding mode
1203
jne 2b | %d2 == 0, round to nearest
1204
move.l (4,%a0),%d1 | test guard bit
1205
jpl 9b | zero is closer
1206
lsl.l #1,%d1 | check low bits
1207
jne fp_e2i_doroundup\b
1208
jra 9b
1209
.endif
1210
fp_e2i_zero\b:
1211
clr.l %d0
1212
tst.l (%a0)+
1213
jne 1f
1214
tst.l (%a0)
1215
jeq 3f
1216
1: subq.l #4,%a0
1217
fp_clr_sr FPSR_EXC_UNFL | fp_normalize_ext has set this bit
1218
fp_e2i_small\b:
1219
fp_set_sr FPSR_EXC_INEX2
1220
clr.l %d0
1221
move.w (FPD_RND,FPDATA),%d2 | rounding mode
1222
subq.w #2,%d2
1223
jcs 3f | %d2 < 2, round to nearest/zero
1224
jhi 2f | %d2 > 2, round to +infinity
1225
tst.w (-4,%a0) | to -inf
1226
jeq 3f
1227
subq.\s #1,%d0
1228
jra 3f
1229
2: tst.w (-4,%a0) | to +inf
1230
jne 3f
1231
addq.\s #1,%d0
1232
3: printf PCONV,"-> %p\n",1,%d0
1233
rts
1234
fp_e2i_large\b:
1235
fp_set_sr FPSR_EXC_OPERR
1236
move.\s #inf,%d0
1237
tst.w (-4,%a0)
1238
jeq 1f
1239
addq.\s #1,%d0
1240
1: printf PCONV,"-> %p\n",1,%d0
1241
rts
1242
fp_e2i_huge\b:
1243
move.\s (%a0),%d0
1244
tst.l (%a0)
1245
jne 1f
1246
tst.l (%a0)
1247
jeq fp_e2i_large\b
1248
| fp_normalize_ext has set this bit already
1249
| and made the number nonsignaling
1250
1: fp_tst_sr FPSR_EXC_SNAN
1251
jne 1f
1252
fp_set_sr FPSR_EXC_OPERR
1253
1: printf PCONV,"-> %p\n",1,%d0
1254
rts
1255
.endm
1256
1257
fp_conv_ext2long:
1258
conv_ext2int l,32
1259
1260
fp_conv_ext2short:
1261
conv_ext2int w,16
1262
1263
fp_conv_ext2byte:
1264
conv_ext2int b,8
1265
1266
fp_conv_ext2double:
1267
jsr fp_normalize_double
1268
printf PCONV,"e2d: %p(",1,%a0
1269
printx PCONV,%a0@
1270
printf PCONV,"), "
1271
move.l (%a0)+,%d2
1272
cmp.w #0x7fff,%d2
1273
jne 1f
1274
move.w #0x7ff,%d2
1275
move.l (%a0)+,%d0
1276
jra 2f
1277
1: sub.w #0x3fff-0x3ff,%d2
1278
move.l (%a0)+,%d0
1279
jmi 2f
1280
clr.w %d2
1281
2: lsl.w #5,%d2
1282
lsl.l #7,%d2
1283
lsl.l #8,%d2
1284
move.l %d0,%d1
1285
lsl.l #1,%d0
1286
lsr.l #4,%d0
1287
lsr.l #8,%d0
1288
or.l %d2,%d0
1289
putuser.l %d0,(%a1)+,fp_err_ua2,%a1
1290
moveq #21,%d0
1291
lsl.l %d0,%d1
1292
move.l (%a0),%d0
1293
lsr.l #4,%d0
1294
lsr.l #7,%d0
1295
or.l %d1,%d0
1296
putuser.l %d0,(%a1),fp_err_ua2,%a1
1297
#ifdef FPU_EMU_DEBUG
1298
getuser.l %a1@(-4),%d0,fp_err_ua2,%a1
1299
getuser.l %a1@(0),%d1,fp_err_ua2,%a1
1300
printf PCONV,"%p(%08x%08x)\n",3,%a1,%d0,%d1
1301
#endif
1302
rts
1303
1304
fp_conv_ext2single:
1305
jsr fp_normalize_single
1306
printf PCONV,"e2s: %p(",1,%a0
1307
printx PCONV,%a0@
1308
printf PCONV,"), "
1309
move.l (%a0)+,%d1
1310
cmp.w #0x7fff,%d1
1311
jne 1f
1312
move.w #0xff,%d1
1313
move.l (%a0)+,%d0
1314
jra 2f
1315
1: sub.w #0x3fff-0x7f,%d1
1316
move.l (%a0)+,%d0
1317
jmi 2f
1318
clr.w %d1
1319
2: lsl.w #8,%d1
1320
lsl.l #7,%d1
1321
lsl.l #8,%d1
1322
bclr #31,%d0
1323
lsr.l #8,%d0
1324
or.l %d1,%d0
1325
printf PCONV,"%08x\n",1,%d0
1326
rts
1327
1328
| special return addresses for instr that
1329
| encode the rounding precision in the opcode
1330
| (e.g. fsmove,fdmove)
1331
1332
fp_finalrounding_single:
1333
addq.l #8,%sp
1334
jsr fp_normalize_ext
1335
jsr fp_normalize_single
1336
jra fp_finaltest
1337
1338
fp_finalrounding_single_fast:
1339
addq.l #8,%sp
1340
jsr fp_normalize_ext
1341
jsr fp_normalize_single_fast
1342
jra fp_finaltest
1343
1344
fp_finalrounding_double:
1345
addq.l #8,%sp
1346
jsr fp_normalize_ext
1347
jsr fp_normalize_double
1348
jra fp_finaltest
1349
1350
| fp_finaltest:
1351
| set the emulated status register based on the outcome of an
1352
| emulated instruction.
1353
1354
fp_finalrounding:
1355
addq.l #8,%sp
1356
| printf ,"f: %p\n",1,%a0
1357
jsr fp_normalize_ext
1358
move.w (FPD_PREC,FPDATA),%d0
1359
subq.w #1,%d0
1360
jcs fp_finaltest
1361
jne 1f
1362
jsr fp_normalize_single
1363
jra 2f
1364
1: jsr fp_normalize_double
1365
2:| printf ,"f: %p\n",1,%a0
1366
fp_finaltest:
1367
| First, we do some of the obvious tests for the exception
1368
| status byte and condition code bytes of fp_sr here, so that
1369
| they do not have to be handled individually by every
1370
| emulated instruction.
1371
clr.l %d0
1372
addq.l #1,%a0
1373
tst.b (%a0)+ | sign
1374
jeq 1f
1375
bset #FPSR_CC_NEG-24,%d0 | N bit
1376
1: cmp.w #0x7fff,(%a0)+ | exponent
1377
jeq 2f
1378
| test for zero
1379
moveq #FPSR_CC_Z-24,%d1
1380
tst.l (%a0)+
1381
jne 9f
1382
tst.l (%a0)
1383
jne 9f
1384
jra 8f
1385
| infinitiv and NAN
1386
2: moveq #FPSR_CC_NAN-24,%d1
1387
move.l (%a0)+,%d2
1388
lsl.l #1,%d2 | ignore high bit
1389
jne 8f
1390
tst.l (%a0)
1391
jne 8f
1392
moveq #FPSR_CC_INF-24,%d1
1393
8: bset %d1,%d0
1394
9: move.b %d0,(FPD_FPSR+0,FPDATA) | set condition test result
1395
| move instructions enter here
1396
| Here, we test things in the exception status byte, and set
1397
| other things in the accrued exception byte accordingly.
1398
| Emulated instructions can set various things in the former,
1399
| as defined in fp_emu.h.
1400
fp_final:
1401
move.l (FPD_FPSR,FPDATA),%d0
1402
#if 0
1403
btst #FPSR_EXC_SNAN,%d0 | EXC_SNAN
1404
jne 1f
1405
btst #FPSR_EXC_OPERR,%d0 | EXC_OPERR
1406
jeq 2f
1407
1: bset #FPSR_AEXC_IOP,%d0 | set IOP bit
1408
2: btst #FPSR_EXC_OVFL,%d0 | EXC_OVFL
1409
jeq 1f
1410
bset #FPSR_AEXC_OVFL,%d0 | set OVFL bit
1411
1: btst #FPSR_EXC_UNFL,%d0 | EXC_UNFL
1412
jeq 1f
1413
btst #FPSR_EXC_INEX2,%d0 | EXC_INEX2
1414
jeq 1f
1415
bset #FPSR_AEXC_UNFL,%d0 | set UNFL bit
1416
1: btst #FPSR_EXC_DZ,%d0 | EXC_INEX1
1417
jeq 1f
1418
bset #FPSR_AEXC_DZ,%d0 | set DZ bit
1419
1: btst #FPSR_EXC_OVFL,%d0 | EXC_OVFL
1420
jne 1f
1421
btst #FPSR_EXC_INEX2,%d0 | EXC_INEX2
1422
jne 1f
1423
btst #FPSR_EXC_INEX1,%d0 | EXC_INEX1
1424
jeq 2f
1425
1: bset #FPSR_AEXC_INEX,%d0 | set INEX bit
1426
2: move.l %d0,(FPD_FPSR,FPDATA)
1427
#else
1428
| same as above, greatly optimized, but untested (yet)
1429
move.l %d0,%d2
1430
lsr.l #5,%d0
1431
move.l %d0,%d1
1432
lsr.l #4,%d1
1433
or.l %d0,%d1
1434
and.b #0x08,%d1
1435
move.l %d2,%d0
1436
lsr.l #6,%d0
1437
or.l %d1,%d0
1438
move.l %d2,%d1
1439
lsr.l #4,%d1
1440
or.b #0xdf,%d1
1441
and.b %d1,%d0
1442
move.l %d2,%d1
1443
lsr.l #7,%d1
1444
and.b #0x80,%d1
1445
or.b %d1,%d0
1446
and.b #0xf8,%d0
1447
or.b %d0,%d2
1448
move.l %d2,(FPD_FPSR,FPDATA)
1449
#endif
1450
move.b (FPD_FPSR+2,FPDATA),%d0
1451
and.b (FPD_FPCR+2,FPDATA),%d0
1452
jeq 1f
1453
printf ,"send signal!!!\n"
1454
1: jra fp_end
1455
1456