Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/m68k/platform/68360/commproc.c
10819 views
1
/*
2
* General Purpose functions for the global management of the
3
* Communication Processor Module.
4
*
5
* Copyright (c) 2000 Michael Leslie <[email protected]>
6
* Copyright (c) 1997 Dan Malek ([email protected])
7
*
8
* In addition to the individual control of the communication
9
* channels, there are a few functions that globally affect the
10
* communication processor.
11
*
12
* Buffer descriptors must be allocated from the dual ported memory
13
* space. The allocator for that is here. When the communication
14
* process is reset, we reclaim the memory available. There is
15
* currently no deallocator for this memory.
16
* The amount of space available is platform dependent. On the
17
* MBX, the EPPC software loads additional microcode into the
18
* communication processor, and uses some of the DP ram for this
19
* purpose. Current, the first 512 bytes and the last 256 bytes of
20
* memory are used. Right now I am conservative and only use the
21
* memory that can never be used for microcode. If there are
22
* applications that require more DP ram, we can expand the boundaries
23
* but then we have to be careful of any downloaded microcode.
24
*
25
*/
26
27
/*
28
* Michael Leslie <[email protected]>
29
* adapted Dan Malek's ppc8xx drivers to M68360
30
*
31
*/
32
33
#include <linux/errno.h>
34
#include <linux/sched.h>
35
#include <linux/kernel.h>
36
#include <linux/param.h>
37
#include <linux/string.h>
38
#include <linux/mm.h>
39
#include <linux/interrupt.h>
40
#include <asm/irq.h>
41
#include <asm/m68360.h>
42
#include <asm/commproc.h>
43
44
/* #include <asm/page.h> */
45
/* #include <asm/pgtable.h> */
46
extern void *_quicc_base;
47
extern unsigned int system_clock;
48
49
50
static uint dp_alloc_base; /* Starting offset in DP ram */
51
static uint dp_alloc_top; /* Max offset + 1 */
52
53
#if 0
54
static void *host_buffer; /* One page of host buffer */
55
static void *host_end; /* end + 1 */
56
#endif
57
58
/* struct cpm360_t *cpmp; */ /* Pointer to comm processor space */
59
60
QUICC *pquicc;
61
/* QUICC *quicc_dpram; */ /* mleslie - temporary; use extern pquicc elsewhere instead */
62
63
64
/* CPM interrupt vector functions. */
65
struct cpm_action {
66
void (*handler)(void *);
67
void *dev_id;
68
};
69
static struct cpm_action cpm_vecs[CPMVEC_NR];
70
static void cpm_interrupt(int irq, void * dev, struct pt_regs * regs);
71
static void cpm_error_interrupt(void *);
72
73
/* prototypes: */
74
void cpm_install_handler(int vec, void (*handler)(), void *dev_id);
75
void m360_cpm_reset(void);
76
77
78
79
80
void m360_cpm_reset()
81
{
82
/* pte_t *pte; */
83
84
pquicc = (struct quicc *)(_quicc_base); /* initialized in crt0_rXm.S */
85
86
/* Perform a CPM reset. */
87
pquicc->cp_cr = (SOFTWARE_RESET | CMD_FLAG);
88
89
/* Wait for CPM to become ready (should be 2 clocks). */
90
while (pquicc->cp_cr & CMD_FLAG);
91
92
/* On the recommendation of the 68360 manual, p. 7-60
93
* - Set sdma interrupt service mask to 7
94
* - Set sdma arbitration ID to 4
95
*/
96
pquicc->sdma_sdcr = 0x0740;
97
98
99
/* Claim the DP memory for our use.
100
*/
101
dp_alloc_base = CPM_DATAONLY_BASE;
102
dp_alloc_top = dp_alloc_base + CPM_DATAONLY_SIZE;
103
104
105
/* Set the host page for allocation.
106
*/
107
/* host_buffer = host_page_addr; */
108
/* host_end = host_page_addr + PAGE_SIZE; */
109
110
/* pte = find_pte(&init_mm, host_page_addr); */
111
/* pte_val(*pte) |= _PAGE_NO_CACHE; */
112
/* flush_tlb_page(current->mm->mmap, host_buffer); */
113
114
/* Tell everyone where the comm processor resides.
115
*/
116
/* cpmp = (cpm360_t *)commproc; */
117
}
118
119
120
/* This is called during init_IRQ. We used to do it above, but this
121
* was too early since init_IRQ was not yet called.
122
*/
123
void
124
cpm_interrupt_init(void)
125
{
126
/* Initialize the CPM interrupt controller.
127
* NOTE THAT pquicc had better have been initialized!
128
* reference: MC68360UM p. 7-377
129
*/
130
pquicc->intr_cicr =
131
(CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) |
132
(CPM_INTERRUPT << 13) |
133
CICR_HP_MASK |
134
(CPM_VECTOR_BASE << 5) |
135
CICR_SPS;
136
137
/* mask all CPM interrupts from reaching the cpu32 core: */
138
pquicc->intr_cimr = 0;
139
140
141
/* mles - If I understand correctly, the 360 just pops over to the CPM
142
* specific vector, obviating the necessity to vector through the IRQ
143
* whose priority the CPM is set to. This needs a closer look, though.
144
*/
145
146
/* Set our interrupt handler with the core CPU. */
147
/* if (request_irq(CPM_INTERRUPT, cpm_interrupt, 0, "cpm", NULL) != 0) */
148
/* panic("Could not allocate CPM IRQ!"); */
149
150
/* Install our own error handler.
151
*/
152
/* I think we want to hold off on this one for the moment - mles */
153
/* cpm_install_handler(CPMVEC_ERROR, cpm_error_interrupt, NULL); */
154
155
/* master CPM interrupt enable */
156
/* pquicc->intr_cicr |= CICR_IEN; */ /* no such animal for 360 */
157
}
158
159
160
161
/* CPM interrupt controller interrupt.
162
*/
163
static void
164
cpm_interrupt(int irq, void * dev, struct pt_regs * regs)
165
{
166
/* uint vec; */
167
168
/* mles: Note that this stuff is currently being performed by
169
* M68360_do_irq(int vec, struct pt_regs *fp), in ../ints.c */
170
171
/* figure out the vector */
172
/* call that vector's handler */
173
/* clear the irq's bit in the service register */
174
175
#if 0 /* old 860 stuff: */
176
/* Get the vector by setting the ACK bit and then reading
177
* the register.
178
*/
179
((volatile immap_t *)IMAP_ADDR)->im_cpic.cpic_civr = 1;
180
vec = ((volatile immap_t *)IMAP_ADDR)->im_cpic.cpic_civr;
181
vec >>= 11;
182
183
184
if (cpm_vecs[vec].handler != 0)
185
(*cpm_vecs[vec].handler)(cpm_vecs[vec].dev_id);
186
else
187
((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr &= ~(1 << vec);
188
189
/* After servicing the interrupt, we have to remove the status
190
* indicator.
191
*/
192
((immap_t *)IMAP_ADDR)->im_cpic.cpic_cisr |= (1 << vec);
193
#endif
194
195
}
196
197
/* The CPM can generate the error interrupt when there is a race condition
198
* between generating and masking interrupts. All we have to do is ACK it
199
* and return. This is a no-op function so we don't need any special
200
* tests in the interrupt handler.
201
*/
202
static void
203
cpm_error_interrupt(void *dev)
204
{
205
}
206
207
/* Install a CPM interrupt handler.
208
*/
209
void
210
cpm_install_handler(int vec, void (*handler)(), void *dev_id)
211
{
212
213
request_irq(vec, handler, 0, "timer", dev_id);
214
215
/* if (cpm_vecs[vec].handler != 0) */
216
/* printk(KERN_INFO "CPM interrupt %x replacing %x\n", */
217
/* (uint)handler, (uint)cpm_vecs[vec].handler); */
218
/* cpm_vecs[vec].handler = handler; */
219
/* cpm_vecs[vec].dev_id = dev_id; */
220
221
/* ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr |= (1 << vec); */
222
/* pquicc->intr_cimr |= (1 << vec); */
223
224
}
225
226
/* Free a CPM interrupt handler.
227
*/
228
void
229
cpm_free_handler(int vec)
230
{
231
cpm_vecs[vec].handler = NULL;
232
cpm_vecs[vec].dev_id = NULL;
233
/* ((immap_t *)IMAP_ADDR)->im_cpic.cpic_cimr &= ~(1 << vec); */
234
pquicc->intr_cimr &= ~(1 << vec);
235
}
236
237
238
239
240
/* Allocate some memory from the dual ported ram. We may want to
241
* enforce alignment restrictions, but right now everyone is a good
242
* citizen.
243
*/
244
uint
245
m360_cpm_dpalloc(uint size)
246
{
247
uint retloc;
248
249
if ((dp_alloc_base + size) >= dp_alloc_top)
250
return(CPM_DP_NOSPACE);
251
252
retloc = dp_alloc_base;
253
dp_alloc_base += size;
254
255
return(retloc);
256
}
257
258
259
#if 0 /* mleslie - for now these are simply kmalloc'd */
260
/* We also own one page of host buffer space for the allocation of
261
* UART "fifos" and the like.
262
*/
263
uint
264
m360_cpm_hostalloc(uint size)
265
{
266
uint retloc;
267
268
if ((host_buffer + size) >= host_end)
269
return(0);
270
271
retloc = host_buffer;
272
host_buffer += size;
273
274
return(retloc);
275
}
276
#endif
277
278
279
/* Set a baud rate generator. This needs lots of work. There are
280
* four BRGs, any of which can be wired to any channel.
281
* The internal baud rate clock is the system clock divided by 16.
282
* This assumes the baudrate is 16x oversampled by the uart.
283
*/
284
/* #define BRG_INT_CLK (((bd_t *)__res)->bi_intfreq * 1000000) */
285
#define BRG_INT_CLK system_clock
286
#define BRG_UART_CLK (BRG_INT_CLK/16)
287
288
void
289
m360_cpm_setbrg(uint brg, uint rate)
290
{
291
volatile uint *bp;
292
293
/* This is good enough to get SMCs running.....
294
*/
295
/* bp = (uint *)&cpmp->cp_brgc1; */
296
bp = (volatile uint *)(&pquicc->brgc[0].l);
297
bp += brg;
298
*bp = ((BRG_UART_CLK / rate - 1) << 1) | CPM_BRG_EN;
299
}
300
301
302
/*
303
* Local variables:
304
* c-indent-level: 4
305
* c-basic-offset: 4
306
* tab-width: 4
307
* End:
308
*/
309
310