Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/microblaze/kernel/hw_exception_handler.S
10817 views
1
/*
2
* Exception handling for Microblaze
3
*
4
* Rewriten interrupt handling
5
*
6
* Copyright (C) 2008-2009 Michal Simek <[email protected]>
7
* Copyright (C) 2008-2009 PetaLogix
8
*
9
* uClinux customisation (C) 2005 John Williams
10
*
11
* MMU code derived from arch/ppc/kernel/head_4xx.S:
12
* Copyright (C) 1995-1996 Gary Thomas <[email protected]>
13
* Initial PowerPC version.
14
* Copyright (C) 1996 Cort Dougan <[email protected]>
15
* Rewritten for PReP
16
* Copyright (C) 1996 Paul Mackerras <[email protected]>
17
* Low-level exception handers, MMU support, and rewrite.
18
* Copyright (C) 1997 Dan Malek <[email protected]>
19
* PowerPC 8xx modifications.
20
* Copyright (C) 1998-1999 TiVo, Inc.
21
* PowerPC 403GCX modifications.
22
* Copyright (C) 1999 Grant Erickson <[email protected]>
23
* PowerPC 403GCX/405GP modifications.
24
* Copyright 2000 MontaVista Software Inc.
25
* PPC405 modifications
26
* PowerPC 403GCX/405GP modifications.
27
* Author: MontaVista Software, Inc.
28
* [email protected] or [email protected]
29
* [email protected]
30
*
31
* Original code
32
* Copyright (C) 2004 Xilinx, Inc.
33
*
34
* This program is free software; you can redistribute it and/or modify it
35
* under the terms of the GNU General Public License version 2 as published
36
* by the Free Software Foundation.
37
*/
38
39
/*
40
* Here are the handlers which don't require enabling translation
41
* and calling other kernel code thus we can keep their design very simple
42
* and do all processing in real mode. All what they need is a valid current
43
* (that is an issue for the CONFIG_REGISTER_TASK_PTR case)
44
* This handlers use r3,r4,r5,r6 and optionally r[current] to work therefore
45
* these registers are saved/restored
46
* The handlers which require translation are in entry.S --KAA
47
*
48
* Microblaze HW Exception Handler
49
* - Non self-modifying exception handler for the following exception conditions
50
* - Unalignment
51
* - Instruction bus error
52
* - Data bus error
53
* - Illegal instruction opcode
54
* - Divide-by-zero
55
*
56
* - Privileged instruction exception (MMU)
57
* - Data storage exception (MMU)
58
* - Instruction storage exception (MMU)
59
* - Data TLB miss exception (MMU)
60
* - Instruction TLB miss exception (MMU)
61
*
62
* Note we disable interrupts during exception handling, otherwise we will
63
* possibly get multiple re-entrancy if interrupt handles themselves cause
64
* exceptions. JW
65
*/
66
67
#include <asm/exceptions.h>
68
#include <asm/unistd.h>
69
#include <asm/page.h>
70
71
#include <asm/entry.h>
72
#include <asm/current.h>
73
#include <linux/linkage.h>
74
75
#include <asm/mmu.h>
76
#include <asm/pgtable.h>
77
#include <asm/signal.h>
78
#include <asm/asm-offsets.h>
79
80
#undef DEBUG
81
82
/* Helpful Macros */
83
#define NUM_TO_REG(num) r ## num
84
85
#ifdef CONFIG_MMU
86
#define RESTORE_STATE \
87
lwi r5, r1, 0; \
88
mts rmsr, r5; \
89
nop; \
90
lwi r3, r1, PT_R3; \
91
lwi r4, r1, PT_R4; \
92
lwi r5, r1, PT_R5; \
93
lwi r6, r1, PT_R6; \
94
lwi r11, r1, PT_R11; \
95
lwi r31, r1, PT_R31; \
96
lwi r1, r1, PT_R1;
97
#endif /* CONFIG_MMU */
98
99
#define LWREG_NOP \
100
bri ex_handler_unhandled; \
101
nop;
102
103
#define SWREG_NOP \
104
bri ex_handler_unhandled; \
105
nop;
106
107
/* FIXME this is weird - for noMMU kernel is not possible to use brid
108
* instruction which can shorten executed time
109
*/
110
111
/* r3 is the source */
112
#define R3_TO_LWREG_V(regnum) \
113
swi r3, r1, 4 * regnum; \
114
bri ex_handler_done;
115
116
/* r3 is the source */
117
#define R3_TO_LWREG(regnum) \
118
or NUM_TO_REG (regnum), r0, r3; \
119
bri ex_handler_done;
120
121
/* r3 is the target */
122
#define SWREG_TO_R3_V(regnum) \
123
lwi r3, r1, 4 * regnum; \
124
bri ex_sw_tail;
125
126
/* r3 is the target */
127
#define SWREG_TO_R3(regnum) \
128
or r3, r0, NUM_TO_REG (regnum); \
129
bri ex_sw_tail;
130
131
#ifdef CONFIG_MMU
132
#define R3_TO_LWREG_VM_V(regnum) \
133
brid ex_lw_end_vm; \
134
swi r3, r7, 4 * regnum;
135
136
#define R3_TO_LWREG_VM(regnum) \
137
brid ex_lw_end_vm; \
138
or NUM_TO_REG (regnum), r0, r3;
139
140
#define SWREG_TO_R3_VM_V(regnum) \
141
brid ex_sw_tail_vm; \
142
lwi r3, r7, 4 * regnum;
143
144
#define SWREG_TO_R3_VM(regnum) \
145
brid ex_sw_tail_vm; \
146
or r3, r0, NUM_TO_REG (regnum);
147
148
/* Shift right instruction depending on available configuration */
149
#if CONFIG_XILINX_MICROBLAZE0_USE_BARREL > 0
150
#define BSRLI(rD, rA, imm) \
151
bsrli rD, rA, imm
152
#else
153
#define BSRLI(rD, rA, imm) BSRLI ## imm (rD, rA)
154
/* Only the used shift constants defined here - add more if needed */
155
#define BSRLI2(rD, rA) \
156
srl rD, rA; /* << 1 */ \
157
srl rD, rD; /* << 2 */
158
#define BSRLI10(rD, rA) \
159
srl rD, rA; /* << 1 */ \
160
srl rD, rD; /* << 2 */ \
161
srl rD, rD; /* << 3 */ \
162
srl rD, rD; /* << 4 */ \
163
srl rD, rD; /* << 5 */ \
164
srl rD, rD; /* << 6 */ \
165
srl rD, rD; /* << 7 */ \
166
srl rD, rD; /* << 8 */ \
167
srl rD, rD; /* << 9 */ \
168
srl rD, rD /* << 10 */
169
#define BSRLI20(rD, rA) \
170
BSRLI10(rD, rA); \
171
BSRLI10(rD, rD)
172
#endif
173
#endif /* CONFIG_MMU */
174
175
.extern other_exception_handler /* Defined in exception.c */
176
177
/*
178
* hw_exception_handler - Handler for exceptions
179
*
180
* Exception handler notes:
181
* - Handles all exceptions
182
* - Does not handle unaligned exceptions during load into r17, r1, r0.
183
* - Does not handle unaligned exceptions during store from r17 (cannot be
184
* done) and r1 (slows down common case)
185
*
186
* Relevant register structures
187
*
188
* EAR - |----|----|----|----|----|----|----|----|
189
* - < ## 32 bit faulting address ## >
190
*
191
* ESR - |----|----|----|----|----| - | - |-----|-----|
192
* - W S REG EXC
193
*
194
*
195
* STACK FRAME STRUCTURE (for NO_MMU)
196
* ---------------------------------
197
*
198
* +-------------+ + 0
199
* | MSR |
200
* +-------------+ + 4
201
* | r1 |
202
* | . |
203
* | . |
204
* | . |
205
* | . |
206
* | r18 |
207
* +-------------+ + 76
208
* | . |
209
* | . |
210
*
211
* MMU kernel uses the same 'pt_pool_space' pointed space
212
* which is used for storing register values - noMMu style was, that values were
213
* stored in stack but in case of failure you lost information about register.
214
* Currently you can see register value in memory in specific place.
215
* In compare to with previous solution the speed should be the same.
216
*
217
* MMU exception handler has different handling compare to no MMU kernel.
218
* Exception handler use jump table for directing of what happen. For MMU kernel
219
* is this approach better because MMU relate exception are handled by asm code
220
* in this file. In compare to with MMU expect of unaligned exception
221
* is everything handled by C code.
222
*/
223
224
/*
225
* every of these handlers is entered having R3/4/5/6/11/current saved on stack
226
* and clobbered so care should be taken to restore them if someone is going to
227
* return from exception
228
*/
229
230
/* wrappers to restore state before coming to entry.S */
231
#ifdef CONFIG_MMU
232
.section .data
233
.align 4
234
pt_pool_space:
235
.space PT_SIZE
236
237
#ifdef DEBUG
238
/* Create space for exception counting. */
239
.section .data
240
.global exception_debug_table
241
.align 4
242
exception_debug_table:
243
/* Look at exception vector table. There is 32 exceptions * word size */
244
.space (32 * 4)
245
#endif /* DEBUG */
246
247
.section .rodata
248
.align 4
249
_MB_HW_ExceptionVectorTable:
250
/* 0 - Undefined */
251
.long TOPHYS(ex_handler_unhandled)
252
/* 1 - Unaligned data access exception */
253
.long TOPHYS(handle_unaligned_ex)
254
/* 2 - Illegal op-code exception */
255
.long TOPHYS(full_exception_trapw)
256
/* 3 - Instruction bus error exception */
257
.long TOPHYS(full_exception_trapw)
258
/* 4 - Data bus error exception */
259
.long TOPHYS(full_exception_trapw)
260
/* 5 - Divide by zero exception */
261
.long TOPHYS(full_exception_trapw)
262
/* 6 - Floating point unit exception */
263
.long TOPHYS(full_exception_trapw)
264
/* 7 - Privileged instruction exception */
265
.long TOPHYS(full_exception_trapw)
266
/* 8 - 15 - Undefined */
267
.long TOPHYS(ex_handler_unhandled)
268
.long TOPHYS(ex_handler_unhandled)
269
.long TOPHYS(ex_handler_unhandled)
270
.long TOPHYS(ex_handler_unhandled)
271
.long TOPHYS(ex_handler_unhandled)
272
.long TOPHYS(ex_handler_unhandled)
273
.long TOPHYS(ex_handler_unhandled)
274
.long TOPHYS(ex_handler_unhandled)
275
/* 16 - Data storage exception */
276
.long TOPHYS(handle_data_storage_exception)
277
/* 17 - Instruction storage exception */
278
.long TOPHYS(handle_instruction_storage_exception)
279
/* 18 - Data TLB miss exception */
280
.long TOPHYS(handle_data_tlb_miss_exception)
281
/* 19 - Instruction TLB miss exception */
282
.long TOPHYS(handle_instruction_tlb_miss_exception)
283
/* 20 - 31 - Undefined */
284
.long TOPHYS(ex_handler_unhandled)
285
.long TOPHYS(ex_handler_unhandled)
286
.long TOPHYS(ex_handler_unhandled)
287
.long TOPHYS(ex_handler_unhandled)
288
.long TOPHYS(ex_handler_unhandled)
289
.long TOPHYS(ex_handler_unhandled)
290
.long TOPHYS(ex_handler_unhandled)
291
.long TOPHYS(ex_handler_unhandled)
292
.long TOPHYS(ex_handler_unhandled)
293
.long TOPHYS(ex_handler_unhandled)
294
.long TOPHYS(ex_handler_unhandled)
295
.long TOPHYS(ex_handler_unhandled)
296
#endif
297
298
.global _hw_exception_handler
299
.section .text
300
.align 4
301
.ent _hw_exception_handler
302
_hw_exception_handler:
303
#ifndef CONFIG_MMU
304
addik r1, r1, -(EX_HANDLER_STACK_SIZ); /* Create stack frame */
305
#else
306
swi r1, r0, TOPHYS(pt_pool_space + PT_R1); /* GET_SP */
307
/* Save date to kernel memory. Here is the problem
308
* when you came from user space */
309
ori r1, r0, TOPHYS(pt_pool_space);
310
#endif
311
swi r3, r1, PT_R3
312
swi r4, r1, PT_R4
313
swi r5, r1, PT_R5
314
swi r6, r1, PT_R6
315
316
#ifdef CONFIG_MMU
317
swi r11, r1, PT_R11
318
swi r31, r1, PT_R31
319
lwi r31, r0, TOPHYS(PER_CPU(CURRENT_SAVE)) /* get saved current */
320
#endif
321
322
mfs r5, rmsr;
323
nop
324
swi r5, r1, 0;
325
mfs r4, resr
326
nop
327
mfs r3, rear;
328
nop
329
330
#ifndef CONFIG_MMU
331
andi r5, r4, 0x1000; /* Check ESR[DS] */
332
beqi r5, not_in_delay_slot; /* Branch if ESR[DS] not set */
333
mfs r17, rbtr; /* ESR[DS] set - return address in BTR */
334
nop
335
not_in_delay_slot:
336
swi r17, r1, PT_R17
337
#endif
338
339
andi r5, r4, 0x1F; /* Extract ESR[EXC] */
340
341
#ifdef CONFIG_MMU
342
/* Calculate exception vector offset = r5 << 2 */
343
addk r6, r5, r5; /* << 1 */
344
addk r6, r6, r6; /* << 2 */
345
346
#ifdef DEBUG
347
/* counting which exception happen */
348
lwi r5, r0, TOPHYS(exception_debug_table)
349
addi r5, r5, 1
350
swi r5, r0, TOPHYS(exception_debug_table)
351
lwi r5, r6, TOPHYS(exception_debug_table)
352
addi r5, r5, 1
353
swi r5, r6, TOPHYS(exception_debug_table)
354
#endif
355
/* end */
356
/* Load the HW Exception vector */
357
lwi r6, r6, TOPHYS(_MB_HW_ExceptionVectorTable)
358
bra r6
359
360
full_exception_trapw:
361
RESTORE_STATE
362
bri full_exception_trap
363
#else
364
/* Exceptions enabled here. This will allow nested exceptions */
365
mfs r6, rmsr;
366
nop
367
swi r6, r1, 0; /* RMSR_OFFSET */
368
ori r6, r6, 0x100; /* Turn ON the EE bit */
369
andi r6, r6, ~2; /* Disable interrupts */
370
mts rmsr, r6;
371
nop
372
373
xori r6, r5, 1; /* 00001 = Unaligned Exception */
374
/* Jump to unalignment exception handler */
375
beqi r6, handle_unaligned_ex;
376
377
handle_other_ex: /* Handle Other exceptions here */
378
/* Save other volatiles before we make procedure calls below */
379
swi r7, r1, PT_R7
380
swi r8, r1, PT_R8
381
swi r9, r1, PT_R9
382
swi r10, r1, PT_R10
383
swi r11, r1, PT_R11
384
swi r12, r1, PT_R12
385
swi r14, r1, PT_R14
386
swi r15, r1, PT_R15
387
swi r18, r1, PT_R18
388
389
or r5, r1, r0
390
andi r6, r4, 0x1F; /* Load ESR[EC] */
391
lwi r7, r0, PER_CPU(KM) /* MS: saving current kernel mode to regs */
392
swi r7, r1, PT_MODE
393
mfs r7, rfsr
394
nop
395
addk r8, r17, r0; /* Load exception address */
396
bralid r15, full_exception; /* Branch to the handler */
397
nop;
398
mts rfsr, r0; /* Clear sticky fsr */
399
nop
400
401
/*
402
* Trigger execution of the signal handler by enabling
403
* interrupts and calling an invalid syscall.
404
*/
405
mfs r5, rmsr;
406
nop
407
ori r5, r5, 2;
408
mts rmsr, r5; /* enable interrupt */
409
nop
410
addi r12, r0, __NR_syscalls;
411
brki r14, 0x08;
412
mfs r5, rmsr; /* disable interrupt */
413
nop
414
andi r5, r5, ~2;
415
mts rmsr, r5;
416
nop
417
418
lwi r7, r1, PT_R7
419
lwi r8, r1, PT_R8
420
lwi r9, r1, PT_R9
421
lwi r10, r1, PT_R10
422
lwi r11, r1, PT_R11
423
lwi r12, r1, PT_R12
424
lwi r14, r1, PT_R14
425
lwi r15, r1, PT_R15
426
lwi r18, r1, PT_R18
427
428
bri ex_handler_done; /* Complete exception handling */
429
#endif
430
431
/* 0x01 - Unaligned data access exception
432
* This occurs when a word access is not aligned on a word boundary,
433
* or when a 16-bit access is not aligned on a 16-bit boundary.
434
* This handler perform the access, and returns, except for MMU when
435
* the unaligned address is last on a 4k page or the physical address is
436
* not found in the page table, in which case unaligned_data_trap is called.
437
*/
438
handle_unaligned_ex:
439
/* Working registers already saved: R3, R4, R5, R6
440
* R4 = ESR
441
* R3 = EAR
442
*/
443
#ifdef CONFIG_MMU
444
andi r6, r4, 0x1000 /* Check ESR[DS] */
445
beqi r6, _no_delayslot /* Branch if ESR[DS] not set */
446
mfs r17, rbtr; /* ESR[DS] set - return address in BTR */
447
nop
448
_no_delayslot:
449
/* jump to high level unaligned handler */
450
RESTORE_STATE;
451
bri unaligned_data_trap
452
#endif
453
andi r6, r4, 0x3E0; /* Mask and extract the register operand */
454
srl r6, r6; /* r6 >> 5 */
455
srl r6, r6;
456
srl r6, r6;
457
srl r6, r6;
458
srl r6, r6;
459
/* Store the register operand in a temporary location */
460
sbi r6, r0, TOPHYS(ex_reg_op);
461
462
andi r6, r4, 0x400; /* Extract ESR[S] */
463
bnei r6, ex_sw;
464
ex_lw:
465
andi r6, r4, 0x800; /* Extract ESR[W] */
466
beqi r6, ex_lhw;
467
lbui r5, r3, 0; /* Exception address in r3 */
468
/* Load a word, byte-by-byte from destination address
469
and save it in tmp space */
470
sbi r5, r0, TOPHYS(ex_tmp_data_loc_0);
471
lbui r5, r3, 1;
472
sbi r5, r0, TOPHYS(ex_tmp_data_loc_1);
473
lbui r5, r3, 2;
474
sbi r5, r0, TOPHYS(ex_tmp_data_loc_2);
475
lbui r5, r3, 3;
476
sbi r5, r0, TOPHYS(ex_tmp_data_loc_3);
477
/* Get the destination register value into r4 */
478
lwi r4, r0, TOPHYS(ex_tmp_data_loc_0);
479
bri ex_lw_tail;
480
ex_lhw:
481
lbui r5, r3, 0; /* Exception address in r3 */
482
/* Load a half-word, byte-by-byte from destination
483
address and save it in tmp space */
484
sbi r5, r0, TOPHYS(ex_tmp_data_loc_0);
485
lbui r5, r3, 1;
486
sbi r5, r0, TOPHYS(ex_tmp_data_loc_1);
487
/* Get the destination register value into r4 */
488
lhui r4, r0, TOPHYS(ex_tmp_data_loc_0);
489
ex_lw_tail:
490
/* Get the destination register number into r5 */
491
lbui r5, r0, TOPHYS(ex_reg_op);
492
/* Form load_word jump table offset (lw_table + (8 * regnum)) */
493
addik r6, r0, TOPHYS(lw_table);
494
addk r5, r5, r5;
495
addk r5, r5, r5;
496
addk r5, r5, r5;
497
addk r5, r5, r6;
498
bra r5;
499
ex_lw_end: /* Exception handling of load word, ends */
500
ex_sw:
501
/* Get the destination register number into r5 */
502
lbui r5, r0, TOPHYS(ex_reg_op);
503
/* Form store_word jump table offset (sw_table + (8 * regnum)) */
504
addik r6, r0, TOPHYS(sw_table);
505
add r5, r5, r5;
506
add r5, r5, r5;
507
add r5, r5, r5;
508
add r5, r5, r6;
509
bra r5;
510
ex_sw_tail:
511
mfs r6, resr;
512
nop
513
andi r6, r6, 0x800; /* Extract ESR[W] */
514
beqi r6, ex_shw;
515
/* Get the word - delay slot */
516
swi r4, r0, TOPHYS(ex_tmp_data_loc_0);
517
/* Store the word, byte-by-byte into destination address */
518
lbui r4, r0, TOPHYS(ex_tmp_data_loc_0);
519
sbi r4, r3, 0;
520
lbui r4, r0, TOPHYS(ex_tmp_data_loc_1);
521
sbi r4, r3, 1;
522
lbui r4, r0, TOPHYS(ex_tmp_data_loc_2);
523
sbi r4, r3, 2;
524
lbui r4, r0, TOPHYS(ex_tmp_data_loc_3);
525
sbi r4, r3, 3;
526
bri ex_handler_done;
527
528
ex_shw:
529
/* Store the lower half-word, byte-by-byte into destination address */
530
swi r4, r0, TOPHYS(ex_tmp_data_loc_0);
531
lbui r4, r0, TOPHYS(ex_tmp_data_loc_2);
532
sbi r4, r3, 0;
533
lbui r4, r0, TOPHYS(ex_tmp_data_loc_3);
534
sbi r4, r3, 1;
535
ex_sw_end: /* Exception handling of store word, ends. */
536
537
ex_handler_done:
538
#ifndef CONFIG_MMU
539
lwi r5, r1, 0 /* RMSR */
540
mts rmsr, r5
541
nop
542
lwi r3, r1, PT_R3
543
lwi r4, r1, PT_R4
544
lwi r5, r1, PT_R5
545
lwi r6, r1, PT_R6
546
lwi r17, r1, PT_R17
547
548
rted r17, 0
549
addik r1, r1, (EX_HANDLER_STACK_SIZ); /* Restore stack frame */
550
#else
551
RESTORE_STATE;
552
rted r17, 0
553
nop
554
#endif
555
556
#ifdef CONFIG_MMU
557
/* Exception vector entry code. This code runs with address translation
558
* turned off (i.e. using physical addresses). */
559
560
/* Exception vectors. */
561
562
/* 0x10 - Data Storage Exception
563
* This happens for just a few reasons. U0 set (but we don't do that),
564
* or zone protection fault (user violation, write to protected page).
565
* If this is just an update of modified status, we do that quickly
566
* and exit. Otherwise, we call heavyweight functions to do the work.
567
*/
568
handle_data_storage_exception:
569
/* Working registers already saved: R3, R4, R5, R6
570
* R3 = ESR
571
*/
572
mfs r11, rpid
573
nop
574
/* If we are faulting a kernel address, we have to use the
575
* kernel page tables.
576
*/
577
ori r5, r0, CONFIG_KERNEL_START
578
cmpu r5, r3, r5
579
bgti r5, ex3
580
/* First, check if it was a zone fault (which means a user
581
* tried to access a kernel or read-protected page - always
582
* a SEGV). All other faults here must be stores, so no
583
* need to check ESR_S as well. */
584
andi r4, r4, 0x800 /* ESR_Z - zone protection */
585
bnei r4, ex2
586
587
ori r4, r0, swapper_pg_dir
588
mts rpid, r0 /* TLB will have 0 TID */
589
nop
590
bri ex4
591
592
/* Get the PGD for the current thread. */
593
ex3:
594
/* First, check if it was a zone fault (which means a user
595
* tried to access a kernel or read-protected page - always
596
* a SEGV). All other faults here must be stores, so no
597
* need to check ESR_S as well. */
598
andi r4, r4, 0x800 /* ESR_Z */
599
bnei r4, ex2
600
/* get current task address */
601
addi r4 ,CURRENT_TASK, TOPHYS(0);
602
lwi r4, r4, TASK_THREAD+PGDIR
603
ex4:
604
tophys(r4,r4)
605
BSRLI(r5,r3,20) /* Create L1 (pgdir/pmd) address */
606
andi r5, r5, 0xffc
607
/* Assume pgdir aligned on 4K boundary, no need for "andi r4,r4,0xfffff003" */
608
or r4, r4, r5
609
lwi r4, r4, 0 /* Get L1 entry */
610
andi r5, r4, 0xfffff000 /* Extract L2 (pte) base address */
611
beqi r5, ex2 /* Bail if no table */
612
613
tophys(r5,r5)
614
BSRLI(r6,r3,10) /* Compute PTE address */
615
andi r6, r6, 0xffc
616
andi r5, r5, 0xfffff003
617
or r5, r5, r6
618
lwi r4, r5, 0 /* Get Linux PTE */
619
620
andi r6, r4, _PAGE_RW /* Is it writeable? */
621
beqi r6, ex2 /* Bail if not */
622
623
/* Update 'changed' */
624
ori r4, r4, _PAGE_DIRTY|_PAGE_ACCESSED|_PAGE_HWWRITE
625
swi r4, r5, 0 /* Update Linux page table */
626
627
/* Most of the Linux PTE is ready to load into the TLB LO.
628
* We set ZSEL, where only the LS-bit determines user access.
629
* We set execute, because we don't have the granularity to
630
* properly set this at the page level (Linux problem).
631
* If shared is set, we cause a zero PID->TID load.
632
* Many of these bits are software only. Bits we don't set
633
* here we (properly should) assume have the appropriate value.
634
*/
635
andni r4, r4, 0x0ce2 /* Make sure 20, 21 are zero */
636
ori r4, r4, _PAGE_HWEXEC /* make it executable */
637
638
/* find the TLB index that caused the fault. It has to be here*/
639
mts rtlbsx, r3
640
nop
641
mfs r5, rtlbx /* DEBUG: TBD */
642
nop
643
mts rtlblo, r4 /* Load TLB LO */
644
nop
645
/* Will sync shadow TLBs */
646
647
/* Done...restore registers and get out of here. */
648
mts rpid, r11
649
nop
650
bri 4
651
652
RESTORE_STATE;
653
rted r17, 0
654
nop
655
ex2:
656
/* The bailout. Restore registers to pre-exception conditions
657
* and call the heavyweights to help us out. */
658
mts rpid, r11
659
nop
660
bri 4
661
RESTORE_STATE;
662
bri page_fault_data_trap
663
664
665
/* 0x11 - Instruction Storage Exception
666
* This is caused by a fetch from non-execute or guarded pages. */
667
handle_instruction_storage_exception:
668
/* Working registers already saved: R3, R4, R5, R6
669
* R3 = ESR
670
*/
671
672
RESTORE_STATE;
673
bri page_fault_instr_trap
674
675
/* 0x12 - Data TLB Miss Exception
676
* As the name implies, translation is not in the MMU, so search the
677
* page tables and fix it. The only purpose of this function is to
678
* load TLB entries from the page table if they exist.
679
*/
680
handle_data_tlb_miss_exception:
681
/* Working registers already saved: R3, R4, R5, R6
682
* R3 = EAR, R4 = ESR
683
*/
684
mfs r11, rpid
685
nop
686
687
/* If we are faulting a kernel address, we have to use the
688
* kernel page tables. */
689
ori r6, r0, CONFIG_KERNEL_START
690
cmpu r4, r3, r6
691
bgti r4, ex5
692
ori r4, r0, swapper_pg_dir
693
mts rpid, r0 /* TLB will have 0 TID */
694
nop
695
bri ex6
696
697
/* Get the PGD for the current thread. */
698
ex5:
699
/* get current task address */
700
addi r4 ,CURRENT_TASK, TOPHYS(0);
701
lwi r4, r4, TASK_THREAD+PGDIR
702
ex6:
703
tophys(r4,r4)
704
BSRLI(r5,r3,20) /* Create L1 (pgdir/pmd) address */
705
andi r5, r5, 0xffc
706
/* Assume pgdir aligned on 4K boundary, no need for "andi r4,r4,0xfffff003" */
707
or r4, r4, r5
708
lwi r4, r4, 0 /* Get L1 entry */
709
andi r5, r4, 0xfffff000 /* Extract L2 (pte) base address */
710
beqi r5, ex7 /* Bail if no table */
711
712
tophys(r5,r5)
713
BSRLI(r6,r3,10) /* Compute PTE address */
714
andi r6, r6, 0xffc
715
andi r5, r5, 0xfffff003
716
or r5, r5, r6
717
lwi r4, r5, 0 /* Get Linux PTE */
718
719
andi r6, r4, _PAGE_PRESENT
720
beqi r6, ex7
721
722
ori r4, r4, _PAGE_ACCESSED
723
swi r4, r5, 0
724
725
/* Most of the Linux PTE is ready to load into the TLB LO.
726
* We set ZSEL, where only the LS-bit determines user access.
727
* We set execute, because we don't have the granularity to
728
* properly set this at the page level (Linux problem).
729
* If shared is set, we cause a zero PID->TID load.
730
* Many of these bits are software only. Bits we don't set
731
* here we (properly should) assume have the appropriate value.
732
*/
733
brid finish_tlb_load
734
andni r4, r4, 0x0ce2 /* Make sure 20, 21 are zero */
735
ex7:
736
/* The bailout. Restore registers to pre-exception conditions
737
* and call the heavyweights to help us out.
738
*/
739
mts rpid, r11
740
nop
741
bri 4
742
RESTORE_STATE;
743
bri page_fault_data_trap
744
745
/* 0x13 - Instruction TLB Miss Exception
746
* Nearly the same as above, except we get our information from
747
* different registers and bailout to a different point.
748
*/
749
handle_instruction_tlb_miss_exception:
750
/* Working registers already saved: R3, R4, R5, R6
751
* R3 = ESR
752
*/
753
mfs r11, rpid
754
nop
755
756
/* If we are faulting a kernel address, we have to use the
757
* kernel page tables.
758
*/
759
ori r4, r0, CONFIG_KERNEL_START
760
cmpu r4, r3, r4
761
bgti r4, ex8
762
ori r4, r0, swapper_pg_dir
763
mts rpid, r0 /* TLB will have 0 TID */
764
nop
765
bri ex9
766
767
/* Get the PGD for the current thread. */
768
ex8:
769
/* get current task address */
770
addi r4 ,CURRENT_TASK, TOPHYS(0);
771
lwi r4, r4, TASK_THREAD+PGDIR
772
ex9:
773
tophys(r4,r4)
774
BSRLI(r5,r3,20) /* Create L1 (pgdir/pmd) address */
775
andi r5, r5, 0xffc
776
/* Assume pgdir aligned on 4K boundary, no need for "andi r4,r4,0xfffff003" */
777
or r4, r4, r5
778
lwi r4, r4, 0 /* Get L1 entry */
779
andi r5, r4, 0xfffff000 /* Extract L2 (pte) base address */
780
beqi r5, ex10 /* Bail if no table */
781
782
tophys(r5,r5)
783
BSRLI(r6,r3,10) /* Compute PTE address */
784
andi r6, r6, 0xffc
785
andi r5, r5, 0xfffff003
786
or r5, r5, r6
787
lwi r4, r5, 0 /* Get Linux PTE */
788
789
andi r6, r4, _PAGE_PRESENT
790
beqi r6, ex10
791
792
ori r4, r4, _PAGE_ACCESSED
793
swi r4, r5, 0
794
795
/* Most of the Linux PTE is ready to load into the TLB LO.
796
* We set ZSEL, where only the LS-bit determines user access.
797
* We set execute, because we don't have the granularity to
798
* properly set this at the page level (Linux problem).
799
* If shared is set, we cause a zero PID->TID load.
800
* Many of these bits are software only. Bits we don't set
801
* here we (properly should) assume have the appropriate value.
802
*/
803
brid finish_tlb_load
804
andni r4, r4, 0x0ce2 /* Make sure 20, 21 are zero */
805
ex10:
806
/* The bailout. Restore registers to pre-exception conditions
807
* and call the heavyweights to help us out.
808
*/
809
mts rpid, r11
810
nop
811
bri 4
812
RESTORE_STATE;
813
bri page_fault_instr_trap
814
815
/* Both the instruction and data TLB miss get to this point to load the TLB.
816
* r3 - EA of fault
817
* r4 - TLB LO (info from Linux PTE)
818
* r5, r6 - available to use
819
* PID - loaded with proper value when we get here
820
* Upon exit, we reload everything and RFI.
821
* A common place to load the TLB.
822
*/
823
tlb_index:
824
.long 1 /* MS: storing last used tlb index */
825
finish_tlb_load:
826
/* MS: load the last used TLB index. */
827
lwi r5, r0, TOPHYS(tlb_index)
828
addik r5, r5, 1 /* MS: inc tlb_index -> use next one */
829
830
/* MS: FIXME this is potential fault, because this is mask not count */
831
andi r5, r5, (MICROBLAZE_TLB_SIZE-1)
832
ori r6, r0, 1
833
cmp r31, r5, r6
834
blti r31, ex12
835
addik r5, r6, 1
836
ex12:
837
/* MS: save back current TLB index */
838
swi r5, r0, TOPHYS(tlb_index)
839
840
ori r4, r4, _PAGE_HWEXEC /* make it executable */
841
mts rtlbx, r5 /* MS: save current TLB */
842
nop
843
mts rtlblo, r4 /* MS: save to TLB LO */
844
nop
845
846
/* Create EPN. This is the faulting address plus a static
847
* set of bits. These are size, valid, E, U0, and ensure
848
* bits 20 and 21 are zero.
849
*/
850
andi r3, r3, 0xfffff000
851
ori r3, r3, 0x0c0
852
mts rtlbhi, r3 /* Load TLB HI */
853
nop
854
855
/* Done...restore registers and get out of here. */
856
mts rpid, r11
857
nop
858
bri 4
859
RESTORE_STATE;
860
rted r17, 0
861
nop
862
863
/* extern void giveup_fpu(struct task_struct *prev)
864
*
865
* The MicroBlaze processor may have an FPU, so this should not just
866
* return: TBD.
867
*/
868
.globl giveup_fpu;
869
.align 4;
870
giveup_fpu:
871
bralid r15,0 /* TBD */
872
nop
873
874
/* At present, this routine just hangs. - extern void abort(void) */
875
.globl abort;
876
.align 4;
877
abort:
878
br r0
879
880
.globl set_context;
881
.align 4;
882
set_context:
883
mts rpid, r5 /* Shadow TLBs are automatically */
884
nop
885
bri 4 /* flushed by changing PID */
886
rtsd r15,8
887
nop
888
889
#endif
890
.end _hw_exception_handler
891
892
#ifdef CONFIG_MMU
893
/* Unaligned data access exception last on a 4k page for MMU.
894
* When this is called, we are in virtual mode with exceptions enabled
895
* and registers 1-13,15,17,18 saved.
896
*
897
* R3 = ESR
898
* R4 = EAR
899
* R7 = pointer to saved registers (struct pt_regs *regs)
900
*
901
* This handler perform the access, and returns via ret_from_exc.
902
*/
903
.global _unaligned_data_exception
904
.ent _unaligned_data_exception
905
_unaligned_data_exception:
906
andi r8, r3, 0x3E0; /* Mask and extract the register operand */
907
BSRLI(r8,r8,2); /* r8 >> 2 = register operand * 8 */
908
andi r6, r3, 0x400; /* Extract ESR[S] */
909
bneid r6, ex_sw_vm;
910
andi r6, r3, 0x800; /* Extract ESR[W] - delay slot */
911
ex_lw_vm:
912
beqid r6, ex_lhw_vm;
913
load1: lbui r5, r4, 0; /* Exception address in r4 - delay slot */
914
/* Load a word, byte-by-byte from destination address and save it in tmp space*/
915
addik r6, r0, ex_tmp_data_loc_0;
916
sbi r5, r6, 0;
917
load2: lbui r5, r4, 1;
918
sbi r5, r6, 1;
919
load3: lbui r5, r4, 2;
920
sbi r5, r6, 2;
921
load4: lbui r5, r4, 3;
922
sbi r5, r6, 3;
923
brid ex_lw_tail_vm;
924
/* Get the destination register value into r3 - delay slot */
925
lwi r3, r6, 0;
926
ex_lhw_vm:
927
/* Load a half-word, byte-by-byte from destination address and
928
* save it in tmp space */
929
addik r6, r0, ex_tmp_data_loc_0;
930
sbi r5, r6, 0;
931
load5: lbui r5, r4, 1;
932
sbi r5, r6, 1;
933
lhui r3, r6, 0; /* Get the destination register value into r3 */
934
ex_lw_tail_vm:
935
/* Form load_word jump table offset (lw_table_vm + (8 * regnum)) */
936
addik r5, r8, lw_table_vm;
937
bra r5;
938
ex_lw_end_vm: /* Exception handling of load word, ends */
939
brai ret_from_exc;
940
ex_sw_vm:
941
/* Form store_word jump table offset (sw_table_vm + (8 * regnum)) */
942
addik r5, r8, sw_table_vm;
943
bra r5;
944
ex_sw_tail_vm:
945
addik r5, r0, ex_tmp_data_loc_0;
946
beqid r6, ex_shw_vm;
947
swi r3, r5, 0; /* Get the word - delay slot */
948
/* Store the word, byte-by-byte into destination address */
949
lbui r3, r5, 0;
950
store1: sbi r3, r4, 0;
951
lbui r3, r5, 1;
952
store2: sbi r3, r4, 1;
953
lbui r3, r5, 2;
954
store3: sbi r3, r4, 2;
955
lbui r3, r5, 3;
956
brid ret_from_exc;
957
store4: sbi r3, r4, 3; /* Delay slot */
958
ex_shw_vm:
959
/* Store the lower half-word, byte-by-byte into destination address */
960
#ifdef __MICROBLAZEEL__
961
lbui r3, r5, 0;
962
store5: sbi r3, r4, 0;
963
lbui r3, r5, 1;
964
brid ret_from_exc;
965
store6: sbi r3, r4, 1; /* Delay slot */
966
#else
967
lbui r3, r5, 2;
968
store5: sbi r3, r4, 0;
969
lbui r3, r5, 3;
970
brid ret_from_exc;
971
store6: sbi r3, r4, 1; /* Delay slot */
972
#endif
973
974
ex_sw_end_vm: /* Exception handling of store word, ends. */
975
976
/* We have to prevent cases that get/put_user macros get unaligned pointer
977
* to bad page area. We have to find out which origin instruction caused it
978
* and called fixup for that origin instruction not instruction in unaligned
979
* handler */
980
ex_unaligned_fixup:
981
ori r5, r7, 0 /* setup pointer to pt_regs */
982
lwi r6, r7, PT_PC; /* faulting address is one instruction above */
983
addik r6, r6, -4 /* for finding proper fixup */
984
swi r6, r7, PT_PC; /* a save back it to PT_PC */
985
addik r7, r0, SIGSEGV
986
/* call bad_page_fault for finding aligned fixup, fixup address is saved
987
* in PT_PC which is used as return address from exception */
988
addik r15, r0, ret_from_exc-8 /* setup return address */
989
brid bad_page_fault
990
nop
991
992
/* We prevent all load/store because it could failed any attempt to access */
993
.section __ex_table,"a";
994
.word load1,ex_unaligned_fixup;
995
.word load2,ex_unaligned_fixup;
996
.word load3,ex_unaligned_fixup;
997
.word load4,ex_unaligned_fixup;
998
.word load5,ex_unaligned_fixup;
999
.word store1,ex_unaligned_fixup;
1000
.word store2,ex_unaligned_fixup;
1001
.word store3,ex_unaligned_fixup;
1002
.word store4,ex_unaligned_fixup;
1003
.word store5,ex_unaligned_fixup;
1004
.word store6,ex_unaligned_fixup;
1005
.previous;
1006
.end _unaligned_data_exception
1007
#endif /* CONFIG_MMU */
1008
1009
.global ex_handler_unhandled
1010
ex_handler_unhandled:
1011
/* FIXME add handle function for unhandled exception - dump register */
1012
bri 0
1013
1014
/*
1015
* hw_exception_handler Jump Table
1016
* - Contains code snippets for each register that caused the unalign exception
1017
* - Hence exception handler is NOT self-modifying
1018
* - Separate table for load exceptions and store exceptions.
1019
* - Each table is of size: (8 * 32) = 256 bytes
1020
*/
1021
1022
.section .text
1023
.align 4
1024
lw_table:
1025
lw_r0: R3_TO_LWREG (0);
1026
lw_r1: LWREG_NOP;
1027
lw_r2: R3_TO_LWREG (2);
1028
lw_r3: R3_TO_LWREG_V (3);
1029
lw_r4: R3_TO_LWREG_V (4);
1030
lw_r5: R3_TO_LWREG_V (5);
1031
lw_r6: R3_TO_LWREG_V (6);
1032
lw_r7: R3_TO_LWREG (7);
1033
lw_r8: R3_TO_LWREG (8);
1034
lw_r9: R3_TO_LWREG (9);
1035
lw_r10: R3_TO_LWREG (10);
1036
lw_r11: R3_TO_LWREG (11);
1037
lw_r12: R3_TO_LWREG (12);
1038
lw_r13: R3_TO_LWREG (13);
1039
lw_r14: R3_TO_LWREG (14);
1040
lw_r15: R3_TO_LWREG (15);
1041
lw_r16: R3_TO_LWREG (16);
1042
lw_r17: LWREG_NOP;
1043
lw_r18: R3_TO_LWREG (18);
1044
lw_r19: R3_TO_LWREG (19);
1045
lw_r20: R3_TO_LWREG (20);
1046
lw_r21: R3_TO_LWREG (21);
1047
lw_r22: R3_TO_LWREG (22);
1048
lw_r23: R3_TO_LWREG (23);
1049
lw_r24: R3_TO_LWREG (24);
1050
lw_r25: R3_TO_LWREG (25);
1051
lw_r26: R3_TO_LWREG (26);
1052
lw_r27: R3_TO_LWREG (27);
1053
lw_r28: R3_TO_LWREG (28);
1054
lw_r29: R3_TO_LWREG (29);
1055
lw_r30: R3_TO_LWREG (30);
1056
#ifdef CONFIG_MMU
1057
lw_r31: R3_TO_LWREG_V (31);
1058
#else
1059
lw_r31: R3_TO_LWREG (31);
1060
#endif
1061
1062
sw_table:
1063
sw_r0: SWREG_TO_R3 (0);
1064
sw_r1: SWREG_NOP;
1065
sw_r2: SWREG_TO_R3 (2);
1066
sw_r3: SWREG_TO_R3_V (3);
1067
sw_r4: SWREG_TO_R3_V (4);
1068
sw_r5: SWREG_TO_R3_V (5);
1069
sw_r6: SWREG_TO_R3_V (6);
1070
sw_r7: SWREG_TO_R3 (7);
1071
sw_r8: SWREG_TO_R3 (8);
1072
sw_r9: SWREG_TO_R3 (9);
1073
sw_r10: SWREG_TO_R3 (10);
1074
sw_r11: SWREG_TO_R3 (11);
1075
sw_r12: SWREG_TO_R3 (12);
1076
sw_r13: SWREG_TO_R3 (13);
1077
sw_r14: SWREG_TO_R3 (14);
1078
sw_r15: SWREG_TO_R3 (15);
1079
sw_r16: SWREG_TO_R3 (16);
1080
sw_r17: SWREG_NOP;
1081
sw_r18: SWREG_TO_R3 (18);
1082
sw_r19: SWREG_TO_R3 (19);
1083
sw_r20: SWREG_TO_R3 (20);
1084
sw_r21: SWREG_TO_R3 (21);
1085
sw_r22: SWREG_TO_R3 (22);
1086
sw_r23: SWREG_TO_R3 (23);
1087
sw_r24: SWREG_TO_R3 (24);
1088
sw_r25: SWREG_TO_R3 (25);
1089
sw_r26: SWREG_TO_R3 (26);
1090
sw_r27: SWREG_TO_R3 (27);
1091
sw_r28: SWREG_TO_R3 (28);
1092
sw_r29: SWREG_TO_R3 (29);
1093
sw_r30: SWREG_TO_R3 (30);
1094
#ifdef CONFIG_MMU
1095
sw_r31: SWREG_TO_R3_V (31);
1096
#else
1097
sw_r31: SWREG_TO_R3 (31);
1098
#endif
1099
1100
#ifdef CONFIG_MMU
1101
lw_table_vm:
1102
lw_r0_vm: R3_TO_LWREG_VM (0);
1103
lw_r1_vm: R3_TO_LWREG_VM_V (1);
1104
lw_r2_vm: R3_TO_LWREG_VM_V (2);
1105
lw_r3_vm: R3_TO_LWREG_VM_V (3);
1106
lw_r4_vm: R3_TO_LWREG_VM_V (4);
1107
lw_r5_vm: R3_TO_LWREG_VM_V (5);
1108
lw_r6_vm: R3_TO_LWREG_VM_V (6);
1109
lw_r7_vm: R3_TO_LWREG_VM_V (7);
1110
lw_r8_vm: R3_TO_LWREG_VM_V (8);
1111
lw_r9_vm: R3_TO_LWREG_VM_V (9);
1112
lw_r10_vm: R3_TO_LWREG_VM_V (10);
1113
lw_r11_vm: R3_TO_LWREG_VM_V (11);
1114
lw_r12_vm: R3_TO_LWREG_VM_V (12);
1115
lw_r13_vm: R3_TO_LWREG_VM_V (13);
1116
lw_r14_vm: R3_TO_LWREG_VM (14);
1117
lw_r15_vm: R3_TO_LWREG_VM_V (15);
1118
lw_r16_vm: R3_TO_LWREG_VM (16);
1119
lw_r17_vm: R3_TO_LWREG_VM_V (17);
1120
lw_r18_vm: R3_TO_LWREG_VM_V (18);
1121
lw_r19_vm: R3_TO_LWREG_VM (19);
1122
lw_r20_vm: R3_TO_LWREG_VM (20);
1123
lw_r21_vm: R3_TO_LWREG_VM (21);
1124
lw_r22_vm: R3_TO_LWREG_VM (22);
1125
lw_r23_vm: R3_TO_LWREG_VM (23);
1126
lw_r24_vm: R3_TO_LWREG_VM (24);
1127
lw_r25_vm: R3_TO_LWREG_VM (25);
1128
lw_r26_vm: R3_TO_LWREG_VM (26);
1129
lw_r27_vm: R3_TO_LWREG_VM (27);
1130
lw_r28_vm: R3_TO_LWREG_VM (28);
1131
lw_r29_vm: R3_TO_LWREG_VM (29);
1132
lw_r30_vm: R3_TO_LWREG_VM (30);
1133
lw_r31_vm: R3_TO_LWREG_VM_V (31);
1134
1135
sw_table_vm:
1136
sw_r0_vm: SWREG_TO_R3_VM (0);
1137
sw_r1_vm: SWREG_TO_R3_VM_V (1);
1138
sw_r2_vm: SWREG_TO_R3_VM_V (2);
1139
sw_r3_vm: SWREG_TO_R3_VM_V (3);
1140
sw_r4_vm: SWREG_TO_R3_VM_V (4);
1141
sw_r5_vm: SWREG_TO_R3_VM_V (5);
1142
sw_r6_vm: SWREG_TO_R3_VM_V (6);
1143
sw_r7_vm: SWREG_TO_R3_VM_V (7);
1144
sw_r8_vm: SWREG_TO_R3_VM_V (8);
1145
sw_r9_vm: SWREG_TO_R3_VM_V (9);
1146
sw_r10_vm: SWREG_TO_R3_VM_V (10);
1147
sw_r11_vm: SWREG_TO_R3_VM_V (11);
1148
sw_r12_vm: SWREG_TO_R3_VM_V (12);
1149
sw_r13_vm: SWREG_TO_R3_VM_V (13);
1150
sw_r14_vm: SWREG_TO_R3_VM (14);
1151
sw_r15_vm: SWREG_TO_R3_VM_V (15);
1152
sw_r16_vm: SWREG_TO_R3_VM (16);
1153
sw_r17_vm: SWREG_TO_R3_VM_V (17);
1154
sw_r18_vm: SWREG_TO_R3_VM_V (18);
1155
sw_r19_vm: SWREG_TO_R3_VM (19);
1156
sw_r20_vm: SWREG_TO_R3_VM (20);
1157
sw_r21_vm: SWREG_TO_R3_VM (21);
1158
sw_r22_vm: SWREG_TO_R3_VM (22);
1159
sw_r23_vm: SWREG_TO_R3_VM (23);
1160
sw_r24_vm: SWREG_TO_R3_VM (24);
1161
sw_r25_vm: SWREG_TO_R3_VM (25);
1162
sw_r26_vm: SWREG_TO_R3_VM (26);
1163
sw_r27_vm: SWREG_TO_R3_VM (27);
1164
sw_r28_vm: SWREG_TO_R3_VM (28);
1165
sw_r29_vm: SWREG_TO_R3_VM (29);
1166
sw_r30_vm: SWREG_TO_R3_VM (30);
1167
sw_r31_vm: SWREG_TO_R3_VM_V (31);
1168
#endif /* CONFIG_MMU */
1169
1170
/* Temporary data structures used in the handler */
1171
.section .data
1172
.align 4
1173
ex_tmp_data_loc_0:
1174
.byte 0
1175
ex_tmp_data_loc_1:
1176
.byte 0
1177
ex_tmp_data_loc_2:
1178
.byte 0
1179
ex_tmp_data_loc_3:
1180
.byte 0
1181
ex_reg_op:
1182
.byte 0
1183
1184