Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/mips/alchemy/common/irq.c
10819 views
1
/*
2
* Copyright 2001, 2007-2008 MontaVista Software Inc.
3
* Author: MontaVista Software, Inc. <[email protected]>
4
*
5
* Copyright (C) 2007 Ralf Baechle ([email protected])
6
*
7
* This program is free software; you can redistribute it and/or modify it
8
* under the terms of the GNU General Public License as published by the
9
* Free Software Foundation; either version 2 of the License, or (at your
10
* option) any later version.
11
*
12
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
13
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
14
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
15
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
16
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
17
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
18
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
19
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
20
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
21
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
22
*
23
* You should have received a copy of the GNU General Public License along
24
* with this program; if not, write to the Free Software Foundation, Inc.,
25
* 675 Mass Ave, Cambridge, MA 02139, USA.
26
*/
27
28
#include <linux/bitops.h>
29
#include <linux/init.h>
30
#include <linux/interrupt.h>
31
#include <linux/irq.h>
32
#include <linux/slab.h>
33
#include <linux/syscore_ops.h>
34
35
#include <asm/irq_cpu.h>
36
#include <asm/mipsregs.h>
37
#include <asm/mach-au1x00/au1000.h>
38
#ifdef CONFIG_MIPS_PB1000
39
#include <asm/mach-pb1x00/pb1000.h>
40
#endif
41
42
/* Interrupt Controller register offsets */
43
#define IC_CFG0RD 0x40
44
#define IC_CFG0SET 0x40
45
#define IC_CFG0CLR 0x44
46
#define IC_CFG1RD 0x48
47
#define IC_CFG1SET 0x48
48
#define IC_CFG1CLR 0x4C
49
#define IC_CFG2RD 0x50
50
#define IC_CFG2SET 0x50
51
#define IC_CFG2CLR 0x54
52
#define IC_REQ0INT 0x54
53
#define IC_SRCRD 0x58
54
#define IC_SRCSET 0x58
55
#define IC_SRCCLR 0x5C
56
#define IC_REQ1INT 0x5C
57
#define IC_ASSIGNRD 0x60
58
#define IC_ASSIGNSET 0x60
59
#define IC_ASSIGNCLR 0x64
60
#define IC_WAKERD 0x68
61
#define IC_WAKESET 0x68
62
#define IC_WAKECLR 0x6C
63
#define IC_MASKRD 0x70
64
#define IC_MASKSET 0x70
65
#define IC_MASKCLR 0x74
66
#define IC_RISINGRD 0x78
67
#define IC_RISINGCLR 0x78
68
#define IC_FALLINGRD 0x7C
69
#define IC_FALLINGCLR 0x7C
70
#define IC_TESTBIT 0x80
71
72
static int au1x_ic_settype(struct irq_data *d, unsigned int flow_type);
73
74
/* NOTE on interrupt priorities: The original writers of this code said:
75
*
76
* Because of the tight timing of SETUP token to reply transactions,
77
* the USB devices-side packet complete interrupt (USB_DEV_REQ_INT)
78
* needs the highest priority.
79
*/
80
81
/* per-processor fixed function irqs */
82
struct au1xxx_irqmap {
83
int im_irq;
84
int im_type;
85
int im_request; /* set 1 to get higher priority */
86
};
87
88
struct au1xxx_irqmap au1000_irqmap[] __initdata = {
89
{ AU1000_UART0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
90
{ AU1000_UART1_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
91
{ AU1000_UART2_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
92
{ AU1000_UART3_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
93
{ AU1000_SSI0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
94
{ AU1000_SSI1_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
95
{ AU1000_DMA_INT_BASE, IRQ_TYPE_LEVEL_HIGH, 0 },
96
{ AU1000_DMA_INT_BASE+1, IRQ_TYPE_LEVEL_HIGH, 0 },
97
{ AU1000_DMA_INT_BASE+2, IRQ_TYPE_LEVEL_HIGH, 0 },
98
{ AU1000_DMA_INT_BASE+3, IRQ_TYPE_LEVEL_HIGH, 0 },
99
{ AU1000_DMA_INT_BASE+4, IRQ_TYPE_LEVEL_HIGH, 0 },
100
{ AU1000_DMA_INT_BASE+5, IRQ_TYPE_LEVEL_HIGH, 0 },
101
{ AU1000_DMA_INT_BASE+6, IRQ_TYPE_LEVEL_HIGH, 0 },
102
{ AU1000_DMA_INT_BASE+7, IRQ_TYPE_LEVEL_HIGH, 0 },
103
{ AU1000_TOY_INT, IRQ_TYPE_EDGE_RISING, 0 },
104
{ AU1000_TOY_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
105
{ AU1000_TOY_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
106
{ AU1000_TOY_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 0 },
107
{ AU1000_RTC_INT, IRQ_TYPE_EDGE_RISING, 0 },
108
{ AU1000_RTC_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
109
{ AU1000_RTC_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
110
{ AU1000_RTC_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 1 },
111
{ AU1000_IRDA_TX_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
112
{ AU1000_IRDA_RX_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
113
{ AU1000_USB_DEV_REQ_INT, IRQ_TYPE_LEVEL_HIGH, 1 },
114
{ AU1000_USB_DEV_SUS_INT, IRQ_TYPE_EDGE_RISING, 0 },
115
{ AU1000_USB_HOST_INT, IRQ_TYPE_LEVEL_LOW, 0 },
116
{ AU1000_ACSYNC_INT, IRQ_TYPE_EDGE_RISING, 0 },
117
{ AU1000_MAC0_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
118
{ AU1000_MAC1_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
119
{ AU1000_AC97C_INT, IRQ_TYPE_EDGE_RISING, 0 },
120
{ -1, },
121
};
122
123
struct au1xxx_irqmap au1500_irqmap[] __initdata = {
124
{ AU1500_UART0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
125
{ AU1500_PCI_INTA, IRQ_TYPE_LEVEL_LOW, 0 },
126
{ AU1500_PCI_INTB, IRQ_TYPE_LEVEL_LOW, 0 },
127
{ AU1500_UART3_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
128
{ AU1500_PCI_INTC, IRQ_TYPE_LEVEL_LOW, 0 },
129
{ AU1500_PCI_INTD, IRQ_TYPE_LEVEL_LOW, 0 },
130
{ AU1500_DMA_INT_BASE, IRQ_TYPE_LEVEL_HIGH, 0 },
131
{ AU1500_DMA_INT_BASE+1, IRQ_TYPE_LEVEL_HIGH, 0 },
132
{ AU1500_DMA_INT_BASE+2, IRQ_TYPE_LEVEL_HIGH, 0 },
133
{ AU1500_DMA_INT_BASE+3, IRQ_TYPE_LEVEL_HIGH, 0 },
134
{ AU1500_DMA_INT_BASE+4, IRQ_TYPE_LEVEL_HIGH, 0 },
135
{ AU1500_DMA_INT_BASE+5, IRQ_TYPE_LEVEL_HIGH, 0 },
136
{ AU1500_DMA_INT_BASE+6, IRQ_TYPE_LEVEL_HIGH, 0 },
137
{ AU1500_DMA_INT_BASE+7, IRQ_TYPE_LEVEL_HIGH, 0 },
138
{ AU1500_TOY_INT, IRQ_TYPE_EDGE_RISING, 0 },
139
{ AU1500_TOY_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
140
{ AU1500_TOY_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
141
{ AU1500_TOY_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 0 },
142
{ AU1500_RTC_INT, IRQ_TYPE_EDGE_RISING, 0 },
143
{ AU1500_RTC_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
144
{ AU1500_RTC_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
145
{ AU1500_RTC_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 1 },
146
{ AU1500_USB_DEV_REQ_INT, IRQ_TYPE_LEVEL_HIGH, 1 },
147
{ AU1500_USB_DEV_SUS_INT, IRQ_TYPE_EDGE_RISING, 0 },
148
{ AU1500_USB_HOST_INT, IRQ_TYPE_LEVEL_LOW, 0 },
149
{ AU1500_ACSYNC_INT, IRQ_TYPE_EDGE_RISING, 0 },
150
{ AU1500_MAC0_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
151
{ AU1500_MAC1_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
152
{ AU1500_AC97C_INT, IRQ_TYPE_EDGE_RISING, 0 },
153
{ -1, },
154
};
155
156
struct au1xxx_irqmap au1100_irqmap[] __initdata = {
157
{ AU1100_UART0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
158
{ AU1100_UART1_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
159
{ AU1100_SD_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
160
{ AU1100_UART3_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
161
{ AU1100_SSI0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
162
{ AU1100_SSI1_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
163
{ AU1100_DMA_INT_BASE, IRQ_TYPE_LEVEL_HIGH, 0 },
164
{ AU1100_DMA_INT_BASE+1, IRQ_TYPE_LEVEL_HIGH, 0 },
165
{ AU1100_DMA_INT_BASE+2, IRQ_TYPE_LEVEL_HIGH, 0 },
166
{ AU1100_DMA_INT_BASE+3, IRQ_TYPE_LEVEL_HIGH, 0 },
167
{ AU1100_DMA_INT_BASE+4, IRQ_TYPE_LEVEL_HIGH, 0 },
168
{ AU1100_DMA_INT_BASE+5, IRQ_TYPE_LEVEL_HIGH, 0 },
169
{ AU1100_DMA_INT_BASE+6, IRQ_TYPE_LEVEL_HIGH, 0 },
170
{ AU1100_DMA_INT_BASE+7, IRQ_TYPE_LEVEL_HIGH, 0 },
171
{ AU1100_TOY_INT, IRQ_TYPE_EDGE_RISING, 0 },
172
{ AU1100_TOY_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
173
{ AU1100_TOY_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
174
{ AU1100_TOY_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 0 },
175
{ AU1100_RTC_INT, IRQ_TYPE_EDGE_RISING, 0 },
176
{ AU1100_RTC_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
177
{ AU1100_RTC_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
178
{ AU1100_RTC_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 1 },
179
{ AU1100_IRDA_TX_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
180
{ AU1100_IRDA_RX_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
181
{ AU1100_USB_DEV_REQ_INT, IRQ_TYPE_LEVEL_HIGH, 1 },
182
{ AU1100_USB_DEV_SUS_INT, IRQ_TYPE_EDGE_RISING, 0 },
183
{ AU1100_USB_HOST_INT, IRQ_TYPE_LEVEL_LOW, 0 },
184
{ AU1100_ACSYNC_INT, IRQ_TYPE_EDGE_RISING, 0 },
185
{ AU1100_MAC0_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
186
{ AU1100_LCD_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
187
{ AU1100_AC97C_INT, IRQ_TYPE_EDGE_RISING, 0 },
188
{ -1, },
189
};
190
191
struct au1xxx_irqmap au1550_irqmap[] __initdata = {
192
{ AU1550_UART0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
193
{ AU1550_PCI_INTA, IRQ_TYPE_LEVEL_LOW, 0 },
194
{ AU1550_PCI_INTB, IRQ_TYPE_LEVEL_LOW, 0 },
195
{ AU1550_DDMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
196
{ AU1550_CRYPTO_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
197
{ AU1550_PCI_INTC, IRQ_TYPE_LEVEL_LOW, 0 },
198
{ AU1550_PCI_INTD, IRQ_TYPE_LEVEL_LOW, 0 },
199
{ AU1550_PCI_RST_INT, IRQ_TYPE_LEVEL_LOW, 0 },
200
{ AU1550_UART1_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
201
{ AU1550_UART3_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
202
{ AU1550_PSC0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
203
{ AU1550_PSC1_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
204
{ AU1550_PSC2_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
205
{ AU1550_PSC3_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
206
{ AU1550_TOY_INT, IRQ_TYPE_EDGE_RISING, 0 },
207
{ AU1550_TOY_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
208
{ AU1550_TOY_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
209
{ AU1550_TOY_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 0 },
210
{ AU1550_RTC_INT, IRQ_TYPE_EDGE_RISING, 0 },
211
{ AU1550_RTC_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
212
{ AU1550_RTC_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
213
{ AU1550_RTC_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 1 },
214
{ AU1550_NAND_INT, IRQ_TYPE_EDGE_RISING, 0 },
215
{ AU1550_USB_DEV_REQ_INT, IRQ_TYPE_LEVEL_HIGH, 1 },
216
{ AU1550_USB_DEV_SUS_INT, IRQ_TYPE_EDGE_RISING, 0 },
217
{ AU1550_USB_HOST_INT, IRQ_TYPE_LEVEL_LOW, 0 },
218
{ AU1550_MAC0_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
219
{ AU1550_MAC1_DMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
220
{ -1, },
221
};
222
223
struct au1xxx_irqmap au1200_irqmap[] __initdata = {
224
{ AU1200_UART0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
225
{ AU1200_SWT_INT, IRQ_TYPE_EDGE_RISING, 0 },
226
{ AU1200_SD_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
227
{ AU1200_DDMA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
228
{ AU1200_MAE_BE_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
229
{ AU1200_UART1_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
230
{ AU1200_MAE_FE_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
231
{ AU1200_PSC0_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
232
{ AU1200_PSC1_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
233
{ AU1200_AES_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
234
{ AU1200_CAMERA_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
235
{ AU1200_TOY_INT, IRQ_TYPE_EDGE_RISING, 0 },
236
{ AU1200_TOY_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
237
{ AU1200_TOY_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
238
{ AU1200_TOY_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 0 },
239
{ AU1200_RTC_INT, IRQ_TYPE_EDGE_RISING, 0 },
240
{ AU1200_RTC_MATCH0_INT, IRQ_TYPE_EDGE_RISING, 0 },
241
{ AU1200_RTC_MATCH1_INT, IRQ_TYPE_EDGE_RISING, 0 },
242
{ AU1200_RTC_MATCH2_INT, IRQ_TYPE_EDGE_RISING, 1 },
243
{ AU1200_NAND_INT, IRQ_TYPE_EDGE_RISING, 0 },
244
{ AU1200_USB_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
245
{ AU1200_LCD_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
246
{ AU1200_MAE_BOTH_INT, IRQ_TYPE_LEVEL_HIGH, 0 },
247
{ -1, },
248
};
249
250
251
static void au1x_ic0_unmask(struct irq_data *d)
252
{
253
unsigned int bit = d->irq - AU1000_INTC0_INT_BASE;
254
void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR);
255
256
__raw_writel(1 << bit, base + IC_MASKSET);
257
__raw_writel(1 << bit, base + IC_WAKESET);
258
wmb();
259
}
260
261
static void au1x_ic1_unmask(struct irq_data *d)
262
{
263
unsigned int bit = d->irq - AU1000_INTC1_INT_BASE;
264
void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR);
265
266
__raw_writel(1 << bit, base + IC_MASKSET);
267
__raw_writel(1 << bit, base + IC_WAKESET);
268
269
/* very hacky. does the pb1000 cpld auto-disable this int?
270
* nowhere in the current kernel sources is it disabled. --mlau
271
*/
272
#if defined(CONFIG_MIPS_PB1000)
273
if (d->irq == AU1000_GPIO15_INT)
274
__raw_writel(0x4000, (void __iomem *)PB1000_MDR); /* enable int */
275
#endif
276
wmb();
277
}
278
279
static void au1x_ic0_mask(struct irq_data *d)
280
{
281
unsigned int bit = d->irq - AU1000_INTC0_INT_BASE;
282
void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR);
283
284
__raw_writel(1 << bit, base + IC_MASKCLR);
285
__raw_writel(1 << bit, base + IC_WAKECLR);
286
wmb();
287
}
288
289
static void au1x_ic1_mask(struct irq_data *d)
290
{
291
unsigned int bit = d->irq - AU1000_INTC1_INT_BASE;
292
void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR);
293
294
__raw_writel(1 << bit, base + IC_MASKCLR);
295
__raw_writel(1 << bit, base + IC_WAKECLR);
296
wmb();
297
}
298
299
static void au1x_ic0_ack(struct irq_data *d)
300
{
301
unsigned int bit = d->irq - AU1000_INTC0_INT_BASE;
302
void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR);
303
304
/*
305
* This may assume that we don't get interrupts from
306
* both edges at once, or if we do, that we don't care.
307
*/
308
__raw_writel(1 << bit, base + IC_FALLINGCLR);
309
__raw_writel(1 << bit, base + IC_RISINGCLR);
310
wmb();
311
}
312
313
static void au1x_ic1_ack(struct irq_data *d)
314
{
315
unsigned int bit = d->irq - AU1000_INTC1_INT_BASE;
316
void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR);
317
318
/*
319
* This may assume that we don't get interrupts from
320
* both edges at once, or if we do, that we don't care.
321
*/
322
__raw_writel(1 << bit, base + IC_FALLINGCLR);
323
__raw_writel(1 << bit, base + IC_RISINGCLR);
324
wmb();
325
}
326
327
static void au1x_ic0_maskack(struct irq_data *d)
328
{
329
unsigned int bit = d->irq - AU1000_INTC0_INT_BASE;
330
void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR);
331
332
__raw_writel(1 << bit, base + IC_WAKECLR);
333
__raw_writel(1 << bit, base + IC_MASKCLR);
334
__raw_writel(1 << bit, base + IC_RISINGCLR);
335
__raw_writel(1 << bit, base + IC_FALLINGCLR);
336
wmb();
337
}
338
339
static void au1x_ic1_maskack(struct irq_data *d)
340
{
341
unsigned int bit = d->irq - AU1000_INTC1_INT_BASE;
342
void __iomem *base = (void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR);
343
344
__raw_writel(1 << bit, base + IC_WAKECLR);
345
__raw_writel(1 << bit, base + IC_MASKCLR);
346
__raw_writel(1 << bit, base + IC_RISINGCLR);
347
__raw_writel(1 << bit, base + IC_FALLINGCLR);
348
wmb();
349
}
350
351
static int au1x_ic1_setwake(struct irq_data *d, unsigned int on)
352
{
353
int bit = d->irq - AU1000_INTC1_INT_BASE;
354
unsigned long wakemsk, flags;
355
356
/* only GPIO 0-7 can act as wakeup source. Fortunately these
357
* are wired up identically on all supported variants.
358
*/
359
if ((bit < 0) || (bit > 7))
360
return -EINVAL;
361
362
local_irq_save(flags);
363
wakemsk = __raw_readl((void __iomem *)SYS_WAKEMSK);
364
if (on)
365
wakemsk |= 1 << bit;
366
else
367
wakemsk &= ~(1 << bit);
368
__raw_writel(wakemsk, (void __iomem *)SYS_WAKEMSK);
369
wmb();
370
local_irq_restore(flags);
371
372
return 0;
373
}
374
375
/*
376
* irq_chips for both ICs; this way the mask handlers can be
377
* as short as possible.
378
*/
379
static struct irq_chip au1x_ic0_chip = {
380
.name = "Alchemy-IC0",
381
.irq_ack = au1x_ic0_ack,
382
.irq_mask = au1x_ic0_mask,
383
.irq_mask_ack = au1x_ic0_maskack,
384
.irq_unmask = au1x_ic0_unmask,
385
.irq_set_type = au1x_ic_settype,
386
};
387
388
static struct irq_chip au1x_ic1_chip = {
389
.name = "Alchemy-IC1",
390
.irq_ack = au1x_ic1_ack,
391
.irq_mask = au1x_ic1_mask,
392
.irq_mask_ack = au1x_ic1_maskack,
393
.irq_unmask = au1x_ic1_unmask,
394
.irq_set_type = au1x_ic_settype,
395
.irq_set_wake = au1x_ic1_setwake,
396
};
397
398
static int au1x_ic_settype(struct irq_data *d, unsigned int flow_type)
399
{
400
struct irq_chip *chip;
401
unsigned int bit, irq = d->irq;
402
irq_flow_handler_t handler = NULL;
403
unsigned char *name = NULL;
404
void __iomem *base;
405
int ret;
406
407
if (irq >= AU1000_INTC1_INT_BASE) {
408
bit = irq - AU1000_INTC1_INT_BASE;
409
chip = &au1x_ic1_chip;
410
base = (void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR);
411
} else {
412
bit = irq - AU1000_INTC0_INT_BASE;
413
chip = &au1x_ic0_chip;
414
base = (void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR);
415
}
416
417
if (bit > 31)
418
return -EINVAL;
419
420
ret = 0;
421
422
switch (flow_type) { /* cfgregs 2:1:0 */
423
case IRQ_TYPE_EDGE_RISING: /* 0:0:1 */
424
__raw_writel(1 << bit, base + IC_CFG2CLR);
425
__raw_writel(1 << bit, base + IC_CFG1CLR);
426
__raw_writel(1 << bit, base + IC_CFG0SET);
427
handler = handle_edge_irq;
428
name = "riseedge";
429
break;
430
case IRQ_TYPE_EDGE_FALLING: /* 0:1:0 */
431
__raw_writel(1 << bit, base + IC_CFG2CLR);
432
__raw_writel(1 << bit, base + IC_CFG1SET);
433
__raw_writel(1 << bit, base + IC_CFG0CLR);
434
handler = handle_edge_irq;
435
name = "falledge";
436
break;
437
case IRQ_TYPE_EDGE_BOTH: /* 0:1:1 */
438
__raw_writel(1 << bit, base + IC_CFG2CLR);
439
__raw_writel(1 << bit, base + IC_CFG1SET);
440
__raw_writel(1 << bit, base + IC_CFG0SET);
441
handler = handle_edge_irq;
442
name = "bothedge";
443
break;
444
case IRQ_TYPE_LEVEL_HIGH: /* 1:0:1 */
445
__raw_writel(1 << bit, base + IC_CFG2SET);
446
__raw_writel(1 << bit, base + IC_CFG1CLR);
447
__raw_writel(1 << bit, base + IC_CFG0SET);
448
handler = handle_level_irq;
449
name = "hilevel";
450
break;
451
case IRQ_TYPE_LEVEL_LOW: /* 1:1:0 */
452
__raw_writel(1 << bit, base + IC_CFG2SET);
453
__raw_writel(1 << bit, base + IC_CFG1SET);
454
__raw_writel(1 << bit, base + IC_CFG0CLR);
455
handler = handle_level_irq;
456
name = "lowlevel";
457
break;
458
case IRQ_TYPE_NONE: /* 0:0:0 */
459
__raw_writel(1 << bit, base + IC_CFG2CLR);
460
__raw_writel(1 << bit, base + IC_CFG1CLR);
461
__raw_writel(1 << bit, base + IC_CFG0CLR);
462
break;
463
default:
464
ret = -EINVAL;
465
}
466
__irq_set_chip_handler_name_locked(d->irq, chip, handler, name);
467
468
wmb();
469
470
return ret;
471
}
472
473
asmlinkage void plat_irq_dispatch(void)
474
{
475
unsigned int pending = read_c0_status() & read_c0_cause();
476
unsigned long s, off;
477
478
if (pending & CAUSEF_IP7) {
479
off = MIPS_CPU_IRQ_BASE + 7;
480
goto handle;
481
} else if (pending & CAUSEF_IP2) {
482
s = KSEG1ADDR(AU1000_IC0_PHYS_ADDR) + IC_REQ0INT;
483
off = AU1000_INTC0_INT_BASE;
484
} else if (pending & CAUSEF_IP3) {
485
s = KSEG1ADDR(AU1000_IC0_PHYS_ADDR) + IC_REQ1INT;
486
off = AU1000_INTC0_INT_BASE;
487
} else if (pending & CAUSEF_IP4) {
488
s = KSEG1ADDR(AU1000_IC1_PHYS_ADDR) + IC_REQ0INT;
489
off = AU1000_INTC1_INT_BASE;
490
} else if (pending & CAUSEF_IP5) {
491
s = KSEG1ADDR(AU1000_IC1_PHYS_ADDR) + IC_REQ1INT;
492
off = AU1000_INTC1_INT_BASE;
493
} else
494
goto spurious;
495
496
s = __raw_readl((void __iomem *)s);
497
if (unlikely(!s)) {
498
spurious:
499
spurious_interrupt();
500
return;
501
}
502
off += __ffs(s);
503
handle:
504
do_IRQ(off);
505
}
506
507
508
static inline void ic_init(void __iomem *base)
509
{
510
/* initialize interrupt controller to a safe state */
511
__raw_writel(0xffffffff, base + IC_CFG0CLR);
512
__raw_writel(0xffffffff, base + IC_CFG1CLR);
513
__raw_writel(0xffffffff, base + IC_CFG2CLR);
514
__raw_writel(0xffffffff, base + IC_MASKCLR);
515
__raw_writel(0xffffffff, base + IC_ASSIGNCLR);
516
__raw_writel(0xffffffff, base + IC_WAKECLR);
517
__raw_writel(0xffffffff, base + IC_SRCSET);
518
__raw_writel(0xffffffff, base + IC_FALLINGCLR);
519
__raw_writel(0xffffffff, base + IC_RISINGCLR);
520
__raw_writel(0x00000000, base + IC_TESTBIT);
521
wmb();
522
}
523
524
static void __init au1000_init_irq(struct au1xxx_irqmap *map)
525
{
526
unsigned int bit, irq_nr;
527
void __iomem *base;
528
529
ic_init((void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR));
530
ic_init((void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR));
531
mips_cpu_irq_init();
532
533
/* register all 64 possible IC0+IC1 irq sources as type "none".
534
* Use set_irq_type() to set edge/level behaviour at runtime.
535
*/
536
for (irq_nr = AU1000_INTC0_INT_BASE;
537
(irq_nr < AU1000_INTC0_INT_BASE + 32); irq_nr++)
538
au1x_ic_settype(irq_get_irq_data(irq_nr), IRQ_TYPE_NONE);
539
540
for (irq_nr = AU1000_INTC1_INT_BASE;
541
(irq_nr < AU1000_INTC1_INT_BASE + 32); irq_nr++)
542
au1x_ic_settype(irq_get_irq_data(irq_nr), IRQ_TYPE_NONE);
543
544
/*
545
* Initialize IC0, which is fixed per processor.
546
*/
547
while (map->im_irq != -1) {
548
irq_nr = map->im_irq;
549
550
if (irq_nr >= AU1000_INTC1_INT_BASE) {
551
bit = irq_nr - AU1000_INTC1_INT_BASE;
552
base = (void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR);
553
} else {
554
bit = irq_nr - AU1000_INTC0_INT_BASE;
555
base = (void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR);
556
}
557
if (map->im_request)
558
__raw_writel(1 << bit, base + IC_ASSIGNSET);
559
560
au1x_ic_settype(irq_get_irq_data(irq_nr), map->im_type);
561
++map;
562
}
563
564
set_c0_status(IE_IRQ0 | IE_IRQ1 | IE_IRQ2 | IE_IRQ3);
565
}
566
567
void __init arch_init_irq(void)
568
{
569
switch (alchemy_get_cputype()) {
570
case ALCHEMY_CPU_AU1000:
571
au1000_init_irq(au1000_irqmap);
572
break;
573
case ALCHEMY_CPU_AU1500:
574
au1000_init_irq(au1500_irqmap);
575
break;
576
case ALCHEMY_CPU_AU1100:
577
au1000_init_irq(au1100_irqmap);
578
break;
579
case ALCHEMY_CPU_AU1550:
580
au1000_init_irq(au1550_irqmap);
581
break;
582
case ALCHEMY_CPU_AU1200:
583
au1000_init_irq(au1200_irqmap);
584
break;
585
}
586
}
587
588
589
static unsigned long alchemy_ic_pmdata[7 * 2];
590
591
static inline void alchemy_ic_suspend_one(void __iomem *base, unsigned long *d)
592
{
593
d[0] = __raw_readl(base + IC_CFG0RD);
594
d[1] = __raw_readl(base + IC_CFG1RD);
595
d[2] = __raw_readl(base + IC_CFG2RD);
596
d[3] = __raw_readl(base + IC_SRCRD);
597
d[4] = __raw_readl(base + IC_ASSIGNRD);
598
d[5] = __raw_readl(base + IC_WAKERD);
599
d[6] = __raw_readl(base + IC_MASKRD);
600
ic_init(base); /* shut it up too while at it */
601
}
602
603
static inline void alchemy_ic_resume_one(void __iomem *base, unsigned long *d)
604
{
605
ic_init(base);
606
607
__raw_writel(d[0], base + IC_CFG0SET);
608
__raw_writel(d[1], base + IC_CFG1SET);
609
__raw_writel(d[2], base + IC_CFG2SET);
610
__raw_writel(d[3], base + IC_SRCSET);
611
__raw_writel(d[4], base + IC_ASSIGNSET);
612
__raw_writel(d[5], base + IC_WAKESET);
613
wmb();
614
615
__raw_writel(d[6], base + IC_MASKSET);
616
wmb();
617
}
618
619
static int alchemy_ic_suspend(void)
620
{
621
alchemy_ic_suspend_one((void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR),
622
alchemy_ic_pmdata);
623
alchemy_ic_suspend_one((void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR),
624
&alchemy_ic_pmdata[7]);
625
return 0;
626
}
627
628
static void alchemy_ic_resume(void)
629
{
630
alchemy_ic_resume_one((void __iomem *)KSEG1ADDR(AU1000_IC1_PHYS_ADDR),
631
&alchemy_ic_pmdata[7]);
632
alchemy_ic_resume_one((void __iomem *)KSEG1ADDR(AU1000_IC0_PHYS_ADDR),
633
alchemy_ic_pmdata);
634
}
635
636
static struct syscore_ops alchemy_ic_syscore_ops = {
637
.suspend = alchemy_ic_suspend,
638
.resume = alchemy_ic_resume,
639
};
640
641
static int __init alchemy_ic_pm_init(void)
642
{
643
register_syscore_ops(&alchemy_ic_syscore_ops);
644
return 0;
645
}
646
device_initcall(alchemy_ic_pm_init);
647
648