Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/mips/cavium-octeon/executive/cvmx-bootmem.c
10818 views
1
/***********************license start***************
2
* Author: Cavium Networks
3
*
4
* Contact: [email protected]
5
* This file is part of the OCTEON SDK
6
*
7
* Copyright (c) 2003-2008 Cavium Networks
8
*
9
* This file is free software; you can redistribute it and/or modify
10
* it under the terms of the GNU General Public License, Version 2, as
11
* published by the Free Software Foundation.
12
*
13
* This file is distributed in the hope that it will be useful, but
14
* AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16
* NONINFRINGEMENT. See the GNU General Public License for more
17
* details.
18
*
19
* You should have received a copy of the GNU General Public License
20
* along with this file; if not, write to the Free Software
21
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22
* or visit http://www.gnu.org/licenses/.
23
*
24
* This file may also be available under a different license from Cavium.
25
* Contact Cavium Networks for more information
26
***********************license end**************************************/
27
28
/*
29
* Simple allocate only memory allocator. Used to allocate memory at
30
* application start time.
31
*/
32
33
#include <linux/kernel.h>
34
#include <linux/module.h>
35
36
#include <asm/octeon/cvmx.h>
37
#include <asm/octeon/cvmx-spinlock.h>
38
#include <asm/octeon/cvmx-bootmem.h>
39
40
/*#define DEBUG */
41
42
43
static struct cvmx_bootmem_desc *cvmx_bootmem_desc;
44
45
/* See header file for descriptions of functions */
46
47
/*
48
* Wrapper functions are provided for reading/writing the size and
49
* next block values as these may not be directly addressible (in 32
50
* bit applications, for instance.) Offsets of data elements in
51
* bootmem list, must match cvmx_bootmem_block_header_t.
52
*/
53
#define NEXT_OFFSET 0
54
#define SIZE_OFFSET 8
55
56
static void cvmx_bootmem_phy_set_size(uint64_t addr, uint64_t size)
57
{
58
cvmx_write64_uint64((addr + SIZE_OFFSET) | (1ull << 63), size);
59
}
60
61
static void cvmx_bootmem_phy_set_next(uint64_t addr, uint64_t next)
62
{
63
cvmx_write64_uint64((addr + NEXT_OFFSET) | (1ull << 63), next);
64
}
65
66
static uint64_t cvmx_bootmem_phy_get_size(uint64_t addr)
67
{
68
return cvmx_read64_uint64((addr + SIZE_OFFSET) | (1ull << 63));
69
}
70
71
static uint64_t cvmx_bootmem_phy_get_next(uint64_t addr)
72
{
73
return cvmx_read64_uint64((addr + NEXT_OFFSET) | (1ull << 63));
74
}
75
76
void *cvmx_bootmem_alloc_range(uint64_t size, uint64_t alignment,
77
uint64_t min_addr, uint64_t max_addr)
78
{
79
int64_t address;
80
address =
81
cvmx_bootmem_phy_alloc(size, min_addr, max_addr, alignment, 0);
82
83
if (address > 0)
84
return cvmx_phys_to_ptr(address);
85
else
86
return NULL;
87
}
88
89
void *cvmx_bootmem_alloc_address(uint64_t size, uint64_t address,
90
uint64_t alignment)
91
{
92
return cvmx_bootmem_alloc_range(size, alignment, address,
93
address + size);
94
}
95
96
void *cvmx_bootmem_alloc(uint64_t size, uint64_t alignment)
97
{
98
return cvmx_bootmem_alloc_range(size, alignment, 0, 0);
99
}
100
101
void *cvmx_bootmem_alloc_named_range(uint64_t size, uint64_t min_addr,
102
uint64_t max_addr, uint64_t align,
103
char *name)
104
{
105
int64_t addr;
106
107
addr = cvmx_bootmem_phy_named_block_alloc(size, min_addr, max_addr,
108
align, name, 0);
109
if (addr >= 0)
110
return cvmx_phys_to_ptr(addr);
111
else
112
return NULL;
113
}
114
115
void *cvmx_bootmem_alloc_named_address(uint64_t size, uint64_t address,
116
char *name)
117
{
118
return cvmx_bootmem_alloc_named_range(size, address, address + size,
119
0, name);
120
}
121
122
void *cvmx_bootmem_alloc_named(uint64_t size, uint64_t alignment, char *name)
123
{
124
return cvmx_bootmem_alloc_named_range(size, 0, 0, alignment, name);
125
}
126
EXPORT_SYMBOL(cvmx_bootmem_alloc_named);
127
128
int cvmx_bootmem_free_named(char *name)
129
{
130
return cvmx_bootmem_phy_named_block_free(name, 0);
131
}
132
133
struct cvmx_bootmem_named_block_desc *cvmx_bootmem_find_named_block(char *name)
134
{
135
return cvmx_bootmem_phy_named_block_find(name, 0);
136
}
137
EXPORT_SYMBOL(cvmx_bootmem_find_named_block);
138
139
void cvmx_bootmem_lock(void)
140
{
141
cvmx_spinlock_lock((cvmx_spinlock_t *) &(cvmx_bootmem_desc->lock));
142
}
143
144
void cvmx_bootmem_unlock(void)
145
{
146
cvmx_spinlock_unlock((cvmx_spinlock_t *) &(cvmx_bootmem_desc->lock));
147
}
148
149
int cvmx_bootmem_init(void *mem_desc_ptr)
150
{
151
/* Here we set the global pointer to the bootmem descriptor
152
* block. This pointer will be used directly, so we will set
153
* it up to be directly usable by the application. It is set
154
* up as follows for the various runtime/ABI combinations:
155
*
156
* Linux 64 bit: Set XKPHYS bit
157
* Linux 32 bit: use mmap to create mapping, use virtual address
158
* CVMX 64 bit: use physical address directly
159
* CVMX 32 bit: use physical address directly
160
*
161
* Note that the CVMX environment assumes the use of 1-1 TLB
162
* mappings so that the physical addresses can be used
163
* directly
164
*/
165
if (!cvmx_bootmem_desc) {
166
#if defined(CVMX_ABI_64)
167
/* Set XKPHYS bit */
168
cvmx_bootmem_desc = cvmx_phys_to_ptr(CAST64(mem_desc_ptr));
169
#else
170
cvmx_bootmem_desc = (struct cvmx_bootmem_desc *) mem_desc_ptr;
171
#endif
172
}
173
174
return 0;
175
}
176
177
/*
178
* The cvmx_bootmem_phy* functions below return 64 bit physical
179
* addresses, and expose more features that the cvmx_bootmem_functions
180
* above. These are required for full memory space access in 32 bit
181
* applications, as well as for using some advance features. Most
182
* applications should not need to use these.
183
*/
184
185
int64_t cvmx_bootmem_phy_alloc(uint64_t req_size, uint64_t address_min,
186
uint64_t address_max, uint64_t alignment,
187
uint32_t flags)
188
{
189
190
uint64_t head_addr;
191
uint64_t ent_addr;
192
/* points to previous list entry, NULL current entry is head of list */
193
uint64_t prev_addr = 0;
194
uint64_t new_ent_addr = 0;
195
uint64_t desired_min_addr;
196
197
#ifdef DEBUG
198
cvmx_dprintf("cvmx_bootmem_phy_alloc: req_size: 0x%llx, "
199
"min_addr: 0x%llx, max_addr: 0x%llx, align: 0x%llx\n",
200
(unsigned long long)req_size,
201
(unsigned long long)address_min,
202
(unsigned long long)address_max,
203
(unsigned long long)alignment);
204
#endif
205
206
if (cvmx_bootmem_desc->major_version > 3) {
207
cvmx_dprintf("ERROR: Incompatible bootmem descriptor "
208
"version: %d.%d at addr: %p\n",
209
(int)cvmx_bootmem_desc->major_version,
210
(int)cvmx_bootmem_desc->minor_version,
211
cvmx_bootmem_desc);
212
goto error_out;
213
}
214
215
/*
216
* Do a variety of checks to validate the arguments. The
217
* allocator code will later assume that these checks have
218
* been made. We validate that the requested constraints are
219
* not self-contradictory before we look through the list of
220
* available memory.
221
*/
222
223
/* 0 is not a valid req_size for this allocator */
224
if (!req_size)
225
goto error_out;
226
227
/* Round req_size up to mult of minimum alignment bytes */
228
req_size = (req_size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) &
229
~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1);
230
231
/*
232
* Convert !0 address_min and 0 address_max to special case of
233
* range that specifies an exact memory block to allocate. Do
234
* this before other checks and adjustments so that this
235
* tranformation will be validated.
236
*/
237
if (address_min && !address_max)
238
address_max = address_min + req_size;
239
else if (!address_min && !address_max)
240
address_max = ~0ull; /* If no limits given, use max limits */
241
242
243
/*
244
* Enforce minimum alignment (this also keeps the minimum free block
245
* req_size the same as the alignment req_size.
246
*/
247
if (alignment < CVMX_BOOTMEM_ALIGNMENT_SIZE)
248
alignment = CVMX_BOOTMEM_ALIGNMENT_SIZE;
249
250
/*
251
* Adjust address minimum based on requested alignment (round
252
* up to meet alignment). Do this here so we can reject
253
* impossible requests up front. (NOP for address_min == 0)
254
*/
255
if (alignment)
256
address_min = ALIGN(address_min, alignment);
257
258
/*
259
* Reject inconsistent args. We have adjusted these, so this
260
* may fail due to our internal changes even if this check
261
* would pass for the values the user supplied.
262
*/
263
if (req_size > address_max - address_min)
264
goto error_out;
265
266
/* Walk through the list entries - first fit found is returned */
267
268
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
269
cvmx_bootmem_lock();
270
head_addr = cvmx_bootmem_desc->head_addr;
271
ent_addr = head_addr;
272
for (; ent_addr;
273
prev_addr = ent_addr,
274
ent_addr = cvmx_bootmem_phy_get_next(ent_addr)) {
275
uint64_t usable_base, usable_max;
276
uint64_t ent_size = cvmx_bootmem_phy_get_size(ent_addr);
277
278
if (cvmx_bootmem_phy_get_next(ent_addr)
279
&& ent_addr > cvmx_bootmem_phy_get_next(ent_addr)) {
280
cvmx_dprintf("Internal bootmem_alloc() error: ent: "
281
"0x%llx, next: 0x%llx\n",
282
(unsigned long long)ent_addr,
283
(unsigned long long)
284
cvmx_bootmem_phy_get_next(ent_addr));
285
goto error_out;
286
}
287
288
/*
289
* Determine if this is an entry that can satisify the
290
* request Check to make sure entry is large enough to
291
* satisfy request.
292
*/
293
usable_base =
294
ALIGN(max(address_min, ent_addr), alignment);
295
usable_max = min(address_max, ent_addr + ent_size);
296
/*
297
* We should be able to allocate block at address
298
* usable_base.
299
*/
300
301
desired_min_addr = usable_base;
302
/*
303
* Determine if request can be satisfied from the
304
* current entry.
305
*/
306
if (!((ent_addr + ent_size) > usable_base
307
&& ent_addr < address_max
308
&& req_size <= usable_max - usable_base))
309
continue;
310
/*
311
* We have found an entry that has room to satisfy the
312
* request, so allocate it from this entry. If end
313
* CVMX_BOOTMEM_FLAG_END_ALLOC set, then allocate from
314
* the end of this block rather than the beginning.
315
*/
316
if (flags & CVMX_BOOTMEM_FLAG_END_ALLOC) {
317
desired_min_addr = usable_max - req_size;
318
/*
319
* Align desired address down to required
320
* alignment.
321
*/
322
desired_min_addr &= ~(alignment - 1);
323
}
324
325
/* Match at start of entry */
326
if (desired_min_addr == ent_addr) {
327
if (req_size < ent_size) {
328
/*
329
* big enough to create a new block
330
* from top portion of block.
331
*/
332
new_ent_addr = ent_addr + req_size;
333
cvmx_bootmem_phy_set_next(new_ent_addr,
334
cvmx_bootmem_phy_get_next(ent_addr));
335
cvmx_bootmem_phy_set_size(new_ent_addr,
336
ent_size -
337
req_size);
338
339
/*
340
* Adjust next pointer as following
341
* code uses this.
342
*/
343
cvmx_bootmem_phy_set_next(ent_addr,
344
new_ent_addr);
345
}
346
347
/*
348
* adjust prev ptr or head to remove this
349
* entry from list.
350
*/
351
if (prev_addr)
352
cvmx_bootmem_phy_set_next(prev_addr,
353
cvmx_bootmem_phy_get_next(ent_addr));
354
else
355
/*
356
* head of list being returned, so
357
* update head ptr.
358
*/
359
cvmx_bootmem_desc->head_addr =
360
cvmx_bootmem_phy_get_next(ent_addr);
361
362
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
363
cvmx_bootmem_unlock();
364
return desired_min_addr;
365
}
366
/*
367
* block returned doesn't start at beginning of entry,
368
* so we know that we will be splitting a block off
369
* the front of this one. Create a new block from the
370
* beginning, add to list, and go to top of loop
371
* again.
372
*
373
* create new block from high portion of
374
* block, so that top block starts at desired
375
* addr.
376
*/
377
new_ent_addr = desired_min_addr;
378
cvmx_bootmem_phy_set_next(new_ent_addr,
379
cvmx_bootmem_phy_get_next
380
(ent_addr));
381
cvmx_bootmem_phy_set_size(new_ent_addr,
382
cvmx_bootmem_phy_get_size
383
(ent_addr) -
384
(desired_min_addr -
385
ent_addr));
386
cvmx_bootmem_phy_set_size(ent_addr,
387
desired_min_addr - ent_addr);
388
cvmx_bootmem_phy_set_next(ent_addr, new_ent_addr);
389
/* Loop again to handle actual alloc from new block */
390
}
391
error_out:
392
/* We didn't find anything, so return error */
393
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
394
cvmx_bootmem_unlock();
395
return -1;
396
}
397
398
int __cvmx_bootmem_phy_free(uint64_t phy_addr, uint64_t size, uint32_t flags)
399
{
400
uint64_t cur_addr;
401
uint64_t prev_addr = 0; /* zero is invalid */
402
int retval = 0;
403
404
#ifdef DEBUG
405
cvmx_dprintf("__cvmx_bootmem_phy_free addr: 0x%llx, size: 0x%llx\n",
406
(unsigned long long)phy_addr, (unsigned long long)size);
407
#endif
408
if (cvmx_bootmem_desc->major_version > 3) {
409
cvmx_dprintf("ERROR: Incompatible bootmem descriptor "
410
"version: %d.%d at addr: %p\n",
411
(int)cvmx_bootmem_desc->major_version,
412
(int)cvmx_bootmem_desc->minor_version,
413
cvmx_bootmem_desc);
414
return 0;
415
}
416
417
/* 0 is not a valid size for this allocator */
418
if (!size)
419
return 0;
420
421
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
422
cvmx_bootmem_lock();
423
cur_addr = cvmx_bootmem_desc->head_addr;
424
if (cur_addr == 0 || phy_addr < cur_addr) {
425
/* add at front of list - special case with changing head ptr */
426
if (cur_addr && phy_addr + size > cur_addr)
427
goto bootmem_free_done; /* error, overlapping section */
428
else if (phy_addr + size == cur_addr) {
429
/* Add to front of existing first block */
430
cvmx_bootmem_phy_set_next(phy_addr,
431
cvmx_bootmem_phy_get_next
432
(cur_addr));
433
cvmx_bootmem_phy_set_size(phy_addr,
434
cvmx_bootmem_phy_get_size
435
(cur_addr) + size);
436
cvmx_bootmem_desc->head_addr = phy_addr;
437
438
} else {
439
/* New block before first block. OK if cur_addr is 0 */
440
cvmx_bootmem_phy_set_next(phy_addr, cur_addr);
441
cvmx_bootmem_phy_set_size(phy_addr, size);
442
cvmx_bootmem_desc->head_addr = phy_addr;
443
}
444
retval = 1;
445
goto bootmem_free_done;
446
}
447
448
/* Find place in list to add block */
449
while (cur_addr && phy_addr > cur_addr) {
450
prev_addr = cur_addr;
451
cur_addr = cvmx_bootmem_phy_get_next(cur_addr);
452
}
453
454
if (!cur_addr) {
455
/*
456
* We have reached the end of the list, add on to end,
457
* checking to see if we need to combine with last
458
* block
459
*/
460
if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) ==
461
phy_addr) {
462
cvmx_bootmem_phy_set_size(prev_addr,
463
cvmx_bootmem_phy_get_size
464
(prev_addr) + size);
465
} else {
466
cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
467
cvmx_bootmem_phy_set_size(phy_addr, size);
468
cvmx_bootmem_phy_set_next(phy_addr, 0);
469
}
470
retval = 1;
471
goto bootmem_free_done;
472
} else {
473
/*
474
* insert between prev and cur nodes, checking for
475
* merge with either/both.
476
*/
477
if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) ==
478
phy_addr) {
479
/* Merge with previous */
480
cvmx_bootmem_phy_set_size(prev_addr,
481
cvmx_bootmem_phy_get_size
482
(prev_addr) + size);
483
if (phy_addr + size == cur_addr) {
484
/* Also merge with current */
485
cvmx_bootmem_phy_set_size(prev_addr,
486
cvmx_bootmem_phy_get_size(cur_addr) +
487
cvmx_bootmem_phy_get_size(prev_addr));
488
cvmx_bootmem_phy_set_next(prev_addr,
489
cvmx_bootmem_phy_get_next(cur_addr));
490
}
491
retval = 1;
492
goto bootmem_free_done;
493
} else if (phy_addr + size == cur_addr) {
494
/* Merge with current */
495
cvmx_bootmem_phy_set_size(phy_addr,
496
cvmx_bootmem_phy_get_size
497
(cur_addr) + size);
498
cvmx_bootmem_phy_set_next(phy_addr,
499
cvmx_bootmem_phy_get_next
500
(cur_addr));
501
cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
502
retval = 1;
503
goto bootmem_free_done;
504
}
505
506
/* It is a standalone block, add in between prev and cur */
507
cvmx_bootmem_phy_set_size(phy_addr, size);
508
cvmx_bootmem_phy_set_next(phy_addr, cur_addr);
509
cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
510
511
}
512
retval = 1;
513
514
bootmem_free_done:
515
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
516
cvmx_bootmem_unlock();
517
return retval;
518
519
}
520
521
struct cvmx_bootmem_named_block_desc *
522
cvmx_bootmem_phy_named_block_find(char *name, uint32_t flags)
523
{
524
unsigned int i;
525
struct cvmx_bootmem_named_block_desc *named_block_array_ptr;
526
527
#ifdef DEBUG
528
cvmx_dprintf("cvmx_bootmem_phy_named_block_find: %s\n", name);
529
#endif
530
/*
531
* Lock the structure to make sure that it is not being
532
* changed while we are examining it.
533
*/
534
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
535
cvmx_bootmem_lock();
536
537
/* Use XKPHYS for 64 bit linux */
538
named_block_array_ptr = (struct cvmx_bootmem_named_block_desc *)
539
cvmx_phys_to_ptr(cvmx_bootmem_desc->named_block_array_addr);
540
541
#ifdef DEBUG
542
cvmx_dprintf
543
("cvmx_bootmem_phy_named_block_find: named_block_array_ptr: %p\n",
544
named_block_array_ptr);
545
#endif
546
if (cvmx_bootmem_desc->major_version == 3) {
547
for (i = 0;
548
i < cvmx_bootmem_desc->named_block_num_blocks; i++) {
549
if ((name && named_block_array_ptr[i].size
550
&& !strncmp(name, named_block_array_ptr[i].name,
551
cvmx_bootmem_desc->named_block_name_len
552
- 1))
553
|| (!name && !named_block_array_ptr[i].size)) {
554
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
555
cvmx_bootmem_unlock();
556
557
return &(named_block_array_ptr[i]);
558
}
559
}
560
} else {
561
cvmx_dprintf("ERROR: Incompatible bootmem descriptor "
562
"version: %d.%d at addr: %p\n",
563
(int)cvmx_bootmem_desc->major_version,
564
(int)cvmx_bootmem_desc->minor_version,
565
cvmx_bootmem_desc);
566
}
567
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
568
cvmx_bootmem_unlock();
569
570
return NULL;
571
}
572
573
int cvmx_bootmem_phy_named_block_free(char *name, uint32_t flags)
574
{
575
struct cvmx_bootmem_named_block_desc *named_block_ptr;
576
577
if (cvmx_bootmem_desc->major_version != 3) {
578
cvmx_dprintf("ERROR: Incompatible bootmem descriptor version: "
579
"%d.%d at addr: %p\n",
580
(int)cvmx_bootmem_desc->major_version,
581
(int)cvmx_bootmem_desc->minor_version,
582
cvmx_bootmem_desc);
583
return 0;
584
}
585
#ifdef DEBUG
586
cvmx_dprintf("cvmx_bootmem_phy_named_block_free: %s\n", name);
587
#endif
588
589
/*
590
* Take lock here, as name lookup/block free/name free need to
591
* be atomic.
592
*/
593
cvmx_bootmem_lock();
594
595
named_block_ptr =
596
cvmx_bootmem_phy_named_block_find(name,
597
CVMX_BOOTMEM_FLAG_NO_LOCKING);
598
if (named_block_ptr) {
599
#ifdef DEBUG
600
cvmx_dprintf("cvmx_bootmem_phy_named_block_free: "
601
"%s, base: 0x%llx, size: 0x%llx\n",
602
name,
603
(unsigned long long)named_block_ptr->base_addr,
604
(unsigned long long)named_block_ptr->size);
605
#endif
606
__cvmx_bootmem_phy_free(named_block_ptr->base_addr,
607
named_block_ptr->size,
608
CVMX_BOOTMEM_FLAG_NO_LOCKING);
609
named_block_ptr->size = 0;
610
/* Set size to zero to indicate block not used. */
611
}
612
613
cvmx_bootmem_unlock();
614
return named_block_ptr != NULL; /* 0 on failure, 1 on success */
615
}
616
617
int64_t cvmx_bootmem_phy_named_block_alloc(uint64_t size, uint64_t min_addr,
618
uint64_t max_addr,
619
uint64_t alignment,
620
char *name,
621
uint32_t flags)
622
{
623
int64_t addr_allocated;
624
struct cvmx_bootmem_named_block_desc *named_block_desc_ptr;
625
626
#ifdef DEBUG
627
cvmx_dprintf("cvmx_bootmem_phy_named_block_alloc: size: 0x%llx, min: "
628
"0x%llx, max: 0x%llx, align: 0x%llx, name: %s\n",
629
(unsigned long long)size,
630
(unsigned long long)min_addr,
631
(unsigned long long)max_addr,
632
(unsigned long long)alignment,
633
name);
634
#endif
635
if (cvmx_bootmem_desc->major_version != 3) {
636
cvmx_dprintf("ERROR: Incompatible bootmem descriptor version: "
637
"%d.%d at addr: %p\n",
638
(int)cvmx_bootmem_desc->major_version,
639
(int)cvmx_bootmem_desc->minor_version,
640
cvmx_bootmem_desc);
641
return -1;
642
}
643
644
/*
645
* Take lock here, as name lookup/block alloc/name add need to
646
* be atomic.
647
*/
648
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
649
cvmx_spinlock_lock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock));
650
651
/* Get pointer to first available named block descriptor */
652
named_block_desc_ptr =
653
cvmx_bootmem_phy_named_block_find(NULL,
654
flags | CVMX_BOOTMEM_FLAG_NO_LOCKING);
655
656
/*
657
* Check to see if name already in use, return error if name
658
* not available or no more room for blocks.
659
*/
660
if (cvmx_bootmem_phy_named_block_find(name,
661
flags | CVMX_BOOTMEM_FLAG_NO_LOCKING) || !named_block_desc_ptr) {
662
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
663
cvmx_spinlock_unlock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock));
664
return -1;
665
}
666
667
668
/*
669
* Round size up to mult of minimum alignment bytes We need
670
* the actual size allocated to allow for blocks to be
671
* coallesced when they are freed. The alloc routine does the
672
* same rounding up on all allocations.
673
*/
674
size = ALIGN(size, CVMX_BOOTMEM_ALIGNMENT_SIZE);
675
676
addr_allocated = cvmx_bootmem_phy_alloc(size, min_addr, max_addr,
677
alignment,
678
flags | CVMX_BOOTMEM_FLAG_NO_LOCKING);
679
if (addr_allocated >= 0) {
680
named_block_desc_ptr->base_addr = addr_allocated;
681
named_block_desc_ptr->size = size;
682
strncpy(named_block_desc_ptr->name, name,
683
cvmx_bootmem_desc->named_block_name_len);
684
named_block_desc_ptr->name[cvmx_bootmem_desc->named_block_name_len - 1] = 0;
685
}
686
687
if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
688
cvmx_spinlock_unlock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock));
689
return addr_allocated;
690
}
691
692