Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/mips/kernel/cevt-smtc.c
10817 views
1
/*
2
* This file is subject to the terms and conditions of the GNU General Public
3
* License. See the file "COPYING" in the main directory of this archive
4
* for more details.
5
*
6
* Copyright (C) 2007 MIPS Technologies, Inc.
7
* Copyright (C) 2007 Ralf Baechle <[email protected]>
8
* Copyright (C) 2008 Kevin D. Kissell, Paralogos sarl
9
*/
10
#include <linux/clockchips.h>
11
#include <linux/interrupt.h>
12
#include <linux/percpu.h>
13
#include <linux/smp.h>
14
#include <linux/irq.h>
15
16
#include <asm/smtc_ipi.h>
17
#include <asm/time.h>
18
#include <asm/cevt-r4k.h>
19
20
/*
21
* Variant clock event timer support for SMTC on MIPS 34K, 1004K
22
* or other MIPS MT cores.
23
*
24
* Notes on SMTC Support:
25
*
26
* SMTC has multiple microthread TCs pretending to be Linux CPUs.
27
* But there's only one Count/Compare pair per VPE, and Compare
28
* interrupts are taken opportunisitically by available TCs
29
* bound to the VPE with the Count register. The new timer
30
* framework provides for global broadcasts, but we really
31
* want VPE-level multicasts for best behavior. So instead
32
* of invoking the high-level clock-event broadcast code,
33
* this version of SMTC support uses the historical SMTC
34
* multicast mechanisms "under the hood", appearing to the
35
* generic clock layer as if the interrupts are per-CPU.
36
*
37
* The approach taken here is to maintain a set of NR_CPUS
38
* virtual timers, and track which "CPU" needs to be alerted
39
* at each event.
40
*
41
* It's unlikely that we'll see a MIPS MT core with more than
42
* 2 VPEs, but we *know* that we won't need to handle more
43
* VPEs than we have "CPUs". So NCPUs arrays of NCPUs elements
44
* is always going to be overkill, but always going to be enough.
45
*/
46
47
unsigned long smtc_nexttime[NR_CPUS][NR_CPUS];
48
static int smtc_nextinvpe[NR_CPUS];
49
50
/*
51
* Timestamps stored are absolute values to be programmed
52
* into Count register. Valid timestamps will never be zero.
53
* If a Zero Count value is actually calculated, it is converted
54
* to be a 1, which will introduce 1 or two CPU cycles of error
55
* roughly once every four billion events, which at 1000 HZ means
56
* about once every 50 days. If that's actually a problem, one
57
* could alternate squashing 0 to 1 and to -1.
58
*/
59
60
#define MAKEVALID(x) (((x) == 0L) ? 1L : (x))
61
#define ISVALID(x) ((x) != 0L)
62
63
/*
64
* Time comparison is subtle, as it's really truncated
65
* modular arithmetic.
66
*/
67
68
#define IS_SOONER(a, b, reference) \
69
(((a) - (unsigned long)(reference)) < ((b) - (unsigned long)(reference)))
70
71
/*
72
* CATCHUP_INCREMENT, used when the function falls behind the counter.
73
* Could be an increasing function instead of a constant;
74
*/
75
76
#define CATCHUP_INCREMENT 64
77
78
static int mips_next_event(unsigned long delta,
79
struct clock_event_device *evt)
80
{
81
unsigned long flags;
82
unsigned int mtflags;
83
unsigned long timestamp, reference, previous;
84
unsigned long nextcomp = 0L;
85
int vpe = current_cpu_data.vpe_id;
86
int cpu = smp_processor_id();
87
local_irq_save(flags);
88
mtflags = dmt();
89
90
/*
91
* Maintain the per-TC virtual timer
92
* and program the per-VPE shared Count register
93
* as appropriate here...
94
*/
95
reference = (unsigned long)read_c0_count();
96
timestamp = MAKEVALID(reference + delta);
97
/*
98
* To really model the clock, we have to catch the case
99
* where the current next-in-VPE timestamp is the old
100
* timestamp for the calling CPE, but the new value is
101
* in fact later. In that case, we have to do a full
102
* scan and discover the new next-in-VPE CPU id and
103
* timestamp.
104
*/
105
previous = smtc_nexttime[vpe][cpu];
106
if (cpu == smtc_nextinvpe[vpe] && ISVALID(previous)
107
&& IS_SOONER(previous, timestamp, reference)) {
108
int i;
109
int soonest = cpu;
110
111
/*
112
* Update timestamp array here, so that new
113
* value gets considered along with those of
114
* other virtual CPUs on the VPE.
115
*/
116
smtc_nexttime[vpe][cpu] = timestamp;
117
for_each_online_cpu(i) {
118
if (ISVALID(smtc_nexttime[vpe][i])
119
&& IS_SOONER(smtc_nexttime[vpe][i],
120
smtc_nexttime[vpe][soonest], reference)) {
121
soonest = i;
122
}
123
}
124
smtc_nextinvpe[vpe] = soonest;
125
nextcomp = smtc_nexttime[vpe][soonest];
126
/*
127
* Otherwise, we don't have to process the whole array rank,
128
* we just have to see if the event horizon has gotten closer.
129
*/
130
} else {
131
if (!ISVALID(smtc_nexttime[vpe][smtc_nextinvpe[vpe]]) ||
132
IS_SOONER(timestamp,
133
smtc_nexttime[vpe][smtc_nextinvpe[vpe]], reference)) {
134
smtc_nextinvpe[vpe] = cpu;
135
nextcomp = timestamp;
136
}
137
/*
138
* Since next-in-VPE may me the same as the executing
139
* virtual CPU, we update the array *after* checking
140
* its value.
141
*/
142
smtc_nexttime[vpe][cpu] = timestamp;
143
}
144
145
/*
146
* It may be that, in fact, we don't need to update Compare,
147
* but if we do, we want to make sure we didn't fall into
148
* a crack just behind Count.
149
*/
150
if (ISVALID(nextcomp)) {
151
write_c0_compare(nextcomp);
152
ehb();
153
/*
154
* We never return an error, we just make sure
155
* that we trigger the handlers as quickly as
156
* we can if we fell behind.
157
*/
158
while ((nextcomp - (unsigned long)read_c0_count())
159
> (unsigned long)LONG_MAX) {
160
nextcomp += CATCHUP_INCREMENT;
161
write_c0_compare(nextcomp);
162
ehb();
163
}
164
}
165
emt(mtflags);
166
local_irq_restore(flags);
167
return 0;
168
}
169
170
171
void smtc_distribute_timer(int vpe)
172
{
173
unsigned long flags;
174
unsigned int mtflags;
175
int cpu;
176
struct clock_event_device *cd;
177
unsigned long nextstamp;
178
unsigned long reference;
179
180
181
repeat:
182
nextstamp = 0L;
183
for_each_online_cpu(cpu) {
184
/*
185
* Find virtual CPUs within the current VPE who have
186
* unserviced timer requests whose time is now past.
187
*/
188
local_irq_save(flags);
189
mtflags = dmt();
190
if (cpu_data[cpu].vpe_id == vpe &&
191
ISVALID(smtc_nexttime[vpe][cpu])) {
192
reference = (unsigned long)read_c0_count();
193
if ((smtc_nexttime[vpe][cpu] - reference)
194
> (unsigned long)LONG_MAX) {
195
smtc_nexttime[vpe][cpu] = 0L;
196
emt(mtflags);
197
local_irq_restore(flags);
198
/*
199
* We don't send IPIs to ourself.
200
*/
201
if (cpu != smp_processor_id()) {
202
smtc_send_ipi(cpu, SMTC_CLOCK_TICK, 0);
203
} else {
204
cd = &per_cpu(mips_clockevent_device, cpu);
205
cd->event_handler(cd);
206
}
207
} else {
208
/* Local to VPE but Valid Time not yet reached. */
209
if (!ISVALID(nextstamp) ||
210
IS_SOONER(smtc_nexttime[vpe][cpu], nextstamp,
211
reference)) {
212
smtc_nextinvpe[vpe] = cpu;
213
nextstamp = smtc_nexttime[vpe][cpu];
214
}
215
emt(mtflags);
216
local_irq_restore(flags);
217
}
218
} else {
219
emt(mtflags);
220
local_irq_restore(flags);
221
222
}
223
}
224
/* Reprogram for interrupt at next soonest timestamp for VPE */
225
if (ISVALID(nextstamp)) {
226
write_c0_compare(nextstamp);
227
ehb();
228
if ((nextstamp - (unsigned long)read_c0_count())
229
> (unsigned long)LONG_MAX)
230
goto repeat;
231
}
232
}
233
234
235
irqreturn_t c0_compare_interrupt(int irq, void *dev_id)
236
{
237
int cpu = smp_processor_id();
238
239
/* If we're running SMTC, we've got MIPS MT and therefore MIPS32R2 */
240
handle_perf_irq(1);
241
242
if (read_c0_cause() & (1 << 30)) {
243
/* Clear Count/Compare Interrupt */
244
write_c0_compare(read_c0_compare());
245
smtc_distribute_timer(cpu_data[cpu].vpe_id);
246
}
247
return IRQ_HANDLED;
248
}
249
250
251
int __cpuinit smtc_clockevent_init(void)
252
{
253
uint64_t mips_freq = mips_hpt_frequency;
254
unsigned int cpu = smp_processor_id();
255
struct clock_event_device *cd;
256
unsigned int irq;
257
int i;
258
int j;
259
260
if (!cpu_has_counter || !mips_hpt_frequency)
261
return -ENXIO;
262
if (cpu == 0) {
263
for (i = 0; i < num_possible_cpus(); i++) {
264
smtc_nextinvpe[i] = 0;
265
for (j = 0; j < num_possible_cpus(); j++)
266
smtc_nexttime[i][j] = 0L;
267
}
268
/*
269
* SMTC also can't have the usablility test
270
* run by secondary TCs once Compare is in use.
271
*/
272
if (!c0_compare_int_usable())
273
return -ENXIO;
274
}
275
276
/*
277
* With vectored interrupts things are getting platform specific.
278
* get_c0_compare_int is a hook to allow a platform to return the
279
* interrupt number of it's liking.
280
*/
281
irq = MIPS_CPU_IRQ_BASE + cp0_compare_irq;
282
if (get_c0_compare_int)
283
irq = get_c0_compare_int();
284
285
cd = &per_cpu(mips_clockevent_device, cpu);
286
287
cd->name = "MIPS";
288
cd->features = CLOCK_EVT_FEAT_ONESHOT;
289
290
/* Calculate the min / max delta */
291
cd->mult = div_sc((unsigned long) mips_freq, NSEC_PER_SEC, 32);
292
cd->shift = 32;
293
cd->max_delta_ns = clockevent_delta2ns(0x7fffffff, cd);
294
cd->min_delta_ns = clockevent_delta2ns(0x300, cd);
295
296
cd->rating = 300;
297
cd->irq = irq;
298
cd->cpumask = cpumask_of(cpu);
299
cd->set_next_event = mips_next_event;
300
cd->set_mode = mips_set_clock_mode;
301
cd->event_handler = mips_event_handler;
302
303
clockevents_register_device(cd);
304
305
/*
306
* On SMTC we only want to do the data structure
307
* initialization and IRQ setup once.
308
*/
309
if (cpu)
310
return 0;
311
/*
312
* And we need the hwmask associated with the c0_compare
313
* vector to be initialized.
314
*/
315
irq_hwmask[irq] = (0x100 << cp0_compare_irq);
316
if (cp0_timer_irq_installed)
317
return 0;
318
319
cp0_timer_irq_installed = 1;
320
321
setup_irq(irq, &c0_compare_irqaction);
322
323
return 0;
324
}
325
326