Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/mips/kernel/kprobes.c
10817 views
1
/*
2
* Kernel Probes (KProbes)
3
* arch/mips/kernel/kprobes.c
4
*
5
* Copyright 2006 Sony Corp.
6
* Copyright 2010 Cavium Networks
7
*
8
* Some portions copied from the powerpc version.
9
*
10
* Copyright (C) IBM Corporation, 2002, 2004
11
*
12
* This program is free software; you can redistribute it and/or modify
13
* it under the terms of the GNU General Public License as published by
14
* the Free Software Foundation; version 2 of the License.
15
*
16
* This program is distributed in the hope that it will be useful,
17
* but WITHOUT ANY WARRANTY; without even the implied warranty of
18
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19
* GNU General Public License for more details.
20
*
21
* You should have received a copy of the GNU General Public License
22
* along with this program; if not, write to the Free Software
23
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24
*/
25
26
#include <linux/kprobes.h>
27
#include <linux/preempt.h>
28
#include <linux/kdebug.h>
29
#include <linux/slab.h>
30
31
#include <asm/ptrace.h>
32
#include <asm/break.h>
33
#include <asm/inst.h>
34
35
static const union mips_instruction breakpoint_insn = {
36
.b_format = {
37
.opcode = spec_op,
38
.code = BRK_KPROBE_BP,
39
.func = break_op
40
}
41
};
42
43
static const union mips_instruction breakpoint2_insn = {
44
.b_format = {
45
.opcode = spec_op,
46
.code = BRK_KPROBE_SSTEPBP,
47
.func = break_op
48
}
49
};
50
51
DEFINE_PER_CPU(struct kprobe *, current_kprobe);
52
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
53
54
static int __kprobes insn_has_delayslot(union mips_instruction insn)
55
{
56
switch (insn.i_format.opcode) {
57
58
/*
59
* This group contains:
60
* jr and jalr are in r_format format.
61
*/
62
case spec_op:
63
switch (insn.r_format.func) {
64
case jr_op:
65
case jalr_op:
66
break;
67
default:
68
goto insn_ok;
69
}
70
71
/*
72
* This group contains:
73
* bltz_op, bgez_op, bltzl_op, bgezl_op,
74
* bltzal_op, bgezal_op, bltzall_op, bgezall_op.
75
*/
76
case bcond_op:
77
78
/*
79
* These are unconditional and in j_format.
80
*/
81
case jal_op:
82
case j_op:
83
84
/*
85
* These are conditional and in i_format.
86
*/
87
case beq_op:
88
case beql_op:
89
case bne_op:
90
case bnel_op:
91
case blez_op:
92
case blezl_op:
93
case bgtz_op:
94
case bgtzl_op:
95
96
/*
97
* These are the FPA/cp1 branch instructions.
98
*/
99
case cop1_op:
100
101
#ifdef CONFIG_CPU_CAVIUM_OCTEON
102
case lwc2_op: /* This is bbit0 on Octeon */
103
case ldc2_op: /* This is bbit032 on Octeon */
104
case swc2_op: /* This is bbit1 on Octeon */
105
case sdc2_op: /* This is bbit132 on Octeon */
106
#endif
107
return 1;
108
default:
109
break;
110
}
111
insn_ok:
112
return 0;
113
}
114
115
int __kprobes arch_prepare_kprobe(struct kprobe *p)
116
{
117
union mips_instruction insn;
118
union mips_instruction prev_insn;
119
int ret = 0;
120
121
prev_insn = p->addr[-1];
122
insn = p->addr[0];
123
124
if (insn_has_delayslot(insn) || insn_has_delayslot(prev_insn)) {
125
pr_notice("Kprobes for branch and jump instructions are not supported\n");
126
ret = -EINVAL;
127
goto out;
128
}
129
130
/* insn: must be on special executable page on mips. */
131
p->ainsn.insn = get_insn_slot();
132
if (!p->ainsn.insn) {
133
ret = -ENOMEM;
134
goto out;
135
}
136
137
/*
138
* In the kprobe->ainsn.insn[] array we store the original
139
* instruction at index zero and a break trap instruction at
140
* index one.
141
*/
142
143
memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
144
p->ainsn.insn[1] = breakpoint2_insn;
145
p->opcode = *p->addr;
146
147
out:
148
return ret;
149
}
150
151
void __kprobes arch_arm_kprobe(struct kprobe *p)
152
{
153
*p->addr = breakpoint_insn;
154
flush_insn_slot(p);
155
}
156
157
void __kprobes arch_disarm_kprobe(struct kprobe *p)
158
{
159
*p->addr = p->opcode;
160
flush_insn_slot(p);
161
}
162
163
void __kprobes arch_remove_kprobe(struct kprobe *p)
164
{
165
free_insn_slot(p->ainsn.insn, 0);
166
}
167
168
static void save_previous_kprobe(struct kprobe_ctlblk *kcb)
169
{
170
kcb->prev_kprobe.kp = kprobe_running();
171
kcb->prev_kprobe.status = kcb->kprobe_status;
172
kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR;
173
kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR;
174
kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc;
175
}
176
177
static void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
178
{
179
__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
180
kcb->kprobe_status = kcb->prev_kprobe.status;
181
kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR;
182
kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR;
183
kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc;
184
}
185
186
static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
187
struct kprobe_ctlblk *kcb)
188
{
189
__get_cpu_var(current_kprobe) = p;
190
kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE);
191
kcb->kprobe_saved_epc = regs->cp0_epc;
192
}
193
194
static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
195
{
196
regs->cp0_status &= ~ST0_IE;
197
198
/* single step inline if the instruction is a break */
199
if (p->opcode.word == breakpoint_insn.word ||
200
p->opcode.word == breakpoint2_insn.word)
201
regs->cp0_epc = (unsigned long)p->addr;
202
else
203
regs->cp0_epc = (unsigned long)&p->ainsn.insn[0];
204
}
205
206
static int __kprobes kprobe_handler(struct pt_regs *regs)
207
{
208
struct kprobe *p;
209
int ret = 0;
210
kprobe_opcode_t *addr;
211
struct kprobe_ctlblk *kcb;
212
213
addr = (kprobe_opcode_t *) regs->cp0_epc;
214
215
/*
216
* We don't want to be preempted for the entire
217
* duration of kprobe processing
218
*/
219
preempt_disable();
220
kcb = get_kprobe_ctlblk();
221
222
/* Check we're not actually recursing */
223
if (kprobe_running()) {
224
p = get_kprobe(addr);
225
if (p) {
226
if (kcb->kprobe_status == KPROBE_HIT_SS &&
227
p->ainsn.insn->word == breakpoint_insn.word) {
228
regs->cp0_status &= ~ST0_IE;
229
regs->cp0_status |= kcb->kprobe_saved_SR;
230
goto no_kprobe;
231
}
232
/*
233
* We have reentered the kprobe_handler(), since
234
* another probe was hit while within the handler.
235
* We here save the original kprobes variables and
236
* just single step on the instruction of the new probe
237
* without calling any user handlers.
238
*/
239
save_previous_kprobe(kcb);
240
set_current_kprobe(p, regs, kcb);
241
kprobes_inc_nmissed_count(p);
242
prepare_singlestep(p, regs);
243
kcb->kprobe_status = KPROBE_REENTER;
244
return 1;
245
} else {
246
if (addr->word != breakpoint_insn.word) {
247
/*
248
* The breakpoint instruction was removed by
249
* another cpu right after we hit, no further
250
* handling of this interrupt is appropriate
251
*/
252
ret = 1;
253
goto no_kprobe;
254
}
255
p = __get_cpu_var(current_kprobe);
256
if (p->break_handler && p->break_handler(p, regs))
257
goto ss_probe;
258
}
259
goto no_kprobe;
260
}
261
262
p = get_kprobe(addr);
263
if (!p) {
264
if (addr->word != breakpoint_insn.word) {
265
/*
266
* The breakpoint instruction was removed right
267
* after we hit it. Another cpu has removed
268
* either a probepoint or a debugger breakpoint
269
* at this address. In either case, no further
270
* handling of this interrupt is appropriate.
271
*/
272
ret = 1;
273
}
274
/* Not one of ours: let kernel handle it */
275
goto no_kprobe;
276
}
277
278
set_current_kprobe(p, regs, kcb);
279
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
280
281
if (p->pre_handler && p->pre_handler(p, regs)) {
282
/* handler has already set things up, so skip ss setup */
283
return 1;
284
}
285
286
ss_probe:
287
prepare_singlestep(p, regs);
288
kcb->kprobe_status = KPROBE_HIT_SS;
289
return 1;
290
291
no_kprobe:
292
preempt_enable_no_resched();
293
return ret;
294
295
}
296
297
/*
298
* Called after single-stepping. p->addr is the address of the
299
* instruction whose first byte has been replaced by the "break 0"
300
* instruction. To avoid the SMP problems that can occur when we
301
* temporarily put back the original opcode to single-step, we
302
* single-stepped a copy of the instruction. The address of this
303
* copy is p->ainsn.insn.
304
*
305
* This function prepares to return from the post-single-step
306
* breakpoint trap.
307
*/
308
static void __kprobes resume_execution(struct kprobe *p,
309
struct pt_regs *regs,
310
struct kprobe_ctlblk *kcb)
311
{
312
unsigned long orig_epc = kcb->kprobe_saved_epc;
313
regs->cp0_epc = orig_epc + 4;
314
}
315
316
static inline int post_kprobe_handler(struct pt_regs *regs)
317
{
318
struct kprobe *cur = kprobe_running();
319
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
320
321
if (!cur)
322
return 0;
323
324
if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
325
kcb->kprobe_status = KPROBE_HIT_SSDONE;
326
cur->post_handler(cur, regs, 0);
327
}
328
329
resume_execution(cur, regs, kcb);
330
331
regs->cp0_status |= kcb->kprobe_saved_SR;
332
333
/* Restore back the original saved kprobes variables and continue. */
334
if (kcb->kprobe_status == KPROBE_REENTER) {
335
restore_previous_kprobe(kcb);
336
goto out;
337
}
338
reset_current_kprobe();
339
out:
340
preempt_enable_no_resched();
341
342
return 1;
343
}
344
345
static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
346
{
347
struct kprobe *cur = kprobe_running();
348
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
349
350
if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
351
return 1;
352
353
if (kcb->kprobe_status & KPROBE_HIT_SS) {
354
resume_execution(cur, regs, kcb);
355
regs->cp0_status |= kcb->kprobe_old_SR;
356
357
reset_current_kprobe();
358
preempt_enable_no_resched();
359
}
360
return 0;
361
}
362
363
/*
364
* Wrapper routine for handling exceptions.
365
*/
366
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
367
unsigned long val, void *data)
368
{
369
370
struct die_args *args = (struct die_args *)data;
371
int ret = NOTIFY_DONE;
372
373
switch (val) {
374
case DIE_BREAK:
375
if (kprobe_handler(args->regs))
376
ret = NOTIFY_STOP;
377
break;
378
case DIE_SSTEPBP:
379
if (post_kprobe_handler(args->regs))
380
ret = NOTIFY_STOP;
381
break;
382
383
case DIE_PAGE_FAULT:
384
/* kprobe_running() needs smp_processor_id() */
385
preempt_disable();
386
387
if (kprobe_running()
388
&& kprobe_fault_handler(args->regs, args->trapnr))
389
ret = NOTIFY_STOP;
390
preempt_enable();
391
break;
392
default:
393
break;
394
}
395
return ret;
396
}
397
398
int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
399
{
400
struct jprobe *jp = container_of(p, struct jprobe, kp);
401
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
402
403
kcb->jprobe_saved_regs = *regs;
404
kcb->jprobe_saved_sp = regs->regs[29];
405
406
memcpy(kcb->jprobes_stack, (void *)kcb->jprobe_saved_sp,
407
MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
408
409
regs->cp0_epc = (unsigned long)(jp->entry);
410
411
return 1;
412
}
413
414
/* Defined in the inline asm below. */
415
void jprobe_return_end(void);
416
417
void __kprobes jprobe_return(void)
418
{
419
/* Assembler quirk necessitates this '0,code' business. */
420
asm volatile(
421
"break 0,%0\n\t"
422
".globl jprobe_return_end\n"
423
"jprobe_return_end:\n"
424
: : "n" (BRK_KPROBE_BP) : "memory");
425
}
426
427
int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
428
{
429
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
430
431
if (regs->cp0_epc >= (unsigned long)jprobe_return &&
432
regs->cp0_epc <= (unsigned long)jprobe_return_end) {
433
*regs = kcb->jprobe_saved_regs;
434
memcpy((void *)kcb->jprobe_saved_sp, kcb->jprobes_stack,
435
MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
436
preempt_enable_no_resched();
437
438
return 1;
439
}
440
return 0;
441
}
442
443
/*
444
* Function return probe trampoline:
445
* - init_kprobes() establishes a probepoint here
446
* - When the probed function returns, this probe causes the
447
* handlers to fire
448
*/
449
static void __used kretprobe_trampoline_holder(void)
450
{
451
asm volatile(
452
".set push\n\t"
453
/* Keep the assembler from reordering and placing JR here. */
454
".set noreorder\n\t"
455
"nop\n\t"
456
".global kretprobe_trampoline\n"
457
"kretprobe_trampoline:\n\t"
458
"nop\n\t"
459
".set pop"
460
: : : "memory");
461
}
462
463
void kretprobe_trampoline(void);
464
465
void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
466
struct pt_regs *regs)
467
{
468
ri->ret_addr = (kprobe_opcode_t *) regs->regs[31];
469
470
/* Replace the return addr with trampoline addr */
471
regs->regs[31] = (unsigned long)kretprobe_trampoline;
472
}
473
474
/*
475
* Called when the probe at kretprobe trampoline is hit
476
*/
477
static int __kprobes trampoline_probe_handler(struct kprobe *p,
478
struct pt_regs *regs)
479
{
480
struct kretprobe_instance *ri = NULL;
481
struct hlist_head *head, empty_rp;
482
struct hlist_node *node, *tmp;
483
unsigned long flags, orig_ret_address = 0;
484
unsigned long trampoline_address = (unsigned long)kretprobe_trampoline;
485
486
INIT_HLIST_HEAD(&empty_rp);
487
kretprobe_hash_lock(current, &head, &flags);
488
489
/*
490
* It is possible to have multiple instances associated with a given
491
* task either because an multiple functions in the call path
492
* have a return probe installed on them, and/or more than one return
493
* return probe was registered for a target function.
494
*
495
* We can handle this because:
496
* - instances are always inserted at the head of the list
497
* - when multiple return probes are registered for the same
498
* function, the first instance's ret_addr will point to the
499
* real return address, and all the rest will point to
500
* kretprobe_trampoline
501
*/
502
hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
503
if (ri->task != current)
504
/* another task is sharing our hash bucket */
505
continue;
506
507
if (ri->rp && ri->rp->handler)
508
ri->rp->handler(ri, regs);
509
510
orig_ret_address = (unsigned long)ri->ret_addr;
511
recycle_rp_inst(ri, &empty_rp);
512
513
if (orig_ret_address != trampoline_address)
514
/*
515
* This is the real return address. Any other
516
* instances associated with this task are for
517
* other calls deeper on the call stack
518
*/
519
break;
520
}
521
522
kretprobe_assert(ri, orig_ret_address, trampoline_address);
523
instruction_pointer(regs) = orig_ret_address;
524
525
reset_current_kprobe();
526
kretprobe_hash_unlock(current, &flags);
527
preempt_enable_no_resched();
528
529
hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
530
hlist_del(&ri->hlist);
531
kfree(ri);
532
}
533
/*
534
* By returning a non-zero value, we are telling
535
* kprobe_handler() that we don't want the post_handler
536
* to run (and have re-enabled preemption)
537
*/
538
return 1;
539
}
540
541
int __kprobes arch_trampoline_kprobe(struct kprobe *p)
542
{
543
if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline)
544
return 1;
545
546
return 0;
547
}
548
549
static struct kprobe trampoline_p = {
550
.addr = (kprobe_opcode_t *)kretprobe_trampoline,
551
.pre_handler = trampoline_probe_handler
552
};
553
554
int __init arch_init_kprobes(void)
555
{
556
return register_kprobe(&trampoline_p);
557
}
558
559