Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/mips/math-emu/dp_sqrt.c
10817 views
1
/* IEEE754 floating point arithmetic
2
* double precision square root
3
*/
4
/*
5
* MIPS floating point support
6
* Copyright (C) 1994-2000 Algorithmics Ltd.
7
*
8
* ########################################################################
9
*
10
* This program is free software; you can distribute it and/or modify it
11
* under the terms of the GNU General Public License (Version 2) as
12
* published by the Free Software Foundation.
13
*
14
* This program is distributed in the hope it will be useful, but WITHOUT
15
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17
* for more details.
18
*
19
* You should have received a copy of the GNU General Public License along
20
* with this program; if not, write to the Free Software Foundation, Inc.,
21
* 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
22
*
23
* ########################################################################
24
*/
25
26
27
#include "ieee754dp.h"
28
29
static const unsigned table[] = {
30
0, 1204, 3062, 5746, 9193, 13348, 18162, 23592,
31
29598, 36145, 43202, 50740, 58733, 67158, 75992,
32
85215, 83599, 71378, 60428, 50647, 41945, 34246,
33
27478, 21581, 16499, 12183, 8588, 5674, 3403,
34
1742, 661, 130
35
};
36
37
ieee754dp ieee754dp_sqrt(ieee754dp x)
38
{
39
struct _ieee754_csr oldcsr;
40
ieee754dp y, z, t;
41
unsigned scalx, yh;
42
COMPXDP;
43
44
EXPLODEXDP;
45
CLEARCX;
46
FLUSHXDP;
47
48
/* x == INF or NAN? */
49
switch (xc) {
50
case IEEE754_CLASS_QNAN:
51
/* sqrt(Nan) = Nan */
52
return ieee754dp_nanxcpt(x, "sqrt");
53
case IEEE754_CLASS_SNAN:
54
SETCX(IEEE754_INVALID_OPERATION);
55
return ieee754dp_nanxcpt(ieee754dp_indef(), "sqrt");
56
case IEEE754_CLASS_ZERO:
57
/* sqrt(0) = 0 */
58
return x;
59
case IEEE754_CLASS_INF:
60
if (xs) {
61
/* sqrt(-Inf) = Nan */
62
SETCX(IEEE754_INVALID_OPERATION);
63
return ieee754dp_nanxcpt(ieee754dp_indef(), "sqrt");
64
}
65
/* sqrt(+Inf) = Inf */
66
return x;
67
case IEEE754_CLASS_DNORM:
68
DPDNORMX;
69
/* fall through */
70
case IEEE754_CLASS_NORM:
71
if (xs) {
72
/* sqrt(-x) = Nan */
73
SETCX(IEEE754_INVALID_OPERATION);
74
return ieee754dp_nanxcpt(ieee754dp_indef(), "sqrt");
75
}
76
break;
77
}
78
79
/* save old csr; switch off INX enable & flag; set RN rounding */
80
oldcsr = ieee754_csr;
81
ieee754_csr.mx &= ~IEEE754_INEXACT;
82
ieee754_csr.sx &= ~IEEE754_INEXACT;
83
ieee754_csr.rm = IEEE754_RN;
84
85
/* adjust exponent to prevent overflow */
86
scalx = 0;
87
if (xe > 512) { /* x > 2**-512? */
88
xe -= 512; /* x = x / 2**512 */
89
scalx += 256;
90
} else if (xe < -512) { /* x < 2**-512? */
91
xe += 512; /* x = x * 2**512 */
92
scalx -= 256;
93
}
94
95
y = x = builddp(0, xe + DP_EBIAS, xm & ~DP_HIDDEN_BIT);
96
97
/* magic initial approximation to almost 8 sig. bits */
98
yh = y.bits >> 32;
99
yh = (yh >> 1) + 0x1ff80000;
100
yh = yh - table[(yh >> 15) & 31];
101
y.bits = ((u64) yh << 32) | (y.bits & 0xffffffff);
102
103
/* Heron's rule once with correction to improve to ~18 sig. bits */
104
/* t=x/y; y=y+t; py[n0]=py[n0]-0x00100006; py[n1]=0; */
105
t = ieee754dp_div(x, y);
106
y = ieee754dp_add(y, t);
107
y.bits -= 0x0010000600000000LL;
108
y.bits &= 0xffffffff00000000LL;
109
110
/* triple to almost 56 sig. bits: y ~= sqrt(x) to within 1 ulp */
111
/* t=y*y; z=t; pt[n0]+=0x00100000; t+=z; z=(x-z)*y; */
112
z = t = ieee754dp_mul(y, y);
113
t.parts.bexp += 0x001;
114
t = ieee754dp_add(t, z);
115
z = ieee754dp_mul(ieee754dp_sub(x, z), y);
116
117
/* t=z/(t+x) ; pt[n0]+=0x00100000; y+=t; */
118
t = ieee754dp_div(z, ieee754dp_add(t, x));
119
t.parts.bexp += 0x001;
120
y = ieee754dp_add(y, t);
121
122
/* twiddle last bit to force y correctly rounded */
123
124
/* set RZ, clear INEX flag */
125
ieee754_csr.rm = IEEE754_RZ;
126
ieee754_csr.sx &= ~IEEE754_INEXACT;
127
128
/* t=x/y; ...chopped quotient, possibly inexact */
129
t = ieee754dp_div(x, y);
130
131
if (ieee754_csr.sx & IEEE754_INEXACT || t.bits != y.bits) {
132
133
if (!(ieee754_csr.sx & IEEE754_INEXACT))
134
/* t = t-ulp */
135
t.bits -= 1;
136
137
/* add inexact to result status */
138
oldcsr.cx |= IEEE754_INEXACT;
139
oldcsr.sx |= IEEE754_INEXACT;
140
141
switch (oldcsr.rm) {
142
case IEEE754_RP:
143
y.bits += 1;
144
/* drop through */
145
case IEEE754_RN:
146
t.bits += 1;
147
break;
148
}
149
150
/* y=y+t; ...chopped sum */
151
y = ieee754dp_add(y, t);
152
153
/* adjust scalx for correctly rounded sqrt(x) */
154
scalx -= 1;
155
}
156
157
/* py[n0]=py[n0]+scalx; ...scale back y */
158
y.parts.bexp += scalx;
159
160
/* restore rounding mode, possibly set inexact */
161
ieee754_csr = oldcsr;
162
163
return y;
164
}
165
166