Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/mips/math-emu/ieee754sp.c
10820 views
1
/* IEEE754 floating point arithmetic
2
* single precision
3
*/
4
/*
5
* MIPS floating point support
6
* Copyright (C) 1994-2000 Algorithmics Ltd.
7
*
8
* ########################################################################
9
*
10
* This program is free software; you can distribute it and/or modify it
11
* under the terms of the GNU General Public License (Version 2) as
12
* published by the Free Software Foundation.
13
*
14
* This program is distributed in the hope it will be useful, but WITHOUT
15
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17
* for more details.
18
*
19
* You should have received a copy of the GNU General Public License along
20
* with this program; if not, write to the Free Software Foundation, Inc.,
21
* 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
22
*
23
* ########################################################################
24
*/
25
26
27
#include "ieee754sp.h"
28
29
int ieee754sp_class(ieee754sp x)
30
{
31
COMPXSP;
32
EXPLODEXSP;
33
return xc;
34
}
35
36
int ieee754sp_isnan(ieee754sp x)
37
{
38
return ieee754sp_class(x) >= IEEE754_CLASS_SNAN;
39
}
40
41
int ieee754sp_issnan(ieee754sp x)
42
{
43
assert(ieee754sp_isnan(x));
44
return (SPMANT(x) & SP_MBIT(SP_MBITS-1));
45
}
46
47
48
ieee754sp ieee754sp_xcpt(ieee754sp r, const char *op, ...)
49
{
50
struct ieee754xctx ax;
51
52
if (!TSTX())
53
return r;
54
55
ax.op = op;
56
ax.rt = IEEE754_RT_SP;
57
ax.rv.sp = r;
58
va_start(ax.ap, op);
59
ieee754_xcpt(&ax);
60
va_end(ax.ap);
61
return ax.rv.sp;
62
}
63
64
ieee754sp ieee754sp_nanxcpt(ieee754sp r, const char *op, ...)
65
{
66
struct ieee754xctx ax;
67
68
assert(ieee754sp_isnan(r));
69
70
if (!ieee754sp_issnan(r)) /* QNAN does not cause invalid op !! */
71
return r;
72
73
if (!SETANDTESTCX(IEEE754_INVALID_OPERATION)) {
74
/* not enabled convert to a quiet NaN */
75
SPMANT(r) &= (~SP_MBIT(SP_MBITS-1));
76
if (ieee754sp_isnan(r))
77
return r;
78
else
79
return ieee754sp_indef();
80
}
81
82
ax.op = op;
83
ax.rt = 0;
84
ax.rv.sp = r;
85
va_start(ax.ap, op);
86
ieee754_xcpt(&ax);
87
va_end(ax.ap);
88
return ax.rv.sp;
89
}
90
91
ieee754sp ieee754sp_bestnan(ieee754sp x, ieee754sp y)
92
{
93
assert(ieee754sp_isnan(x));
94
assert(ieee754sp_isnan(y));
95
96
if (SPMANT(x) > SPMANT(y))
97
return x;
98
else
99
return y;
100
}
101
102
103
static unsigned get_rounding(int sn, unsigned xm)
104
{
105
/* inexact must round of 3 bits
106
*/
107
if (xm & (SP_MBIT(3) - 1)) {
108
switch (ieee754_csr.rm) {
109
case IEEE754_RZ:
110
break;
111
case IEEE754_RN:
112
xm += 0x3 + ((xm >> 3) & 1);
113
/* xm += (xm&0x8)?0x4:0x3 */
114
break;
115
case IEEE754_RU: /* toward +Infinity */
116
if (!sn) /* ?? */
117
xm += 0x8;
118
break;
119
case IEEE754_RD: /* toward -Infinity */
120
if (sn) /* ?? */
121
xm += 0x8;
122
break;
123
}
124
}
125
return xm;
126
}
127
128
129
/* generate a normal/denormal number with over,under handling
130
* sn is sign
131
* xe is an unbiased exponent
132
* xm is 3bit extended precision value.
133
*/
134
ieee754sp ieee754sp_format(int sn, int xe, unsigned xm)
135
{
136
assert(xm); /* we don't gen exact zeros (probably should) */
137
138
assert((xm >> (SP_MBITS + 1 + 3)) == 0); /* no execess */
139
assert(xm & (SP_HIDDEN_BIT << 3));
140
141
if (xe < SP_EMIN) {
142
/* strip lower bits */
143
int es = SP_EMIN - xe;
144
145
if (ieee754_csr.nod) {
146
SETCX(IEEE754_UNDERFLOW);
147
SETCX(IEEE754_INEXACT);
148
149
switch(ieee754_csr.rm) {
150
case IEEE754_RN:
151
case IEEE754_RZ:
152
return ieee754sp_zero(sn);
153
case IEEE754_RU: /* toward +Infinity */
154
if(sn == 0)
155
return ieee754sp_min(0);
156
else
157
return ieee754sp_zero(1);
158
case IEEE754_RD: /* toward -Infinity */
159
if(sn == 0)
160
return ieee754sp_zero(0);
161
else
162
return ieee754sp_min(1);
163
}
164
}
165
166
if (xe == SP_EMIN - 1
167
&& get_rounding(sn, xm) >> (SP_MBITS + 1 + 3))
168
{
169
/* Not tiny after rounding */
170
SETCX(IEEE754_INEXACT);
171
xm = get_rounding(sn, xm);
172
xm >>= 1;
173
/* Clear grs bits */
174
xm &= ~(SP_MBIT(3) - 1);
175
xe++;
176
}
177
else {
178
/* sticky right shift es bits
179
*/
180
SPXSRSXn(es);
181
assert((xm & (SP_HIDDEN_BIT << 3)) == 0);
182
assert(xe == SP_EMIN);
183
}
184
}
185
if (xm & (SP_MBIT(3) - 1)) {
186
SETCX(IEEE754_INEXACT);
187
if ((xm & (SP_HIDDEN_BIT << 3)) == 0) {
188
SETCX(IEEE754_UNDERFLOW);
189
}
190
191
/* inexact must round of 3 bits
192
*/
193
xm = get_rounding(sn, xm);
194
/* adjust exponent for rounding add overflowing
195
*/
196
if (xm >> (SP_MBITS + 1 + 3)) {
197
/* add causes mantissa overflow */
198
xm >>= 1;
199
xe++;
200
}
201
}
202
/* strip grs bits */
203
xm >>= 3;
204
205
assert((xm >> (SP_MBITS + 1)) == 0); /* no execess */
206
assert(xe >= SP_EMIN);
207
208
if (xe > SP_EMAX) {
209
SETCX(IEEE754_OVERFLOW);
210
SETCX(IEEE754_INEXACT);
211
/* -O can be table indexed by (rm,sn) */
212
switch (ieee754_csr.rm) {
213
case IEEE754_RN:
214
return ieee754sp_inf(sn);
215
case IEEE754_RZ:
216
return ieee754sp_max(sn);
217
case IEEE754_RU: /* toward +Infinity */
218
if (sn == 0)
219
return ieee754sp_inf(0);
220
else
221
return ieee754sp_max(1);
222
case IEEE754_RD: /* toward -Infinity */
223
if (sn == 0)
224
return ieee754sp_max(0);
225
else
226
return ieee754sp_inf(1);
227
}
228
}
229
/* gen norm/denorm/zero */
230
231
if ((xm & SP_HIDDEN_BIT) == 0) {
232
/* we underflow (tiny/zero) */
233
assert(xe == SP_EMIN);
234
if (ieee754_csr.mx & IEEE754_UNDERFLOW)
235
SETCX(IEEE754_UNDERFLOW);
236
return buildsp(sn, SP_EMIN - 1 + SP_EBIAS, xm);
237
} else {
238
assert((xm >> (SP_MBITS + 1)) == 0); /* no execess */
239
assert(xm & SP_HIDDEN_BIT);
240
241
return buildsp(sn, xe + SP_EBIAS, xm & ~SP_HIDDEN_BIT);
242
}
243
}
244
245