Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/mips/mm/uasm.c
10817 views
1
/*
2
* This file is subject to the terms and conditions of the GNU General Public
3
* License. See the file "COPYING" in the main directory of this archive
4
* for more details.
5
*
6
* A small micro-assembler. It is intentionally kept simple, does only
7
* support a subset of instructions, and does not try to hide pipeline
8
* effects like branch delay slots.
9
*
10
* Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
11
* Copyright (C) 2005, 2007 Maciej W. Rozycki
12
* Copyright (C) 2006 Ralf Baechle ([email protected])
13
*/
14
15
#include <linux/kernel.h>
16
#include <linux/types.h>
17
#include <linux/init.h>
18
19
#include <asm/inst.h>
20
#include <asm/elf.h>
21
#include <asm/bugs.h>
22
#include <asm/uasm.h>
23
24
enum fields {
25
RS = 0x001,
26
RT = 0x002,
27
RD = 0x004,
28
RE = 0x008,
29
SIMM = 0x010,
30
UIMM = 0x020,
31
BIMM = 0x040,
32
JIMM = 0x080,
33
FUNC = 0x100,
34
SET = 0x200,
35
SCIMM = 0x400
36
};
37
38
#define OP_MASK 0x3f
39
#define OP_SH 26
40
#define RS_MASK 0x1f
41
#define RS_SH 21
42
#define RT_MASK 0x1f
43
#define RT_SH 16
44
#define RD_MASK 0x1f
45
#define RD_SH 11
46
#define RE_MASK 0x1f
47
#define RE_SH 6
48
#define IMM_MASK 0xffff
49
#define IMM_SH 0
50
#define JIMM_MASK 0x3ffffff
51
#define JIMM_SH 0
52
#define FUNC_MASK 0x3f
53
#define FUNC_SH 0
54
#define SET_MASK 0x7
55
#define SET_SH 0
56
#define SCIMM_MASK 0xfffff
57
#define SCIMM_SH 6
58
59
enum opcode {
60
insn_invalid,
61
insn_addu, insn_addiu, insn_and, insn_andi, insn_beq,
62
insn_beql, insn_bgez, insn_bgezl, insn_bltz, insn_bltzl,
63
insn_bne, insn_cache, insn_daddu, insn_daddiu, insn_dmfc0,
64
insn_dmtc0, insn_dsll, insn_dsll32, insn_dsra, insn_dsrl,
65
insn_dsrl32, insn_drotr, insn_drotr32, insn_dsubu, insn_eret,
66
insn_j, insn_jal, insn_jr, insn_ld, insn_ll, insn_lld,
67
insn_lui, insn_lw, insn_mfc0, insn_mtc0, insn_or, insn_ori,
68
insn_pref, insn_rfe, insn_sc, insn_scd, insn_sd, insn_sll,
69
insn_sra, insn_srl, insn_rotr, insn_subu, insn_sw, insn_tlbp,
70
insn_tlbr, insn_tlbwi, insn_tlbwr, insn_xor, insn_xori,
71
insn_dins, insn_dinsm, insn_syscall, insn_bbit0, insn_bbit1,
72
insn_lwx, insn_ldx
73
};
74
75
struct insn {
76
enum opcode opcode;
77
u32 match;
78
enum fields fields;
79
};
80
81
/* This macro sets the non-variable bits of an instruction. */
82
#define M(a, b, c, d, e, f) \
83
((a) << OP_SH \
84
| (b) << RS_SH \
85
| (c) << RT_SH \
86
| (d) << RD_SH \
87
| (e) << RE_SH \
88
| (f) << FUNC_SH)
89
90
static struct insn insn_table[] __uasminitdata = {
91
{ insn_addiu, M(addiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
92
{ insn_addu, M(spec_op, 0, 0, 0, 0, addu_op), RS | RT | RD },
93
{ insn_and, M(spec_op, 0, 0, 0, 0, and_op), RS | RT | RD },
94
{ insn_andi, M(andi_op, 0, 0, 0, 0, 0), RS | RT | UIMM },
95
{ insn_beq, M(beq_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
96
{ insn_beql, M(beql_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
97
{ insn_bgez, M(bcond_op, 0, bgez_op, 0, 0, 0), RS | BIMM },
98
{ insn_bgezl, M(bcond_op, 0, bgezl_op, 0, 0, 0), RS | BIMM },
99
{ insn_bltz, M(bcond_op, 0, bltz_op, 0, 0, 0), RS | BIMM },
100
{ insn_bltzl, M(bcond_op, 0, bltzl_op, 0, 0, 0), RS | BIMM },
101
{ insn_bne, M(bne_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
102
{ insn_cache, M(cache_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
103
{ insn_daddiu, M(daddiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
104
{ insn_daddu, M(spec_op, 0, 0, 0, 0, daddu_op), RS | RT | RD },
105
{ insn_dmfc0, M(cop0_op, dmfc_op, 0, 0, 0, 0), RT | RD | SET},
106
{ insn_dmtc0, M(cop0_op, dmtc_op, 0, 0, 0, 0), RT | RD | SET},
107
{ insn_dsll, M(spec_op, 0, 0, 0, 0, dsll_op), RT | RD | RE },
108
{ insn_dsll32, M(spec_op, 0, 0, 0, 0, dsll32_op), RT | RD | RE },
109
{ insn_dsra, M(spec_op, 0, 0, 0, 0, dsra_op), RT | RD | RE },
110
{ insn_dsrl, M(spec_op, 0, 0, 0, 0, dsrl_op), RT | RD | RE },
111
{ insn_dsrl32, M(spec_op, 0, 0, 0, 0, dsrl32_op), RT | RD | RE },
112
{ insn_drotr, M(spec_op, 1, 0, 0, 0, dsrl_op), RT | RD | RE },
113
{ insn_drotr32, M(spec_op, 1, 0, 0, 0, dsrl32_op), RT | RD | RE },
114
{ insn_dsubu, M(spec_op, 0, 0, 0, 0, dsubu_op), RS | RT | RD },
115
{ insn_eret, M(cop0_op, cop_op, 0, 0, 0, eret_op), 0 },
116
{ insn_j, M(j_op, 0, 0, 0, 0, 0), JIMM },
117
{ insn_jal, M(jal_op, 0, 0, 0, 0, 0), JIMM },
118
{ insn_jr, M(spec_op, 0, 0, 0, 0, jr_op), RS },
119
{ insn_ld, M(ld_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
120
{ insn_ll, M(ll_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
121
{ insn_lld, M(lld_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
122
{ insn_lui, M(lui_op, 0, 0, 0, 0, 0), RT | SIMM },
123
{ insn_lw, M(lw_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
124
{ insn_mfc0, M(cop0_op, mfc_op, 0, 0, 0, 0), RT | RD | SET},
125
{ insn_mtc0, M(cop0_op, mtc_op, 0, 0, 0, 0), RT | RD | SET},
126
{ insn_or, M(spec_op, 0, 0, 0, 0, or_op), RS | RT | RD },
127
{ insn_ori, M(ori_op, 0, 0, 0, 0, 0), RS | RT | UIMM },
128
{ insn_pref, M(pref_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
129
{ insn_rfe, M(cop0_op, cop_op, 0, 0, 0, rfe_op), 0 },
130
{ insn_sc, M(sc_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
131
{ insn_scd, M(scd_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
132
{ insn_sd, M(sd_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
133
{ insn_sll, M(spec_op, 0, 0, 0, 0, sll_op), RT | RD | RE },
134
{ insn_sra, M(spec_op, 0, 0, 0, 0, sra_op), RT | RD | RE },
135
{ insn_srl, M(spec_op, 0, 0, 0, 0, srl_op), RT | RD | RE },
136
{ insn_rotr, M(spec_op, 1, 0, 0, 0, srl_op), RT | RD | RE },
137
{ insn_subu, M(spec_op, 0, 0, 0, 0, subu_op), RS | RT | RD },
138
{ insn_sw, M(sw_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
139
{ insn_tlbp, M(cop0_op, cop_op, 0, 0, 0, tlbp_op), 0 },
140
{ insn_tlbr, M(cop0_op, cop_op, 0, 0, 0, tlbr_op), 0 },
141
{ insn_tlbwi, M(cop0_op, cop_op, 0, 0, 0, tlbwi_op), 0 },
142
{ insn_tlbwr, M(cop0_op, cop_op, 0, 0, 0, tlbwr_op), 0 },
143
{ insn_xor, M(spec_op, 0, 0, 0, 0, xor_op), RS | RT | RD },
144
{ insn_xori, M(xori_op, 0, 0, 0, 0, 0), RS | RT | UIMM },
145
{ insn_dins, M(spec3_op, 0, 0, 0, 0, dins_op), RS | RT | RD | RE },
146
{ insn_dinsm, M(spec3_op, 0, 0, 0, 0, dinsm_op), RS | RT | RD | RE },
147
{ insn_syscall, M(spec_op, 0, 0, 0, 0, syscall_op), SCIMM},
148
{ insn_bbit0, M(lwc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
149
{ insn_bbit1, M(swc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
150
{ insn_lwx, M(spec3_op, 0, 0, 0, lwx_op, lx_op), RS | RT | RD },
151
{ insn_ldx, M(spec3_op, 0, 0, 0, ldx_op, lx_op), RS | RT | RD },
152
{ insn_invalid, 0, 0 }
153
};
154
155
#undef M
156
157
static inline __uasminit u32 build_rs(u32 arg)
158
{
159
WARN(arg & ~RS_MASK, KERN_WARNING "Micro-assembler field overflow\n");
160
161
return (arg & RS_MASK) << RS_SH;
162
}
163
164
static inline __uasminit u32 build_rt(u32 arg)
165
{
166
WARN(arg & ~RT_MASK, KERN_WARNING "Micro-assembler field overflow\n");
167
168
return (arg & RT_MASK) << RT_SH;
169
}
170
171
static inline __uasminit u32 build_rd(u32 arg)
172
{
173
WARN(arg & ~RD_MASK, KERN_WARNING "Micro-assembler field overflow\n");
174
175
return (arg & RD_MASK) << RD_SH;
176
}
177
178
static inline __uasminit u32 build_re(u32 arg)
179
{
180
WARN(arg & ~RE_MASK, KERN_WARNING "Micro-assembler field overflow\n");
181
182
return (arg & RE_MASK) << RE_SH;
183
}
184
185
static inline __uasminit u32 build_simm(s32 arg)
186
{
187
WARN(arg > 0x7fff || arg < -0x8000,
188
KERN_WARNING "Micro-assembler field overflow\n");
189
190
return arg & 0xffff;
191
}
192
193
static inline __uasminit u32 build_uimm(u32 arg)
194
{
195
WARN(arg & ~IMM_MASK, KERN_WARNING "Micro-assembler field overflow\n");
196
197
return arg & IMM_MASK;
198
}
199
200
static inline __uasminit u32 build_bimm(s32 arg)
201
{
202
WARN(arg > 0x1ffff || arg < -0x20000,
203
KERN_WARNING "Micro-assembler field overflow\n");
204
205
WARN(arg & 0x3, KERN_WARNING "Invalid micro-assembler branch target\n");
206
207
return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
208
}
209
210
static inline __uasminit u32 build_jimm(u32 arg)
211
{
212
WARN(arg & ~(JIMM_MASK << 2),
213
KERN_WARNING "Micro-assembler field overflow\n");
214
215
return (arg >> 2) & JIMM_MASK;
216
}
217
218
static inline __uasminit u32 build_scimm(u32 arg)
219
{
220
WARN(arg & ~SCIMM_MASK,
221
KERN_WARNING "Micro-assembler field overflow\n");
222
223
return (arg & SCIMM_MASK) << SCIMM_SH;
224
}
225
226
static inline __uasminit u32 build_func(u32 arg)
227
{
228
WARN(arg & ~FUNC_MASK, KERN_WARNING "Micro-assembler field overflow\n");
229
230
return arg & FUNC_MASK;
231
}
232
233
static inline __uasminit u32 build_set(u32 arg)
234
{
235
WARN(arg & ~SET_MASK, KERN_WARNING "Micro-assembler field overflow\n");
236
237
return arg & SET_MASK;
238
}
239
240
/*
241
* The order of opcode arguments is implicitly left to right,
242
* starting with RS and ending with FUNC or IMM.
243
*/
244
static void __uasminit build_insn(u32 **buf, enum opcode opc, ...)
245
{
246
struct insn *ip = NULL;
247
unsigned int i;
248
va_list ap;
249
u32 op;
250
251
for (i = 0; insn_table[i].opcode != insn_invalid; i++)
252
if (insn_table[i].opcode == opc) {
253
ip = &insn_table[i];
254
break;
255
}
256
257
if (!ip || (opc == insn_daddiu && r4k_daddiu_bug()))
258
panic("Unsupported Micro-assembler instruction %d", opc);
259
260
op = ip->match;
261
va_start(ap, opc);
262
if (ip->fields & RS)
263
op |= build_rs(va_arg(ap, u32));
264
if (ip->fields & RT)
265
op |= build_rt(va_arg(ap, u32));
266
if (ip->fields & RD)
267
op |= build_rd(va_arg(ap, u32));
268
if (ip->fields & RE)
269
op |= build_re(va_arg(ap, u32));
270
if (ip->fields & SIMM)
271
op |= build_simm(va_arg(ap, s32));
272
if (ip->fields & UIMM)
273
op |= build_uimm(va_arg(ap, u32));
274
if (ip->fields & BIMM)
275
op |= build_bimm(va_arg(ap, s32));
276
if (ip->fields & JIMM)
277
op |= build_jimm(va_arg(ap, u32));
278
if (ip->fields & FUNC)
279
op |= build_func(va_arg(ap, u32));
280
if (ip->fields & SET)
281
op |= build_set(va_arg(ap, u32));
282
if (ip->fields & SCIMM)
283
op |= build_scimm(va_arg(ap, u32));
284
va_end(ap);
285
286
**buf = op;
287
(*buf)++;
288
}
289
290
#define I_u1u2u3(op) \
291
Ip_u1u2u3(op) \
292
{ \
293
build_insn(buf, insn##op, a, b, c); \
294
} \
295
UASM_EXPORT_SYMBOL(uasm_i##op);
296
297
#define I_u2u1u3(op) \
298
Ip_u2u1u3(op) \
299
{ \
300
build_insn(buf, insn##op, b, a, c); \
301
} \
302
UASM_EXPORT_SYMBOL(uasm_i##op);
303
304
#define I_u3u1u2(op) \
305
Ip_u3u1u2(op) \
306
{ \
307
build_insn(buf, insn##op, b, c, a); \
308
} \
309
UASM_EXPORT_SYMBOL(uasm_i##op);
310
311
#define I_u1u2s3(op) \
312
Ip_u1u2s3(op) \
313
{ \
314
build_insn(buf, insn##op, a, b, c); \
315
} \
316
UASM_EXPORT_SYMBOL(uasm_i##op);
317
318
#define I_u2s3u1(op) \
319
Ip_u2s3u1(op) \
320
{ \
321
build_insn(buf, insn##op, c, a, b); \
322
} \
323
UASM_EXPORT_SYMBOL(uasm_i##op);
324
325
#define I_u2u1s3(op) \
326
Ip_u2u1s3(op) \
327
{ \
328
build_insn(buf, insn##op, b, a, c); \
329
} \
330
UASM_EXPORT_SYMBOL(uasm_i##op);
331
332
#define I_u2u1msbu3(op) \
333
Ip_u2u1msbu3(op) \
334
{ \
335
build_insn(buf, insn##op, b, a, c+d-1, c); \
336
} \
337
UASM_EXPORT_SYMBOL(uasm_i##op);
338
339
#define I_u2u1msb32u3(op) \
340
Ip_u2u1msbu3(op) \
341
{ \
342
build_insn(buf, insn##op, b, a, c+d-33, c); \
343
} \
344
UASM_EXPORT_SYMBOL(uasm_i##op);
345
346
#define I_u1u2(op) \
347
Ip_u1u2(op) \
348
{ \
349
build_insn(buf, insn##op, a, b); \
350
} \
351
UASM_EXPORT_SYMBOL(uasm_i##op);
352
353
#define I_u1s2(op) \
354
Ip_u1s2(op) \
355
{ \
356
build_insn(buf, insn##op, a, b); \
357
} \
358
UASM_EXPORT_SYMBOL(uasm_i##op);
359
360
#define I_u1(op) \
361
Ip_u1(op) \
362
{ \
363
build_insn(buf, insn##op, a); \
364
} \
365
UASM_EXPORT_SYMBOL(uasm_i##op);
366
367
#define I_0(op) \
368
Ip_0(op) \
369
{ \
370
build_insn(buf, insn##op); \
371
} \
372
UASM_EXPORT_SYMBOL(uasm_i##op);
373
374
I_u2u1s3(_addiu)
375
I_u3u1u2(_addu)
376
I_u2u1u3(_andi)
377
I_u3u1u2(_and)
378
I_u1u2s3(_beq)
379
I_u1u2s3(_beql)
380
I_u1s2(_bgez)
381
I_u1s2(_bgezl)
382
I_u1s2(_bltz)
383
I_u1s2(_bltzl)
384
I_u1u2s3(_bne)
385
I_u2s3u1(_cache)
386
I_u1u2u3(_dmfc0)
387
I_u1u2u3(_dmtc0)
388
I_u2u1s3(_daddiu)
389
I_u3u1u2(_daddu)
390
I_u2u1u3(_dsll)
391
I_u2u1u3(_dsll32)
392
I_u2u1u3(_dsra)
393
I_u2u1u3(_dsrl)
394
I_u2u1u3(_dsrl32)
395
I_u2u1u3(_drotr)
396
I_u2u1u3(_drotr32)
397
I_u3u1u2(_dsubu)
398
I_0(_eret)
399
I_u1(_j)
400
I_u1(_jal)
401
I_u1(_jr)
402
I_u2s3u1(_ld)
403
I_u2s3u1(_ll)
404
I_u2s3u1(_lld)
405
I_u1s2(_lui)
406
I_u2s3u1(_lw)
407
I_u1u2u3(_mfc0)
408
I_u1u2u3(_mtc0)
409
I_u2u1u3(_ori)
410
I_u3u1u2(_or)
411
I_0(_rfe)
412
I_u2s3u1(_sc)
413
I_u2s3u1(_scd)
414
I_u2s3u1(_sd)
415
I_u2u1u3(_sll)
416
I_u2u1u3(_sra)
417
I_u2u1u3(_srl)
418
I_u2u1u3(_rotr)
419
I_u3u1u2(_subu)
420
I_u2s3u1(_sw)
421
I_0(_tlbp)
422
I_0(_tlbr)
423
I_0(_tlbwi)
424
I_0(_tlbwr)
425
I_u3u1u2(_xor)
426
I_u2u1u3(_xori)
427
I_u2u1msbu3(_dins);
428
I_u2u1msb32u3(_dinsm);
429
I_u1(_syscall);
430
I_u1u2s3(_bbit0);
431
I_u1u2s3(_bbit1);
432
I_u3u1u2(_lwx)
433
I_u3u1u2(_ldx)
434
435
#ifdef CONFIG_CPU_CAVIUM_OCTEON
436
#include <asm/octeon/octeon.h>
437
void __uasminit uasm_i_pref(u32 **buf, unsigned int a, signed int b,
438
unsigned int c)
439
{
440
if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X) && a <= 24 && a != 5)
441
/*
442
* As per erratum Core-14449, replace prefetches 0-4,
443
* 6-24 with 'pref 28'.
444
*/
445
build_insn(buf, insn_pref, c, 28, b);
446
else
447
build_insn(buf, insn_pref, c, a, b);
448
}
449
UASM_EXPORT_SYMBOL(uasm_i_pref);
450
#else
451
I_u2s3u1(_pref)
452
#endif
453
454
/* Handle labels. */
455
void __uasminit uasm_build_label(struct uasm_label **lab, u32 *addr, int lid)
456
{
457
(*lab)->addr = addr;
458
(*lab)->lab = lid;
459
(*lab)++;
460
}
461
UASM_EXPORT_SYMBOL(uasm_build_label);
462
463
int __uasminit uasm_in_compat_space_p(long addr)
464
{
465
/* Is this address in 32bit compat space? */
466
#ifdef CONFIG_64BIT
467
return (((addr) & 0xffffffff00000000L) == 0xffffffff00000000L);
468
#else
469
return 1;
470
#endif
471
}
472
UASM_EXPORT_SYMBOL(uasm_in_compat_space_p);
473
474
static int __uasminit uasm_rel_highest(long val)
475
{
476
#ifdef CONFIG_64BIT
477
return ((((val + 0x800080008000L) >> 48) & 0xffff) ^ 0x8000) - 0x8000;
478
#else
479
return 0;
480
#endif
481
}
482
483
static int __uasminit uasm_rel_higher(long val)
484
{
485
#ifdef CONFIG_64BIT
486
return ((((val + 0x80008000L) >> 32) & 0xffff) ^ 0x8000) - 0x8000;
487
#else
488
return 0;
489
#endif
490
}
491
492
int __uasminit uasm_rel_hi(long val)
493
{
494
return ((((val + 0x8000L) >> 16) & 0xffff) ^ 0x8000) - 0x8000;
495
}
496
UASM_EXPORT_SYMBOL(uasm_rel_hi);
497
498
int __uasminit uasm_rel_lo(long val)
499
{
500
return ((val & 0xffff) ^ 0x8000) - 0x8000;
501
}
502
UASM_EXPORT_SYMBOL(uasm_rel_lo);
503
504
void __uasminit UASM_i_LA_mostly(u32 **buf, unsigned int rs, long addr)
505
{
506
if (!uasm_in_compat_space_p(addr)) {
507
uasm_i_lui(buf, rs, uasm_rel_highest(addr));
508
if (uasm_rel_higher(addr))
509
uasm_i_daddiu(buf, rs, rs, uasm_rel_higher(addr));
510
if (uasm_rel_hi(addr)) {
511
uasm_i_dsll(buf, rs, rs, 16);
512
uasm_i_daddiu(buf, rs, rs, uasm_rel_hi(addr));
513
uasm_i_dsll(buf, rs, rs, 16);
514
} else
515
uasm_i_dsll32(buf, rs, rs, 0);
516
} else
517
uasm_i_lui(buf, rs, uasm_rel_hi(addr));
518
}
519
UASM_EXPORT_SYMBOL(UASM_i_LA_mostly);
520
521
void __uasminit UASM_i_LA(u32 **buf, unsigned int rs, long addr)
522
{
523
UASM_i_LA_mostly(buf, rs, addr);
524
if (uasm_rel_lo(addr)) {
525
if (!uasm_in_compat_space_p(addr))
526
uasm_i_daddiu(buf, rs, rs, uasm_rel_lo(addr));
527
else
528
uasm_i_addiu(buf, rs, rs, uasm_rel_lo(addr));
529
}
530
}
531
UASM_EXPORT_SYMBOL(UASM_i_LA);
532
533
/* Handle relocations. */
534
void __uasminit
535
uasm_r_mips_pc16(struct uasm_reloc **rel, u32 *addr, int lid)
536
{
537
(*rel)->addr = addr;
538
(*rel)->type = R_MIPS_PC16;
539
(*rel)->lab = lid;
540
(*rel)++;
541
}
542
UASM_EXPORT_SYMBOL(uasm_r_mips_pc16);
543
544
static inline void __uasminit
545
__resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab)
546
{
547
long laddr = (long)lab->addr;
548
long raddr = (long)rel->addr;
549
550
switch (rel->type) {
551
case R_MIPS_PC16:
552
*rel->addr |= build_bimm(laddr - (raddr + 4));
553
break;
554
555
default:
556
panic("Unsupported Micro-assembler relocation %d",
557
rel->type);
558
}
559
}
560
561
void __uasminit
562
uasm_resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab)
563
{
564
struct uasm_label *l;
565
566
for (; rel->lab != UASM_LABEL_INVALID; rel++)
567
for (l = lab; l->lab != UASM_LABEL_INVALID; l++)
568
if (rel->lab == l->lab)
569
__resolve_relocs(rel, l);
570
}
571
UASM_EXPORT_SYMBOL(uasm_resolve_relocs);
572
573
void __uasminit
574
uasm_move_relocs(struct uasm_reloc *rel, u32 *first, u32 *end, long off)
575
{
576
for (; rel->lab != UASM_LABEL_INVALID; rel++)
577
if (rel->addr >= first && rel->addr < end)
578
rel->addr += off;
579
}
580
UASM_EXPORT_SYMBOL(uasm_move_relocs);
581
582
void __uasminit
583
uasm_move_labels(struct uasm_label *lab, u32 *first, u32 *end, long off)
584
{
585
for (; lab->lab != UASM_LABEL_INVALID; lab++)
586
if (lab->addr >= first && lab->addr < end)
587
lab->addr += off;
588
}
589
UASM_EXPORT_SYMBOL(uasm_move_labels);
590
591
void __uasminit
592
uasm_copy_handler(struct uasm_reloc *rel, struct uasm_label *lab, u32 *first,
593
u32 *end, u32 *target)
594
{
595
long off = (long)(target - first);
596
597
memcpy(target, first, (end - first) * sizeof(u32));
598
599
uasm_move_relocs(rel, first, end, off);
600
uasm_move_labels(lab, first, end, off);
601
}
602
UASM_EXPORT_SYMBOL(uasm_copy_handler);
603
604
int __uasminit uasm_insn_has_bdelay(struct uasm_reloc *rel, u32 *addr)
605
{
606
for (; rel->lab != UASM_LABEL_INVALID; rel++) {
607
if (rel->addr == addr
608
&& (rel->type == R_MIPS_PC16
609
|| rel->type == R_MIPS_26))
610
return 1;
611
}
612
613
return 0;
614
}
615
UASM_EXPORT_SYMBOL(uasm_insn_has_bdelay);
616
617
/* Convenience functions for labeled branches. */
618
void __uasminit
619
uasm_il_bltz(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid)
620
{
621
uasm_r_mips_pc16(r, *p, lid);
622
uasm_i_bltz(p, reg, 0);
623
}
624
UASM_EXPORT_SYMBOL(uasm_il_bltz);
625
626
void __uasminit
627
uasm_il_b(u32 **p, struct uasm_reloc **r, int lid)
628
{
629
uasm_r_mips_pc16(r, *p, lid);
630
uasm_i_b(p, 0);
631
}
632
UASM_EXPORT_SYMBOL(uasm_il_b);
633
634
void __uasminit
635
uasm_il_beqz(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid)
636
{
637
uasm_r_mips_pc16(r, *p, lid);
638
uasm_i_beqz(p, reg, 0);
639
}
640
UASM_EXPORT_SYMBOL(uasm_il_beqz);
641
642
void __uasminit
643
uasm_il_beqzl(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid)
644
{
645
uasm_r_mips_pc16(r, *p, lid);
646
uasm_i_beqzl(p, reg, 0);
647
}
648
UASM_EXPORT_SYMBOL(uasm_il_beqzl);
649
650
void __uasminit
651
uasm_il_bne(u32 **p, struct uasm_reloc **r, unsigned int reg1,
652
unsigned int reg2, int lid)
653
{
654
uasm_r_mips_pc16(r, *p, lid);
655
uasm_i_bne(p, reg1, reg2, 0);
656
}
657
UASM_EXPORT_SYMBOL(uasm_il_bne);
658
659
void __uasminit
660
uasm_il_bnez(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid)
661
{
662
uasm_r_mips_pc16(r, *p, lid);
663
uasm_i_bnez(p, reg, 0);
664
}
665
UASM_EXPORT_SYMBOL(uasm_il_bnez);
666
667
void __uasminit
668
uasm_il_bgezl(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid)
669
{
670
uasm_r_mips_pc16(r, *p, lid);
671
uasm_i_bgezl(p, reg, 0);
672
}
673
UASM_EXPORT_SYMBOL(uasm_il_bgezl);
674
675
void __uasminit
676
uasm_il_bgez(u32 **p, struct uasm_reloc **r, unsigned int reg, int lid)
677
{
678
uasm_r_mips_pc16(r, *p, lid);
679
uasm_i_bgez(p, reg, 0);
680
}
681
UASM_EXPORT_SYMBOL(uasm_il_bgez);
682
683
void __uasminit
684
uasm_il_bbit0(u32 **p, struct uasm_reloc **r, unsigned int reg,
685
unsigned int bit, int lid)
686
{
687
uasm_r_mips_pc16(r, *p, lid);
688
uasm_i_bbit0(p, reg, bit, 0);
689
}
690
UASM_EXPORT_SYMBOL(uasm_il_bbit0);
691
692
void __uasminit
693
uasm_il_bbit1(u32 **p, struct uasm_reloc **r, unsigned int reg,
694
unsigned int bit, int lid)
695
{
696
uasm_r_mips_pc16(r, *p, lid);
697
uasm_i_bbit1(p, reg, bit, 0);
698
}
699
UASM_EXPORT_SYMBOL(uasm_il_bbit1);
700
701