Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/mips/pci/msi-octeon.c
10820 views
1
/*
2
* This file is subject to the terms and conditions of the GNU General Public
3
* License. See the file "COPYING" in the main directory of this archive
4
* for more details.
5
*
6
* Copyright (C) 2005-2009, 2010 Cavium Networks
7
*/
8
#include <linux/kernel.h>
9
#include <linux/init.h>
10
#include <linux/msi.h>
11
#include <linux/spinlock.h>
12
#include <linux/interrupt.h>
13
14
#include <asm/octeon/octeon.h>
15
#include <asm/octeon/cvmx-npi-defs.h>
16
#include <asm/octeon/cvmx-pci-defs.h>
17
#include <asm/octeon/cvmx-npei-defs.h>
18
#include <asm/octeon/cvmx-pexp-defs.h>
19
#include <asm/octeon/pci-octeon.h>
20
21
/*
22
* Each bit in msi_free_irq_bitmask represents a MSI interrupt that is
23
* in use.
24
*/
25
static u64 msi_free_irq_bitmask[4];
26
27
/*
28
* Each bit in msi_multiple_irq_bitmask tells that the device using
29
* this bit in msi_free_irq_bitmask is also using the next bit. This
30
* is used so we can disable all of the MSI interrupts when a device
31
* uses multiple.
32
*/
33
static u64 msi_multiple_irq_bitmask[4];
34
35
/*
36
* This lock controls updates to msi_free_irq_bitmask and
37
* msi_multiple_irq_bitmask.
38
*/
39
static DEFINE_SPINLOCK(msi_free_irq_bitmask_lock);
40
41
/*
42
* Number of MSI IRQs used. This variable is set up in
43
* the module init time.
44
*/
45
static int msi_irq_size;
46
47
/**
48
* Called when a driver request MSI interrupts instead of the
49
* legacy INT A-D. This routine will allocate multiple interrupts
50
* for MSI devices that support them. A device can override this by
51
* programming the MSI control bits [6:4] before calling
52
* pci_enable_msi().
53
*
54
* @dev: Device requesting MSI interrupts
55
* @desc: MSI descriptor
56
*
57
* Returns 0 on success.
58
*/
59
int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc)
60
{
61
struct msi_msg msg;
62
u16 control;
63
int configured_private_bits;
64
int request_private_bits;
65
int irq = 0;
66
int irq_step;
67
u64 search_mask;
68
int index;
69
70
/*
71
* Read the MSI config to figure out how many IRQs this device
72
* wants. Most devices only want 1, which will give
73
* configured_private_bits and request_private_bits equal 0.
74
*/
75
pci_read_config_word(dev, desc->msi_attrib.pos + PCI_MSI_FLAGS,
76
&control);
77
78
/*
79
* If the number of private bits has been configured then use
80
* that value instead of the requested number. This gives the
81
* driver the chance to override the number of interrupts
82
* before calling pci_enable_msi().
83
*/
84
configured_private_bits = (control & PCI_MSI_FLAGS_QSIZE) >> 4;
85
if (configured_private_bits == 0) {
86
/* Nothing is configured, so use the hardware requested size */
87
request_private_bits = (control & PCI_MSI_FLAGS_QMASK) >> 1;
88
} else {
89
/*
90
* Use the number of configured bits, assuming the
91
* driver wanted to override the hardware request
92
* value.
93
*/
94
request_private_bits = configured_private_bits;
95
}
96
97
/*
98
* The PCI 2.3 spec mandates that there are at most 32
99
* interrupts. If this device asks for more, only give it one.
100
*/
101
if (request_private_bits > 5)
102
request_private_bits = 0;
103
104
try_only_one:
105
/*
106
* The IRQs have to be aligned on a power of two based on the
107
* number being requested.
108
*/
109
irq_step = 1 << request_private_bits;
110
111
/* Mask with one bit for each IRQ */
112
search_mask = (1 << irq_step) - 1;
113
114
/*
115
* We're going to search msi_free_irq_bitmask_lock for zero
116
* bits. This represents an MSI interrupt number that isn't in
117
* use.
118
*/
119
spin_lock(&msi_free_irq_bitmask_lock);
120
for (index = 0; index < msi_irq_size/64; index++) {
121
for (irq = 0; irq < 64; irq += irq_step) {
122
if ((msi_free_irq_bitmask[index] & (search_mask << irq)) == 0) {
123
msi_free_irq_bitmask[index] |= search_mask << irq;
124
msi_multiple_irq_bitmask[index] |= (search_mask >> 1) << irq;
125
goto msi_irq_allocated;
126
}
127
}
128
}
129
msi_irq_allocated:
130
spin_unlock(&msi_free_irq_bitmask_lock);
131
132
/* Make sure the search for available interrupts didn't fail */
133
if (irq >= 64) {
134
if (request_private_bits) {
135
pr_err("arch_setup_msi_irq: Unable to find %d free interrupts, trying just one",
136
1 << request_private_bits);
137
request_private_bits = 0;
138
goto try_only_one;
139
} else
140
panic("arch_setup_msi_irq: Unable to find a free MSI interrupt");
141
}
142
143
/* MSI interrupts start at logical IRQ OCTEON_IRQ_MSI_BIT0 */
144
irq += index*64;
145
irq += OCTEON_IRQ_MSI_BIT0;
146
147
switch (octeon_dma_bar_type) {
148
case OCTEON_DMA_BAR_TYPE_SMALL:
149
/* When not using big bar, Bar 0 is based at 128MB */
150
msg.address_lo =
151
((128ul << 20) + CVMX_PCI_MSI_RCV) & 0xffffffff;
152
msg.address_hi = ((128ul << 20) + CVMX_PCI_MSI_RCV) >> 32;
153
case OCTEON_DMA_BAR_TYPE_BIG:
154
/* When using big bar, Bar 0 is based at 0 */
155
msg.address_lo = (0 + CVMX_PCI_MSI_RCV) & 0xffffffff;
156
msg.address_hi = (0 + CVMX_PCI_MSI_RCV) >> 32;
157
break;
158
case OCTEON_DMA_BAR_TYPE_PCIE:
159
/* When using PCIe, Bar 0 is based at 0 */
160
/* FIXME CVMX_NPEI_MSI_RCV* other than 0? */
161
msg.address_lo = (0 + CVMX_NPEI_PCIE_MSI_RCV) & 0xffffffff;
162
msg.address_hi = (0 + CVMX_NPEI_PCIE_MSI_RCV) >> 32;
163
break;
164
default:
165
panic("arch_setup_msi_irq: Invalid octeon_dma_bar_type\n");
166
}
167
msg.data = irq - OCTEON_IRQ_MSI_BIT0;
168
169
/* Update the number of IRQs the device has available to it */
170
control &= ~PCI_MSI_FLAGS_QSIZE;
171
control |= request_private_bits << 4;
172
pci_write_config_word(dev, desc->msi_attrib.pos + PCI_MSI_FLAGS,
173
control);
174
175
irq_set_msi_desc(irq, desc);
176
write_msi_msg(irq, &msg);
177
return 0;
178
}
179
180
int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
181
{
182
struct msi_desc *entry;
183
int ret;
184
185
/*
186
* MSI-X is not supported.
187
*/
188
if (type == PCI_CAP_ID_MSIX)
189
return -EINVAL;
190
191
/*
192
* If an architecture wants to support multiple MSI, it needs to
193
* override arch_setup_msi_irqs()
194
*/
195
if (type == PCI_CAP_ID_MSI && nvec > 1)
196
return 1;
197
198
list_for_each_entry(entry, &dev->msi_list, list) {
199
ret = arch_setup_msi_irq(dev, entry);
200
if (ret < 0)
201
return ret;
202
if (ret > 0)
203
return -ENOSPC;
204
}
205
206
return 0;
207
}
208
209
/**
210
* Called when a device no longer needs its MSI interrupts. All
211
* MSI interrupts for the device are freed.
212
*
213
* @irq: The devices first irq number. There may be multple in sequence.
214
*/
215
void arch_teardown_msi_irq(unsigned int irq)
216
{
217
int number_irqs;
218
u64 bitmask;
219
int index = 0;
220
int irq0;
221
222
if ((irq < OCTEON_IRQ_MSI_BIT0)
223
|| (irq > msi_irq_size + OCTEON_IRQ_MSI_BIT0))
224
panic("arch_teardown_msi_irq: Attempted to teardown illegal "
225
"MSI interrupt (%d)", irq);
226
227
irq -= OCTEON_IRQ_MSI_BIT0;
228
index = irq / 64;
229
irq0 = irq % 64;
230
231
/*
232
* Count the number of IRQs we need to free by looking at the
233
* msi_multiple_irq_bitmask. Each bit set means that the next
234
* IRQ is also owned by this device.
235
*/
236
number_irqs = 0;
237
while ((irq0 + number_irqs < 64) &&
238
(msi_multiple_irq_bitmask[index]
239
& (1ull << (irq0 + number_irqs))))
240
number_irqs++;
241
number_irqs++;
242
/* Mask with one bit for each IRQ */
243
bitmask = (1 << number_irqs) - 1;
244
/* Shift the mask to the correct bit location */
245
bitmask <<= irq0;
246
if ((msi_free_irq_bitmask[index] & bitmask) != bitmask)
247
panic("arch_teardown_msi_irq: Attempted to teardown MSI "
248
"interrupt (%d) not in use", irq);
249
250
/* Checks are done, update the in use bitmask */
251
spin_lock(&msi_free_irq_bitmask_lock);
252
msi_free_irq_bitmask[index] &= ~bitmask;
253
msi_multiple_irq_bitmask[index] &= ~bitmask;
254
spin_unlock(&msi_free_irq_bitmask_lock);
255
}
256
257
static DEFINE_RAW_SPINLOCK(octeon_irq_msi_lock);
258
259
static u64 msi_rcv_reg[4];
260
static u64 mis_ena_reg[4];
261
262
static void octeon_irq_msi_enable_pcie(struct irq_data *data)
263
{
264
u64 en;
265
unsigned long flags;
266
int msi_number = data->irq - OCTEON_IRQ_MSI_BIT0;
267
int irq_index = msi_number >> 6;
268
int irq_bit = msi_number & 0x3f;
269
270
raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags);
271
en = cvmx_read_csr(mis_ena_reg[irq_index]);
272
en |= 1ull << irq_bit;
273
cvmx_write_csr(mis_ena_reg[irq_index], en);
274
cvmx_read_csr(mis_ena_reg[irq_index]);
275
raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags);
276
}
277
278
static void octeon_irq_msi_disable_pcie(struct irq_data *data)
279
{
280
u64 en;
281
unsigned long flags;
282
int msi_number = data->irq - OCTEON_IRQ_MSI_BIT0;
283
int irq_index = msi_number >> 6;
284
int irq_bit = msi_number & 0x3f;
285
286
raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags);
287
en = cvmx_read_csr(mis_ena_reg[irq_index]);
288
en &= ~(1ull << irq_bit);
289
cvmx_write_csr(mis_ena_reg[irq_index], en);
290
cvmx_read_csr(mis_ena_reg[irq_index]);
291
raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags);
292
}
293
294
static struct irq_chip octeon_irq_chip_msi_pcie = {
295
.name = "MSI",
296
.irq_enable = octeon_irq_msi_enable_pcie,
297
.irq_disable = octeon_irq_msi_disable_pcie,
298
};
299
300
static void octeon_irq_msi_enable_pci(struct irq_data *data)
301
{
302
/*
303
* Octeon PCI doesn't have the ability to mask/unmask MSI
304
* interrupts individually. Instead of masking/unmasking them
305
* in groups of 16, we simple assume MSI devices are well
306
* behaved. MSI interrupts are always enable and the ACK is
307
* assumed to be enough
308
*/
309
}
310
311
static void octeon_irq_msi_disable_pci(struct irq_data *data)
312
{
313
/* See comment in enable */
314
}
315
316
static struct irq_chip octeon_irq_chip_msi_pci = {
317
.name = "MSI",
318
.irq_enable = octeon_irq_msi_enable_pci,
319
.irq_disable = octeon_irq_msi_disable_pci,
320
};
321
322
/*
323
* Called by the interrupt handling code when an MSI interrupt
324
* occurs.
325
*/
326
static irqreturn_t __octeon_msi_do_interrupt(int index, u64 msi_bits)
327
{
328
int irq;
329
int bit;
330
331
bit = fls64(msi_bits);
332
if (bit) {
333
bit--;
334
/* Acknowledge it first. */
335
cvmx_write_csr(msi_rcv_reg[index], 1ull << bit);
336
337
irq = bit + OCTEON_IRQ_MSI_BIT0 + 64 * index;
338
do_IRQ(irq);
339
return IRQ_HANDLED;
340
}
341
return IRQ_NONE;
342
}
343
344
#define OCTEON_MSI_INT_HANDLER_X(x) \
345
static irqreturn_t octeon_msi_interrupt##x(int cpl, void *dev_id) \
346
{ \
347
u64 msi_bits = cvmx_read_csr(msi_rcv_reg[(x)]); \
348
return __octeon_msi_do_interrupt((x), msi_bits); \
349
}
350
351
/*
352
* Create octeon_msi_interrupt{0-3} function body
353
*/
354
OCTEON_MSI_INT_HANDLER_X(0);
355
OCTEON_MSI_INT_HANDLER_X(1);
356
OCTEON_MSI_INT_HANDLER_X(2);
357
OCTEON_MSI_INT_HANDLER_X(3);
358
359
/*
360
* Initializes the MSI interrupt handling code
361
*/
362
int __init octeon_msi_initialize(void)
363
{
364
int irq;
365
struct irq_chip *msi;
366
367
if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_PCIE) {
368
msi_rcv_reg[0] = CVMX_PEXP_NPEI_MSI_RCV0;
369
msi_rcv_reg[1] = CVMX_PEXP_NPEI_MSI_RCV1;
370
msi_rcv_reg[2] = CVMX_PEXP_NPEI_MSI_RCV2;
371
msi_rcv_reg[3] = CVMX_PEXP_NPEI_MSI_RCV3;
372
mis_ena_reg[0] = CVMX_PEXP_NPEI_MSI_ENB0;
373
mis_ena_reg[1] = CVMX_PEXP_NPEI_MSI_ENB1;
374
mis_ena_reg[2] = CVMX_PEXP_NPEI_MSI_ENB2;
375
mis_ena_reg[3] = CVMX_PEXP_NPEI_MSI_ENB3;
376
msi = &octeon_irq_chip_msi_pcie;
377
} else {
378
msi_rcv_reg[0] = CVMX_NPI_NPI_MSI_RCV;
379
#define INVALID_GENERATE_ADE 0x8700000000000000ULL;
380
msi_rcv_reg[1] = INVALID_GENERATE_ADE;
381
msi_rcv_reg[2] = INVALID_GENERATE_ADE;
382
msi_rcv_reg[3] = INVALID_GENERATE_ADE;
383
mis_ena_reg[0] = INVALID_GENERATE_ADE;
384
mis_ena_reg[1] = INVALID_GENERATE_ADE;
385
mis_ena_reg[2] = INVALID_GENERATE_ADE;
386
mis_ena_reg[3] = INVALID_GENERATE_ADE;
387
msi = &octeon_irq_chip_msi_pci;
388
}
389
390
for (irq = OCTEON_IRQ_MSI_BIT0; irq <= OCTEON_IRQ_MSI_LAST; irq++)
391
irq_set_chip_and_handler(irq, msi, handle_simple_irq);
392
393
if (octeon_has_feature(OCTEON_FEATURE_PCIE)) {
394
if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0,
395
0, "MSI[0:63]", octeon_msi_interrupt0))
396
panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed");
397
398
if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt1,
399
0, "MSI[64:127]", octeon_msi_interrupt1))
400
panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed");
401
402
if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt2,
403
0, "MSI[127:191]", octeon_msi_interrupt2))
404
panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed");
405
406
if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt3,
407
0, "MSI[192:255]", octeon_msi_interrupt3))
408
panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed");
409
410
msi_irq_size = 256;
411
} else if (octeon_is_pci_host()) {
412
if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0,
413
0, "MSI[0:15]", octeon_msi_interrupt0))
414
panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed");
415
416
if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt0,
417
0, "MSI[16:31]", octeon_msi_interrupt0))
418
panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed");
419
420
if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt0,
421
0, "MSI[32:47]", octeon_msi_interrupt0))
422
panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed");
423
424
if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt0,
425
0, "MSI[48:63]", octeon_msi_interrupt0))
426
panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed");
427
msi_irq_size = 64;
428
}
429
return 0;
430
}
431
subsys_initcall(octeon_msi_initialize);
432
433