Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/mips/powertv/powertv_setup.c
10818 views
1
/*
2
* Carsten Langgaard, [email protected]
3
* Copyright (C) 2000 MIPS Technologies, Inc. All rights reserved.
4
* Portions copyright (C) 2009 Cisco Systems, Inc.
5
*
6
* This program is free software; you can distribute it and/or modify it
7
* under the terms of the GNU General Public License (Version 2) as
8
* published by the Free Software Foundation.
9
*
10
* This program is distributed in the hope it will be useful, but WITHOUT
11
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13
* for more details.
14
*
15
* You should have received a copy of the GNU General Public License along
16
* with this program; if not, write to the Free Software Foundation, Inc.,
17
* 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
18
*/
19
#include <linux/init.h>
20
#include <linux/sched.h>
21
#include <linux/ioport.h>
22
#include <linux/pci.h>
23
#include <linux/screen_info.h>
24
#include <linux/notifier.h>
25
#include <linux/etherdevice.h>
26
#include <linux/if_ether.h>
27
#include <linux/ctype.h>
28
#include <linux/cpu.h>
29
#include <linux/time.h>
30
31
#include <asm/bootinfo.h>
32
#include <asm/irq.h>
33
#include <asm/mips-boards/generic.h>
34
#include <asm/mips-boards/prom.h>
35
#include <asm/dma.h>
36
#include <asm/asm.h>
37
#include <asm/traps.h>
38
#include <asm/asm-offsets.h>
39
#include "reset.h"
40
41
#define VAL(n) STR(n)
42
43
/*
44
* Macros for loading addresses and storing registers:
45
* LONG_L_ Stringified version of LONG_L for use in asm() statement
46
* LONG_S_ Stringified version of LONG_S for use in asm() statement
47
* PTR_LA_ Stringified version of PTR_LA for use in asm() statement
48
* REG_SIZE Number of 8-bit bytes in a full width register
49
*/
50
#define LONG_L_ VAL(LONG_L) " "
51
#define LONG_S_ VAL(LONG_S) " "
52
#define PTR_LA_ VAL(PTR_LA) " "
53
54
#ifdef CONFIG_64BIT
55
#warning TODO: 64-bit code needs to be verified
56
#define REG_SIZE "8" /* In bytes */
57
#endif
58
59
#ifdef CONFIG_32BIT
60
#define REG_SIZE "4" /* In bytes */
61
#endif
62
63
static void register_panic_notifier(void);
64
static int panic_handler(struct notifier_block *notifier_block,
65
unsigned long event, void *cause_string);
66
67
const char *get_system_type(void)
68
{
69
return "PowerTV";
70
}
71
72
void __init plat_mem_setup(void)
73
{
74
panic_on_oops = 1;
75
register_panic_notifier();
76
77
#if 0
78
mips_pcibios_init();
79
#endif
80
mips_reboot_setup();
81
}
82
83
/*
84
* Install a panic notifier for platform-specific diagnostics
85
*/
86
static void register_panic_notifier()
87
{
88
static struct notifier_block panic_notifier = {
89
.notifier_call = panic_handler,
90
.next = NULL,
91
.priority = INT_MAX
92
};
93
atomic_notifier_chain_register(&panic_notifier_list, &panic_notifier);
94
}
95
96
static int panic_handler(struct notifier_block *notifier_block,
97
unsigned long event, void *cause_string)
98
{
99
struct pt_regs my_regs;
100
101
/* Save all of the registers */
102
{
103
unsigned long at, v0, v1; /* Must be on the stack */
104
105
/* Start by saving $at and v0 on the stack. We use $at
106
* ourselves, but it looks like the compiler may use v0 or v1
107
* to load the address of the pt_regs structure. We'll come
108
* back later to store the registers in the pt_regs
109
* structure. */
110
__asm__ __volatile__ (
111
".set noat\n"
112
LONG_S_ "$at, %[at]\n"
113
LONG_S_ "$2, %[v0]\n"
114
LONG_S_ "$3, %[v1]\n"
115
:
116
[at] "=m" (at),
117
[v0] "=m" (v0),
118
[v1] "=m" (v1)
119
:
120
: "at"
121
);
122
123
__asm__ __volatile__ (
124
".set noat\n"
125
"move $at, %[pt_regs]\n"
126
127
/* Argument registers */
128
LONG_S_ "$4, " VAL(PT_R4) "($at)\n"
129
LONG_S_ "$5, " VAL(PT_R5) "($at)\n"
130
LONG_S_ "$6, " VAL(PT_R6) "($at)\n"
131
LONG_S_ "$7, " VAL(PT_R7) "($at)\n"
132
133
/* Temporary regs */
134
LONG_S_ "$8, " VAL(PT_R8) "($at)\n"
135
LONG_S_ "$9, " VAL(PT_R9) "($at)\n"
136
LONG_S_ "$10, " VAL(PT_R10) "($at)\n"
137
LONG_S_ "$11, " VAL(PT_R11) "($at)\n"
138
LONG_S_ "$12, " VAL(PT_R12) "($at)\n"
139
LONG_S_ "$13, " VAL(PT_R13) "($at)\n"
140
LONG_S_ "$14, " VAL(PT_R14) "($at)\n"
141
LONG_S_ "$15, " VAL(PT_R15) "($at)\n"
142
143
/* "Saved" registers */
144
LONG_S_ "$16, " VAL(PT_R16) "($at)\n"
145
LONG_S_ "$17, " VAL(PT_R17) "($at)\n"
146
LONG_S_ "$18, " VAL(PT_R18) "($at)\n"
147
LONG_S_ "$19, " VAL(PT_R19) "($at)\n"
148
LONG_S_ "$20, " VAL(PT_R20) "($at)\n"
149
LONG_S_ "$21, " VAL(PT_R21) "($at)\n"
150
LONG_S_ "$22, " VAL(PT_R22) "($at)\n"
151
LONG_S_ "$23, " VAL(PT_R23) "($at)\n"
152
153
/* Add'l temp regs */
154
LONG_S_ "$24, " VAL(PT_R24) "($at)\n"
155
LONG_S_ "$25, " VAL(PT_R25) "($at)\n"
156
157
/* Kernel temp regs */
158
LONG_S_ "$26, " VAL(PT_R26) "($at)\n"
159
LONG_S_ "$27, " VAL(PT_R27) "($at)\n"
160
161
/* Global pointer, stack pointer, frame pointer and
162
* return address */
163
LONG_S_ "$gp, " VAL(PT_R28) "($at)\n"
164
LONG_S_ "$sp, " VAL(PT_R29) "($at)\n"
165
LONG_S_ "$fp, " VAL(PT_R30) "($at)\n"
166
LONG_S_ "$ra, " VAL(PT_R31) "($at)\n"
167
168
/* Now we can get the $at and v0 registers back and
169
* store them */
170
LONG_L_ "$8, %[at]\n"
171
LONG_S_ "$8, " VAL(PT_R1) "($at)\n"
172
LONG_L_ "$8, %[v0]\n"
173
LONG_S_ "$8, " VAL(PT_R2) "($at)\n"
174
LONG_L_ "$8, %[v1]\n"
175
LONG_S_ "$8, " VAL(PT_R3) "($at)\n"
176
:
177
:
178
[at] "m" (at),
179
[v0] "m" (v0),
180
[v1] "m" (v1),
181
[pt_regs] "r" (&my_regs)
182
: "at", "t0"
183
);
184
185
/* Set the current EPC value to be the current location in this
186
* function */
187
__asm__ __volatile__ (
188
".set noat\n"
189
"1:\n"
190
PTR_LA_ "$at, 1b\n"
191
LONG_S_ "$at, %[cp0_epc]\n"
192
:
193
[cp0_epc] "=m" (my_regs.cp0_epc)
194
:
195
: "at"
196
);
197
198
my_regs.cp0_cause = read_c0_cause();
199
my_regs.cp0_status = read_c0_status();
200
}
201
202
pr_crit("I'm feeling a bit sleepy. hmmmmm... perhaps a nap would... "
203
"zzzz... \n");
204
205
return NOTIFY_DONE;
206
}
207
208
/* Information about the RF MAC address, if one was supplied on the
209
* command line. */
210
static bool have_rfmac;
211
static u8 rfmac[ETH_ALEN];
212
213
static int rfmac_param(char *p)
214
{
215
u8 *q;
216
bool is_high_nibble;
217
int c;
218
219
/* Skip a leading "0x", if present */
220
if (*p == '0' && *(p+1) == 'x')
221
p += 2;
222
223
q = rfmac;
224
is_high_nibble = true;
225
226
for (c = (unsigned char) *p++;
227
isxdigit(c) && q - rfmac < ETH_ALEN;
228
c = (unsigned char) *p++) {
229
int nibble;
230
231
nibble = (isdigit(c) ? (c - '0') :
232
(isupper(c) ? c - 'A' + 10 : c - 'a' + 10));
233
234
if (is_high_nibble)
235
*q = nibble << 4;
236
else
237
*q++ |= nibble;
238
239
is_high_nibble = !is_high_nibble;
240
}
241
242
/* If we parsed all the way to the end of the parameter value and
243
* parsed all ETH_ALEN bytes, we have a usable RF MAC address */
244
have_rfmac = (c == '\0' && q - rfmac == ETH_ALEN);
245
246
return 0;
247
}
248
249
early_param("rfmac", rfmac_param);
250
251
/*
252
* Generate an Ethernet MAC address that has a good chance of being unique.
253
* @addr: Pointer to six-byte array containing the Ethernet address
254
* Generates an Ethernet MAC address that is highly likely to be unique for
255
* this particular system on a network with other systems of the same type.
256
*
257
* The problem we are solving is that, when random_ether_addr() is used to
258
* generate MAC addresses at startup, there isn't much entropy for the random
259
* number generator to use and the addresses it produces are fairly likely to
260
* be the same as those of other identical systems on the same local network.
261
* This is true even for relatively small numbers of systems (for the reason
262
* why, see the Wikipedia entry for "Birthday problem" at:
263
* http://en.wikipedia.org/wiki/Birthday_problem
264
*
265
* The good news is that we already have a MAC address known to be unique, the
266
* RF MAC address. The bad news is that this address is already in use on the
267
* RF interface. Worse, the obvious trick, taking the RF MAC address and
268
* turning on the locally managed bit, has already been used for other devices.
269
* Still, this does give us something to work with.
270
*
271
* The approach we take is:
272
* 1. If we can't get the RF MAC Address, just call random_ether_addr.
273
* 2. Use the 24-bit NIC-specific bits of the RF MAC address as the last 24
274
* bits of the new address. This is very likely to be unique, except for
275
* the current box.
276
* 3. To avoid using addresses already on the current box, we set the top
277
* six bits of the address with a value different from any currently
278
* registered Scientific Atlanta organizationally unique identifyer
279
* (OUI). This avoids duplication with any addresses on the system that
280
* were generated from valid Scientific Atlanta-registered address by
281
* simply flipping the locally managed bit.
282
* 4. We aren't generating a multicast address, so we leave the multicast
283
* bit off. Since we aren't using a registered address, we have to set
284
* the locally managed bit.
285
* 5. We then randomly generate the remaining 16-bits. This does two
286
* things:
287
* a. It allows us to call this function for more than one device
288
* in this system
289
* b. It ensures that things will probably still work even if
290
* some device on the device network has a locally managed
291
* address that matches the top six bits from step 2.
292
*/
293
void platform_random_ether_addr(u8 addr[ETH_ALEN])
294
{
295
const int num_random_bytes = 2;
296
const unsigned char non_sciatl_oui_bits = 0xc0u;
297
const unsigned char mac_addr_locally_managed = (1 << 1);
298
299
if (!have_rfmac) {
300
pr_warning("rfmac not available on command line; "
301
"generating random MAC address\n");
302
random_ether_addr(addr);
303
}
304
305
else {
306
int i;
307
308
/* Set the first byte to something that won't match a Scientific
309
* Atlanta OUI, is locally managed, and isn't a multicast
310
* address */
311
addr[0] = non_sciatl_oui_bits | mac_addr_locally_managed;
312
313
/* Get some bytes of random address information */
314
get_random_bytes(&addr[1], num_random_bytes);
315
316
/* Copy over the NIC-specific bits of the RF MAC address */
317
for (i = 1 + num_random_bytes; i < ETH_ALEN; i++)
318
addr[i] = rfmac[i];
319
}
320
}
321
322