Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/mips/sgi-ip27/ip27-irq.c
10820 views
1
/*
2
* ip27-irq.c: Highlevel interrupt handling for IP27 architecture.
3
*
4
* Copyright (C) 1999, 2000 Ralf Baechle ([email protected])
5
* Copyright (C) 1999, 2000 Silicon Graphics, Inc.
6
* Copyright (C) 1999 - 2001 Kanoj Sarcar
7
*/
8
9
#undef DEBUG
10
11
#include <linux/init.h>
12
#include <linux/irq.h>
13
#include <linux/errno.h>
14
#include <linux/signal.h>
15
#include <linux/sched.h>
16
#include <linux/types.h>
17
#include <linux/interrupt.h>
18
#include <linux/ioport.h>
19
#include <linux/timex.h>
20
#include <linux/smp.h>
21
#include <linux/random.h>
22
#include <linux/kernel.h>
23
#include <linux/kernel_stat.h>
24
#include <linux/delay.h>
25
#include <linux/bitops.h>
26
27
#include <asm/bootinfo.h>
28
#include <asm/io.h>
29
#include <asm/mipsregs.h>
30
#include <asm/system.h>
31
32
#include <asm/processor.h>
33
#include <asm/pci/bridge.h>
34
#include <asm/sn/addrs.h>
35
#include <asm/sn/agent.h>
36
#include <asm/sn/arch.h>
37
#include <asm/sn/hub.h>
38
#include <asm/sn/intr.h>
39
40
/*
41
* Linux has a controller-independent x86 interrupt architecture.
42
* every controller has a 'controller-template', that is used
43
* by the main code to do the right thing. Each driver-visible
44
* interrupt source is transparently wired to the appropriate
45
* controller. Thus drivers need not be aware of the
46
* interrupt-controller.
47
*
48
* Various interrupt controllers we handle: 8259 PIC, SMP IO-APIC,
49
* PIIX4's internal 8259 PIC and SGI's Visual Workstation Cobalt (IO-)APIC.
50
* (IO-APICs assumed to be messaging to Pentium local-APICs)
51
*
52
* the code is designed to be easily extended with new/different
53
* interrupt controllers, without having to do assembly magic.
54
*/
55
56
extern asmlinkage void ip27_irq(void);
57
58
extern struct bridge_controller *irq_to_bridge[];
59
extern int irq_to_slot[];
60
61
/*
62
* use these macros to get the encoded nasid and widget id
63
* from the irq value
64
*/
65
#define IRQ_TO_BRIDGE(i) irq_to_bridge[(i)]
66
#define SLOT_FROM_PCI_IRQ(i) irq_to_slot[i]
67
68
static inline int alloc_level(int cpu, int irq)
69
{
70
struct hub_data *hub = hub_data(cpu_to_node(cpu));
71
struct slice_data *si = cpu_data[cpu].data;
72
int level;
73
74
level = find_first_zero_bit(hub->irq_alloc_mask, LEVELS_PER_SLICE);
75
if (level >= LEVELS_PER_SLICE)
76
panic("Cpu %d flooded with devices\n", cpu);
77
78
__set_bit(level, hub->irq_alloc_mask);
79
si->level_to_irq[level] = irq;
80
81
return level;
82
}
83
84
static inline int find_level(cpuid_t *cpunum, int irq)
85
{
86
int cpu, i;
87
88
for_each_online_cpu(cpu) {
89
struct slice_data *si = cpu_data[cpu].data;
90
91
for (i = BASE_PCI_IRQ; i < LEVELS_PER_SLICE; i++)
92
if (si->level_to_irq[i] == irq) {
93
*cpunum = cpu;
94
95
return i;
96
}
97
}
98
99
panic("Could not identify cpu/level for irq %d\n", irq);
100
}
101
102
/*
103
* Find first bit set
104
*/
105
static int ms1bit(unsigned long x)
106
{
107
int b = 0, s;
108
109
s = 16; if (x >> 16 == 0) s = 0; b += s; x >>= s;
110
s = 8; if (x >> 8 == 0) s = 0; b += s; x >>= s;
111
s = 4; if (x >> 4 == 0) s = 0; b += s; x >>= s;
112
s = 2; if (x >> 2 == 0) s = 0; b += s; x >>= s;
113
s = 1; if (x >> 1 == 0) s = 0; b += s;
114
115
return b;
116
}
117
118
/*
119
* This code is unnecessarily complex, because we do IRQF_DISABLED
120
* intr enabling. Basically, once we grab the set of intrs we need
121
* to service, we must mask _all_ these interrupts; firstly, to make
122
* sure the same intr does not intr again, causing recursion that
123
* can lead to stack overflow. Secondly, we can not just mask the
124
* one intr we are do_IRQing, because the non-masked intrs in the
125
* first set might intr again, causing multiple servicings of the
126
* same intr. This effect is mostly seen for intercpu intrs.
127
* Kanoj 05.13.00
128
*/
129
130
static void ip27_do_irq_mask0(void)
131
{
132
int irq, swlevel;
133
hubreg_t pend0, mask0;
134
cpuid_t cpu = smp_processor_id();
135
int pi_int_mask0 =
136
(cputoslice(cpu) == 0) ? PI_INT_MASK0_A : PI_INT_MASK0_B;
137
138
/* copied from Irix intpend0() */
139
pend0 = LOCAL_HUB_L(PI_INT_PEND0);
140
mask0 = LOCAL_HUB_L(pi_int_mask0);
141
142
pend0 &= mask0; /* Pick intrs we should look at */
143
if (!pend0)
144
return;
145
146
swlevel = ms1bit(pend0);
147
#ifdef CONFIG_SMP
148
if (pend0 & (1UL << CPU_RESCHED_A_IRQ)) {
149
LOCAL_HUB_CLR_INTR(CPU_RESCHED_A_IRQ);
150
scheduler_ipi();
151
} else if (pend0 & (1UL << CPU_RESCHED_B_IRQ)) {
152
LOCAL_HUB_CLR_INTR(CPU_RESCHED_B_IRQ);
153
scheduler_ipi();
154
} else if (pend0 & (1UL << CPU_CALL_A_IRQ)) {
155
LOCAL_HUB_CLR_INTR(CPU_CALL_A_IRQ);
156
smp_call_function_interrupt();
157
} else if (pend0 & (1UL << CPU_CALL_B_IRQ)) {
158
LOCAL_HUB_CLR_INTR(CPU_CALL_B_IRQ);
159
smp_call_function_interrupt();
160
} else
161
#endif
162
{
163
/* "map" swlevel to irq */
164
struct slice_data *si = cpu_data[cpu].data;
165
166
irq = si->level_to_irq[swlevel];
167
do_IRQ(irq);
168
}
169
170
LOCAL_HUB_L(PI_INT_PEND0);
171
}
172
173
static void ip27_do_irq_mask1(void)
174
{
175
int irq, swlevel;
176
hubreg_t pend1, mask1;
177
cpuid_t cpu = smp_processor_id();
178
int pi_int_mask1 = (cputoslice(cpu) == 0) ? PI_INT_MASK1_A : PI_INT_MASK1_B;
179
struct slice_data *si = cpu_data[cpu].data;
180
181
/* copied from Irix intpend0() */
182
pend1 = LOCAL_HUB_L(PI_INT_PEND1);
183
mask1 = LOCAL_HUB_L(pi_int_mask1);
184
185
pend1 &= mask1; /* Pick intrs we should look at */
186
if (!pend1)
187
return;
188
189
swlevel = ms1bit(pend1);
190
/* "map" swlevel to irq */
191
irq = si->level_to_irq[swlevel];
192
LOCAL_HUB_CLR_INTR(swlevel);
193
do_IRQ(irq);
194
195
LOCAL_HUB_L(PI_INT_PEND1);
196
}
197
198
static void ip27_prof_timer(void)
199
{
200
panic("CPU %d got a profiling interrupt", smp_processor_id());
201
}
202
203
static void ip27_hub_error(void)
204
{
205
panic("CPU %d got a hub error interrupt", smp_processor_id());
206
}
207
208
static int intr_connect_level(int cpu, int bit)
209
{
210
nasid_t nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
211
struct slice_data *si = cpu_data[cpu].data;
212
213
set_bit(bit, si->irq_enable_mask);
214
215
if (!cputoslice(cpu)) {
216
REMOTE_HUB_S(nasid, PI_INT_MASK0_A, si->irq_enable_mask[0]);
217
REMOTE_HUB_S(nasid, PI_INT_MASK1_A, si->irq_enable_mask[1]);
218
} else {
219
REMOTE_HUB_S(nasid, PI_INT_MASK0_B, si->irq_enable_mask[0]);
220
REMOTE_HUB_S(nasid, PI_INT_MASK1_B, si->irq_enable_mask[1]);
221
}
222
223
return 0;
224
}
225
226
static int intr_disconnect_level(int cpu, int bit)
227
{
228
nasid_t nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
229
struct slice_data *si = cpu_data[cpu].data;
230
231
clear_bit(bit, si->irq_enable_mask);
232
233
if (!cputoslice(cpu)) {
234
REMOTE_HUB_S(nasid, PI_INT_MASK0_A, si->irq_enable_mask[0]);
235
REMOTE_HUB_S(nasid, PI_INT_MASK1_A, si->irq_enable_mask[1]);
236
} else {
237
REMOTE_HUB_S(nasid, PI_INT_MASK0_B, si->irq_enable_mask[0]);
238
REMOTE_HUB_S(nasid, PI_INT_MASK1_B, si->irq_enable_mask[1]);
239
}
240
241
return 0;
242
}
243
244
/* Startup one of the (PCI ...) IRQs routes over a bridge. */
245
static unsigned int startup_bridge_irq(struct irq_data *d)
246
{
247
struct bridge_controller *bc;
248
bridgereg_t device;
249
bridge_t *bridge;
250
int pin, swlevel;
251
cpuid_t cpu;
252
253
pin = SLOT_FROM_PCI_IRQ(d->irq);
254
bc = IRQ_TO_BRIDGE(d->irq);
255
bridge = bc->base;
256
257
pr_debug("bridge_startup(): irq= 0x%x pin=%d\n", d->irq, pin);
258
/*
259
* "map" irq to a swlevel greater than 6 since the first 6 bits
260
* of INT_PEND0 are taken
261
*/
262
swlevel = find_level(&cpu, d->irq);
263
bridge->b_int_addr[pin].addr = (0x20000 | swlevel | (bc->nasid << 8));
264
bridge->b_int_enable |= (1 << pin);
265
bridge->b_int_enable |= 0x7ffffe00; /* more stuff in int_enable */
266
267
/*
268
* Enable sending of an interrupt clear packt to the hub on a high to
269
* low transition of the interrupt pin.
270
*
271
* IRIX sets additional bits in the address which are documented as
272
* reserved in the bridge docs.
273
*/
274
bridge->b_int_mode |= (1UL << pin);
275
276
/*
277
* We assume the bridge to have a 1:1 mapping between devices
278
* (slots) and intr pins.
279
*/
280
device = bridge->b_int_device;
281
device &= ~(7 << (pin*3));
282
device |= (pin << (pin*3));
283
bridge->b_int_device = device;
284
285
bridge->b_wid_tflush;
286
287
intr_connect_level(cpu, swlevel);
288
289
return 0; /* Never anything pending. */
290
}
291
292
/* Shutdown one of the (PCI ...) IRQs routes over a bridge. */
293
static void shutdown_bridge_irq(struct irq_data *d)
294
{
295
struct bridge_controller *bc = IRQ_TO_BRIDGE(d->irq);
296
bridge_t *bridge = bc->base;
297
int pin, swlevel;
298
cpuid_t cpu;
299
300
pr_debug("bridge_shutdown: irq 0x%x\n", d->irq);
301
pin = SLOT_FROM_PCI_IRQ(d->irq);
302
303
/*
304
* map irq to a swlevel greater than 6 since the first 6 bits
305
* of INT_PEND0 are taken
306
*/
307
swlevel = find_level(&cpu, d->irq);
308
intr_disconnect_level(cpu, swlevel);
309
310
bridge->b_int_enable &= ~(1 << pin);
311
bridge->b_wid_tflush;
312
}
313
314
static inline void enable_bridge_irq(struct irq_data *d)
315
{
316
cpuid_t cpu;
317
int swlevel;
318
319
swlevel = find_level(&cpu, d->irq); /* Criminal offence */
320
intr_connect_level(cpu, swlevel);
321
}
322
323
static inline void disable_bridge_irq(struct irq_data *d)
324
{
325
cpuid_t cpu;
326
int swlevel;
327
328
swlevel = find_level(&cpu, d->irq); /* Criminal offence */
329
intr_disconnect_level(cpu, swlevel);
330
}
331
332
static struct irq_chip bridge_irq_type = {
333
.name = "bridge",
334
.irq_startup = startup_bridge_irq,
335
.irq_shutdown = shutdown_bridge_irq,
336
.irq_mask = disable_bridge_irq,
337
.irq_unmask = enable_bridge_irq,
338
};
339
340
void __devinit register_bridge_irq(unsigned int irq)
341
{
342
irq_set_chip_and_handler(irq, &bridge_irq_type, handle_level_irq);
343
}
344
345
int __devinit request_bridge_irq(struct bridge_controller *bc)
346
{
347
int irq = allocate_irqno();
348
int swlevel, cpu;
349
nasid_t nasid;
350
351
if (irq < 0)
352
return irq;
353
354
/*
355
* "map" irq to a swlevel greater than 6 since the first 6 bits
356
* of INT_PEND0 are taken
357
*/
358
cpu = bc->irq_cpu;
359
swlevel = alloc_level(cpu, irq);
360
if (unlikely(swlevel < 0)) {
361
free_irqno(irq);
362
363
return -EAGAIN;
364
}
365
366
/* Make sure it's not already pending when we connect it. */
367
nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
368
REMOTE_HUB_CLR_INTR(nasid, swlevel);
369
370
intr_connect_level(cpu, swlevel);
371
372
register_bridge_irq(irq);
373
374
return irq;
375
}
376
377
asmlinkage void plat_irq_dispatch(void)
378
{
379
unsigned long pending = read_c0_cause() & read_c0_status();
380
extern unsigned int rt_timer_irq;
381
382
if (pending & CAUSEF_IP4)
383
do_IRQ(rt_timer_irq);
384
else if (pending & CAUSEF_IP2) /* PI_INT_PEND_0 or CC_PEND_{A|B} */
385
ip27_do_irq_mask0();
386
else if (pending & CAUSEF_IP3) /* PI_INT_PEND_1 */
387
ip27_do_irq_mask1();
388
else if (pending & CAUSEF_IP5)
389
ip27_prof_timer();
390
else if (pending & CAUSEF_IP6)
391
ip27_hub_error();
392
}
393
394
void __init arch_init_irq(void)
395
{
396
}
397
398
void install_ipi(void)
399
{
400
int slice = LOCAL_HUB_L(PI_CPU_NUM);
401
int cpu = smp_processor_id();
402
struct slice_data *si = cpu_data[cpu].data;
403
struct hub_data *hub = hub_data(cpu_to_node(cpu));
404
int resched, call;
405
406
resched = CPU_RESCHED_A_IRQ + slice;
407
__set_bit(resched, hub->irq_alloc_mask);
408
__set_bit(resched, si->irq_enable_mask);
409
LOCAL_HUB_CLR_INTR(resched);
410
411
call = CPU_CALL_A_IRQ + slice;
412
__set_bit(call, hub->irq_alloc_mask);
413
__set_bit(call, si->irq_enable_mask);
414
LOCAL_HUB_CLR_INTR(call);
415
416
if (slice == 0) {
417
LOCAL_HUB_S(PI_INT_MASK0_A, si->irq_enable_mask[0]);
418
LOCAL_HUB_S(PI_INT_MASK1_A, si->irq_enable_mask[1]);
419
} else {
420
LOCAL_HUB_S(PI_INT_MASK0_B, si->irq_enable_mask[0]);
421
LOCAL_HUB_S(PI_INT_MASK1_B, si->irq_enable_mask[1]);
422
}
423
}
424
425