Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/mips/sni/time.c
10817 views
1
#include <linux/types.h>
2
#include <linux/interrupt.h>
3
#include <linux/irq.h>
4
#include <linux/smp.h>
5
#include <linux/time.h>
6
#include <linux/clockchips.h>
7
8
#include <asm/i8253.h>
9
#include <asm/sni.h>
10
#include <asm/time.h>
11
#include <asm-generic/rtc.h>
12
13
#define SNI_CLOCK_TICK_RATE 3686400
14
#define SNI_COUNTER2_DIV 64
15
#define SNI_COUNTER0_DIV ((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ)
16
17
static void a20r_set_mode(enum clock_event_mode mode,
18
struct clock_event_device *evt)
19
{
20
switch (mode) {
21
case CLOCK_EVT_MODE_PERIODIC:
22
*(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0x34;
23
wmb();
24
*(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV;
25
wmb();
26
*(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV >> 8;
27
wmb();
28
29
*(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0xb4;
30
wmb();
31
*(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV;
32
wmb();
33
*(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV >> 8;
34
wmb();
35
36
break;
37
case CLOCK_EVT_MODE_ONESHOT:
38
case CLOCK_EVT_MODE_UNUSED:
39
case CLOCK_EVT_MODE_SHUTDOWN:
40
break;
41
case CLOCK_EVT_MODE_RESUME:
42
break;
43
}
44
}
45
46
static struct clock_event_device a20r_clockevent_device = {
47
.name = "a20r-timer",
48
.features = CLOCK_EVT_FEAT_PERIODIC,
49
50
/* .mult, .shift, .max_delta_ns and .min_delta_ns left uninitialized */
51
52
.rating = 300,
53
.irq = SNI_A20R_IRQ_TIMER,
54
.set_mode = a20r_set_mode,
55
};
56
57
static irqreturn_t a20r_interrupt(int irq, void *dev_id)
58
{
59
struct clock_event_device *cd = dev_id;
60
61
*(volatile u8 *)A20R_PT_TIM0_ACK = 0;
62
wmb();
63
64
cd->event_handler(cd);
65
66
return IRQ_HANDLED;
67
}
68
69
static struct irqaction a20r_irqaction = {
70
.handler = a20r_interrupt,
71
.flags = IRQF_DISABLED | IRQF_PERCPU | IRQF_TIMER,
72
.name = "a20r-timer",
73
};
74
75
/*
76
* a20r platform uses 2 counters to divide the input frequency.
77
* Counter 2 output is connected to Counter 0 & 1 input.
78
*/
79
static void __init sni_a20r_timer_setup(void)
80
{
81
struct clock_event_device *cd = &a20r_clockevent_device;
82
struct irqaction *action = &a20r_irqaction;
83
unsigned int cpu = smp_processor_id();
84
85
cd->cpumask = cpumask_of(cpu);
86
clockevents_register_device(cd);
87
action->dev_id = cd;
88
setup_irq(SNI_A20R_IRQ_TIMER, &a20r_irqaction);
89
}
90
91
#define SNI_8254_TICK_RATE 1193182UL
92
93
#define SNI_8254_TCSAMP_COUNTER ((SNI_8254_TICK_RATE / HZ) + 255)
94
95
static __init unsigned long dosample(void)
96
{
97
u32 ct0, ct1;
98
volatile u8 msb;
99
100
/* Start the counter. */
101
outb_p(0x34, 0x43);
102
outb_p(SNI_8254_TCSAMP_COUNTER & 0xff, 0x40);
103
outb(SNI_8254_TCSAMP_COUNTER >> 8, 0x40);
104
105
/* Get initial counter invariant */
106
ct0 = read_c0_count();
107
108
/* Latch and spin until top byte of counter0 is zero */
109
do {
110
outb(0x00, 0x43);
111
(void) inb(0x40);
112
msb = inb(0x40);
113
ct1 = read_c0_count();
114
} while (msb);
115
116
/* Stop the counter. */
117
outb(0x38, 0x43);
118
/*
119
* Return the difference, this is how far the r4k counter increments
120
* for every 1/HZ seconds. We round off the nearest 1 MHz of master
121
* clock (= 1000000 / HZ / 2).
122
*/
123
/*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/
124
return (ct1 - ct0) / (500000/HZ) * (500000/HZ);
125
}
126
127
/*
128
* Here we need to calibrate the cycle counter to at least be close.
129
*/
130
void __init plat_time_init(void)
131
{
132
unsigned long r4k_ticks[3];
133
unsigned long r4k_tick;
134
135
/*
136
* Figure out the r4k offset, the algorithm is very simple and works in
137
* _all_ cases as long as the 8254 counter register itself works ok (as
138
* an interrupt driving timer it does not because of bug, this is why
139
* we are using the onchip r4k counter/compare register to serve this
140
* purpose, but for r4k_offset calculation it will work ok for us).
141
* There are other very complicated ways of performing this calculation
142
* but this one works just fine so I am not going to futz around. ;-)
143
*/
144
printk(KERN_INFO "Calibrating system timer... ");
145
dosample(); /* Prime cache. */
146
dosample(); /* Prime cache. */
147
/* Zero is NOT an option. */
148
do {
149
r4k_ticks[0] = dosample();
150
} while (!r4k_ticks[0]);
151
do {
152
r4k_ticks[1] = dosample();
153
} while (!r4k_ticks[1]);
154
155
if (r4k_ticks[0] != r4k_ticks[1]) {
156
printk("warning: timer counts differ, retrying... ");
157
r4k_ticks[2] = dosample();
158
if (r4k_ticks[2] == r4k_ticks[0]
159
|| r4k_ticks[2] == r4k_ticks[1])
160
r4k_tick = r4k_ticks[2];
161
else {
162
printk("disagreement, using average... ");
163
r4k_tick = (r4k_ticks[0] + r4k_ticks[1]
164
+ r4k_ticks[2]) / 3;
165
}
166
} else
167
r4k_tick = r4k_ticks[0];
168
169
printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick,
170
(int) (r4k_tick / (500000 / HZ)),
171
(int) (r4k_tick % (500000 / HZ)));
172
173
mips_hpt_frequency = r4k_tick * HZ;
174
175
switch (sni_brd_type) {
176
case SNI_BRD_10:
177
case SNI_BRD_10NEW:
178
case SNI_BRD_TOWER_OASIC:
179
case SNI_BRD_MINITOWER:
180
sni_a20r_timer_setup();
181
break;
182
}
183
setup_pit_timer();
184
}
185
186
void read_persistent_clock(struct timespec *ts)
187
{
188
ts->tv_sec = -1;
189
ts->tv_nsec = 0;
190
}
191
192