Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/mn10300/kernel/kprobes.c
10817 views
1
/* MN10300 Kernel probes implementation
2
*
3
* Copyright (C) 2005 Red Hat, Inc. All Rights Reserved.
4
* Written by Mark Salter ([email protected])
5
*
6
* This program is free software; you can redistribute it and/or modify
7
* it under the terms of the GNU General Public Licence as published by
8
* the Free Software Foundation; either version 2 of the Licence, or
9
* (at your option) any later version.
10
*
11
* This program is distributed in the hope that it will be useful,
12
* but WITHOUT ANY WARRANTY; without even the implied warranty of
13
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14
* GNU General Public Licence for more details.
15
*
16
* You should have received a copy of the GNU General Public Licence
17
* along with this program; if not, write to the Free Software
18
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19
*/
20
#include <linux/kprobes.h>
21
#include <linux/ptrace.h>
22
#include <linux/spinlock.h>
23
#include <linux/preempt.h>
24
#include <linux/kdebug.h>
25
#include <asm/cacheflush.h>
26
27
struct kretprobe_blackpoint kretprobe_blacklist[] = { { NULL, NULL } };
28
const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
29
30
/* kprobe_status settings */
31
#define KPROBE_HIT_ACTIVE 0x00000001
32
#define KPROBE_HIT_SS 0x00000002
33
34
static struct kprobe *cur_kprobe;
35
static unsigned long cur_kprobe_orig_pc;
36
static unsigned long cur_kprobe_next_pc;
37
static int cur_kprobe_ss_flags;
38
static unsigned long kprobe_status;
39
static kprobe_opcode_t cur_kprobe_ss_buf[MAX_INSN_SIZE + 2];
40
static unsigned long cur_kprobe_bp_addr;
41
42
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
43
44
45
/* singlestep flag bits */
46
#define SINGLESTEP_BRANCH 1
47
#define SINGLESTEP_PCREL 2
48
49
#define READ_BYTE(p, valp) \
50
do { *(u8 *)(valp) = *(u8 *)(p); } while (0)
51
52
#define READ_WORD16(p, valp) \
53
do { \
54
READ_BYTE((p), (valp)); \
55
READ_BYTE((u8 *)(p) + 1, (u8 *)(valp) + 1); \
56
} while (0)
57
58
#define READ_WORD32(p, valp) \
59
do { \
60
READ_BYTE((p), (valp)); \
61
READ_BYTE((u8 *)(p) + 1, (u8 *)(valp) + 1); \
62
READ_BYTE((u8 *)(p) + 2, (u8 *)(valp) + 2); \
63
READ_BYTE((u8 *)(p) + 3, (u8 *)(valp) + 3); \
64
} while (0)
65
66
67
static const u8 mn10300_insn_sizes[256] =
68
{
69
/* 1 2 3 4 5 6 7 8 9 a b c d e f */
70
1, 3, 3, 3, 1, 3, 3, 3, 1, 3, 3, 3, 1, 3, 3, 3, /* 0 */
71
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 1 */
72
2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, /* 2 */
73
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, /* 3 */
74
1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, /* 4 */
75
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, /* 5 */
76
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6 */
77
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 7 */
78
2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* 8 */
79
2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* 9 */
80
2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* a */
81
2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* b */
82
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 2, /* c */
83
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* d */
84
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* e */
85
0, 2, 2, 2, 2, 2, 2, 4, 0, 3, 0, 4, 0, 6, 7, 1 /* f */
86
};
87
88
#define LT (1 << 0)
89
#define GT (1 << 1)
90
#define GE (1 << 2)
91
#define LE (1 << 3)
92
#define CS (1 << 4)
93
#define HI (1 << 5)
94
#define CC (1 << 6)
95
#define LS (1 << 7)
96
#define EQ (1 << 8)
97
#define NE (1 << 9)
98
#define RA (1 << 10)
99
#define VC (1 << 11)
100
#define VS (1 << 12)
101
#define NC (1 << 13)
102
#define NS (1 << 14)
103
104
static const u16 cond_table[] = {
105
/* V C N Z */
106
/* 0 0 0 0 */ (NE | NC | CC | VC | GE | GT | HI),
107
/* 0 0 0 1 */ (EQ | NC | CC | VC | GE | LE | LS),
108
/* 0 0 1 0 */ (NE | NS | CC | VC | LT | LE | HI),
109
/* 0 0 1 1 */ (EQ | NS | CC | VC | LT | LE | LS),
110
/* 0 1 0 0 */ (NE | NC | CS | VC | GE | GT | LS),
111
/* 0 1 0 1 */ (EQ | NC | CS | VC | GE | LE | LS),
112
/* 0 1 1 0 */ (NE | NS | CS | VC | LT | LE | LS),
113
/* 0 1 1 1 */ (EQ | NS | CS | VC | LT | LE | LS),
114
/* 1 0 0 0 */ (NE | NC | CC | VS | LT | LE | HI),
115
/* 1 0 0 1 */ (EQ | NC | CC | VS | LT | LE | LS),
116
/* 1 0 1 0 */ (NE | NS | CC | VS | GE | GT | HI),
117
/* 1 0 1 1 */ (EQ | NS | CC | VS | GE | LE | LS),
118
/* 1 1 0 0 */ (NE | NC | CS | VS | LT | LE | LS),
119
/* 1 1 0 1 */ (EQ | NC | CS | VS | LT | LE | LS),
120
/* 1 1 1 0 */ (NE | NS | CS | VS | GE | GT | LS),
121
/* 1 1 1 1 */ (EQ | NS | CS | VS | GE | LE | LS),
122
};
123
124
/*
125
* Calculate what the PC will be after executing next instruction
126
*/
127
static unsigned find_nextpc(struct pt_regs *regs, int *flags)
128
{
129
unsigned size;
130
s8 x8;
131
s16 x16;
132
s32 x32;
133
u8 opc, *pc, *sp, *next;
134
135
next = 0;
136
*flags = SINGLESTEP_PCREL;
137
138
pc = (u8 *) regs->pc;
139
sp = (u8 *) (regs + 1);
140
opc = *pc;
141
142
size = mn10300_insn_sizes[opc];
143
if (size > 0) {
144
next = pc + size;
145
} else {
146
switch (opc) {
147
/* Bxx (d8,PC) */
148
case 0xc0 ... 0xca:
149
x8 = 2;
150
if (cond_table[regs->epsw & 0xf] & (1 << (opc & 0xf)))
151
x8 = (s8)pc[1];
152
next = pc + x8;
153
*flags |= SINGLESTEP_BRANCH;
154
break;
155
156
/* JMP (d16,PC) or CALL (d16,PC) */
157
case 0xcc:
158
case 0xcd:
159
READ_WORD16(pc + 1, &x16);
160
next = pc + x16;
161
*flags |= SINGLESTEP_BRANCH;
162
break;
163
164
/* JMP (d32,PC) or CALL (d32,PC) */
165
case 0xdc:
166
case 0xdd:
167
READ_WORD32(pc + 1, &x32);
168
next = pc + x32;
169
*flags |= SINGLESTEP_BRANCH;
170
break;
171
172
/* RETF */
173
case 0xde:
174
next = (u8 *)regs->mdr;
175
*flags &= ~SINGLESTEP_PCREL;
176
*flags |= SINGLESTEP_BRANCH;
177
break;
178
179
/* RET */
180
case 0xdf:
181
sp += pc[2];
182
READ_WORD32(sp, &x32);
183
next = (u8 *)x32;
184
*flags &= ~SINGLESTEP_PCREL;
185
*flags |= SINGLESTEP_BRANCH;
186
break;
187
188
case 0xf0:
189
next = pc + 2;
190
opc = pc[1];
191
if (opc >= 0xf0 && opc <= 0xf7) {
192
/* JMP (An) / CALLS (An) */
193
switch (opc & 3) {
194
case 0:
195
next = (u8 *)regs->a0;
196
break;
197
case 1:
198
next = (u8 *)regs->a1;
199
break;
200
case 2:
201
next = (u8 *)regs->a2;
202
break;
203
case 3:
204
next = (u8 *)regs->a3;
205
break;
206
}
207
*flags &= ~SINGLESTEP_PCREL;
208
*flags |= SINGLESTEP_BRANCH;
209
} else if (opc == 0xfc) {
210
/* RETS */
211
READ_WORD32(sp, &x32);
212
next = (u8 *)x32;
213
*flags &= ~SINGLESTEP_PCREL;
214
*flags |= SINGLESTEP_BRANCH;
215
} else if (opc == 0xfd) {
216
/* RTI */
217
READ_WORD32(sp + 4, &x32);
218
next = (u8 *)x32;
219
*flags &= ~SINGLESTEP_PCREL;
220
*flags |= SINGLESTEP_BRANCH;
221
}
222
break;
223
224
/* potential 3-byte conditional branches */
225
case 0xf8:
226
next = pc + 3;
227
opc = pc[1];
228
if (opc >= 0xe8 && opc <= 0xeb &&
229
(cond_table[regs->epsw & 0xf] &
230
(1 << ((opc & 0xf) + 3)))
231
) {
232
READ_BYTE(pc+2, &x8);
233
next = pc + x8;
234
*flags |= SINGLESTEP_BRANCH;
235
}
236
break;
237
238
case 0xfa:
239
if (pc[1] == 0xff) {
240
/* CALLS (d16,PC) */
241
READ_WORD16(pc + 2, &x16);
242
next = pc + x16;
243
} else
244
next = pc + 4;
245
*flags |= SINGLESTEP_BRANCH;
246
break;
247
248
case 0xfc:
249
x32 = 6;
250
if (pc[1] == 0xff) {
251
/* CALLS (d32,PC) */
252
READ_WORD32(pc + 2, &x32);
253
}
254
next = pc + x32;
255
*flags |= SINGLESTEP_BRANCH;
256
break;
257
/* LXX (d8,PC) */
258
/* SETLB - loads the next four bytes into the LIR reg */
259
case 0xd0 ... 0xda:
260
case 0xdb:
261
panic("Can't singlestep Lxx/SETLB\n");
262
break;
263
}
264
}
265
return (unsigned)next;
266
267
}
268
269
/*
270
* set up out of place singlestep of some branching instructions
271
*/
272
static unsigned __kprobes singlestep_branch_setup(struct pt_regs *regs)
273
{
274
u8 opc, *pc, *sp, *next;
275
276
next = NULL;
277
pc = (u8 *) regs->pc;
278
sp = (u8 *) (regs + 1);
279
280
switch (pc[0]) {
281
case 0xc0 ... 0xca: /* Bxx (d8,PC) */
282
case 0xcc: /* JMP (d16,PC) */
283
case 0xdc: /* JMP (d32,PC) */
284
case 0xf8: /* Bxx (d8,PC) 3-byte version */
285
/* don't really need to do anything except cause trap */
286
next = pc;
287
break;
288
289
case 0xcd: /* CALL (d16,PC) */
290
pc[1] = 5;
291
pc[2] = 0;
292
next = pc + 5;
293
break;
294
295
case 0xdd: /* CALL (d32,PC) */
296
pc[1] = 7;
297
pc[2] = 0;
298
pc[3] = 0;
299
pc[4] = 0;
300
next = pc + 7;
301
break;
302
303
case 0xde: /* RETF */
304
next = pc + 3;
305
regs->mdr = (unsigned) next;
306
break;
307
308
case 0xdf: /* RET */
309
sp += pc[2];
310
next = pc + 3;
311
*(unsigned *)sp = (unsigned) next;
312
break;
313
314
case 0xf0:
315
next = pc + 2;
316
opc = pc[1];
317
if (opc >= 0xf0 && opc <= 0xf3) {
318
/* CALLS (An) */
319
/* use CALLS (d16,PC) to avoid mucking with An */
320
pc[0] = 0xfa;
321
pc[1] = 0xff;
322
pc[2] = 4;
323
pc[3] = 0;
324
next = pc + 4;
325
} else if (opc >= 0xf4 && opc <= 0xf7) {
326
/* JMP (An) */
327
next = pc;
328
} else if (opc == 0xfc) {
329
/* RETS */
330
next = pc + 2;
331
*(unsigned *) sp = (unsigned) next;
332
} else if (opc == 0xfd) {
333
/* RTI */
334
next = pc + 2;
335
*(unsigned *)(sp + 4) = (unsigned) next;
336
}
337
break;
338
339
case 0xfa: /* CALLS (d16,PC) */
340
pc[2] = 4;
341
pc[3] = 0;
342
next = pc + 4;
343
break;
344
345
case 0xfc: /* CALLS (d32,PC) */
346
pc[2] = 6;
347
pc[3] = 0;
348
pc[4] = 0;
349
pc[5] = 0;
350
next = pc + 6;
351
break;
352
353
case 0xd0 ... 0xda: /* LXX (d8,PC) */
354
case 0xdb: /* SETLB */
355
panic("Can't singlestep Lxx/SETLB\n");
356
}
357
358
return (unsigned) next;
359
}
360
361
int __kprobes arch_prepare_kprobe(struct kprobe *p)
362
{
363
return 0;
364
}
365
366
void __kprobes arch_copy_kprobe(struct kprobe *p)
367
{
368
memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE);
369
}
370
371
void __kprobes arch_arm_kprobe(struct kprobe *p)
372
{
373
*p->addr = BREAKPOINT_INSTRUCTION;
374
flush_icache_range((unsigned long) p->addr,
375
(unsigned long) p->addr + sizeof(kprobe_opcode_t));
376
}
377
378
void __kprobes arch_disarm_kprobe(struct kprobe *p)
379
{
380
#ifndef CONFIG_MN10300_CACHE_SNOOP
381
mn10300_dcache_flush();
382
mn10300_icache_inv();
383
#endif
384
}
385
386
void arch_remove_kprobe(struct kprobe *p)
387
{
388
}
389
390
static inline
391
void __kprobes disarm_kprobe(struct kprobe *p, struct pt_regs *regs)
392
{
393
*p->addr = p->opcode;
394
regs->pc = (unsigned long) p->addr;
395
#ifndef CONFIG_MN10300_CACHE_SNOOP
396
mn10300_dcache_flush();
397
mn10300_icache_inv();
398
#endif
399
}
400
401
static inline
402
void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
403
{
404
unsigned long nextpc;
405
406
cur_kprobe_orig_pc = regs->pc;
407
memcpy(cur_kprobe_ss_buf, &p->ainsn.insn[0], MAX_INSN_SIZE);
408
regs->pc = (unsigned long) cur_kprobe_ss_buf;
409
410
nextpc = find_nextpc(regs, &cur_kprobe_ss_flags);
411
if (cur_kprobe_ss_flags & SINGLESTEP_PCREL)
412
cur_kprobe_next_pc = cur_kprobe_orig_pc + (nextpc - regs->pc);
413
else
414
cur_kprobe_next_pc = nextpc;
415
416
/* branching instructions need special handling */
417
if (cur_kprobe_ss_flags & SINGLESTEP_BRANCH)
418
nextpc = singlestep_branch_setup(regs);
419
420
cur_kprobe_bp_addr = nextpc;
421
422
*(u8 *) nextpc = BREAKPOINT_INSTRUCTION;
423
mn10300_dcache_flush_range2((unsigned) cur_kprobe_ss_buf,
424
sizeof(cur_kprobe_ss_buf));
425
mn10300_icache_inv();
426
}
427
428
static inline int __kprobes kprobe_handler(struct pt_regs *regs)
429
{
430
struct kprobe *p;
431
int ret = 0;
432
unsigned int *addr = (unsigned int *) regs->pc;
433
434
/* We're in an interrupt, but this is clear and BUG()-safe. */
435
preempt_disable();
436
437
/* Check we're not actually recursing */
438
if (kprobe_running()) {
439
/* We *are* holding lock here, so this is safe.
440
Disarm the probe we just hit, and ignore it. */
441
p = get_kprobe(addr);
442
if (p) {
443
disarm_kprobe(p, regs);
444
ret = 1;
445
} else {
446
p = cur_kprobe;
447
if (p->break_handler && p->break_handler(p, regs))
448
goto ss_probe;
449
}
450
/* If it's not ours, can't be delete race, (we hold lock). */
451
goto no_kprobe;
452
}
453
454
p = get_kprobe(addr);
455
if (!p) {
456
if (*addr != BREAKPOINT_INSTRUCTION) {
457
/* The breakpoint instruction was removed right after
458
* we hit it. Another cpu has removed either a
459
* probepoint or a debugger breakpoint at this address.
460
* In either case, no further handling of this
461
* interrupt is appropriate.
462
*/
463
ret = 1;
464
}
465
/* Not one of ours: let kernel handle it */
466
goto no_kprobe;
467
}
468
469
kprobe_status = KPROBE_HIT_ACTIVE;
470
cur_kprobe = p;
471
if (p->pre_handler(p, regs)) {
472
/* handler has already set things up, so skip ss setup */
473
return 1;
474
}
475
476
ss_probe:
477
prepare_singlestep(p, regs);
478
kprobe_status = KPROBE_HIT_SS;
479
return 1;
480
481
no_kprobe:
482
preempt_enable_no_resched();
483
return ret;
484
}
485
486
/*
487
* Called after single-stepping. p->addr is the address of the
488
* instruction whose first byte has been replaced by the "breakpoint"
489
* instruction. To avoid the SMP problems that can occur when we
490
* temporarily put back the original opcode to single-step, we
491
* single-stepped a copy of the instruction. The address of this
492
* copy is p->ainsn.insn.
493
*/
494
static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
495
{
496
/* we may need to fixup regs/stack after singlestepping a call insn */
497
if (cur_kprobe_ss_flags & SINGLESTEP_BRANCH) {
498
regs->pc = cur_kprobe_orig_pc;
499
switch (p->ainsn.insn[0]) {
500
case 0xcd: /* CALL (d16,PC) */
501
*(unsigned *) regs->sp = regs->mdr = regs->pc + 5;
502
break;
503
case 0xdd: /* CALL (d32,PC) */
504
/* fixup mdr and return address on stack */
505
*(unsigned *) regs->sp = regs->mdr = regs->pc + 7;
506
break;
507
case 0xf0:
508
if (p->ainsn.insn[1] >= 0xf0 &&
509
p->ainsn.insn[1] <= 0xf3) {
510
/* CALLS (An) */
511
/* fixup MDR and return address on stack */
512
regs->mdr = regs->pc + 2;
513
*(unsigned *) regs->sp = regs->mdr;
514
}
515
break;
516
517
case 0xfa: /* CALLS (d16,PC) */
518
/* fixup MDR and return address on stack */
519
*(unsigned *) regs->sp = regs->mdr = regs->pc + 4;
520
break;
521
522
case 0xfc: /* CALLS (d32,PC) */
523
/* fixup MDR and return address on stack */
524
*(unsigned *) regs->sp = regs->mdr = regs->pc + 6;
525
break;
526
}
527
}
528
529
regs->pc = cur_kprobe_next_pc;
530
cur_kprobe_bp_addr = 0;
531
}
532
533
static inline int __kprobes post_kprobe_handler(struct pt_regs *regs)
534
{
535
if (!kprobe_running())
536
return 0;
537
538
if (cur_kprobe->post_handler)
539
cur_kprobe->post_handler(cur_kprobe, regs, 0);
540
541
resume_execution(cur_kprobe, regs);
542
reset_current_kprobe();
543
preempt_enable_no_resched();
544
return 1;
545
}
546
547
/* Interrupts disabled, kprobe_lock held. */
548
static inline
549
int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
550
{
551
if (cur_kprobe->fault_handler &&
552
cur_kprobe->fault_handler(cur_kprobe, regs, trapnr))
553
return 1;
554
555
if (kprobe_status & KPROBE_HIT_SS) {
556
resume_execution(cur_kprobe, regs);
557
reset_current_kprobe();
558
preempt_enable_no_resched();
559
}
560
return 0;
561
}
562
563
/*
564
* Wrapper routine to for handling exceptions.
565
*/
566
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
567
unsigned long val, void *data)
568
{
569
struct die_args *args = data;
570
571
switch (val) {
572
case DIE_BREAKPOINT:
573
if (cur_kprobe_bp_addr != args->regs->pc) {
574
if (kprobe_handler(args->regs))
575
return NOTIFY_STOP;
576
} else {
577
if (post_kprobe_handler(args->regs))
578
return NOTIFY_STOP;
579
}
580
break;
581
case DIE_GPF:
582
if (kprobe_running() &&
583
kprobe_fault_handler(args->regs, args->trapnr))
584
return NOTIFY_STOP;
585
break;
586
default:
587
break;
588
}
589
return NOTIFY_DONE;
590
}
591
592
/* Jprobes support. */
593
static struct pt_regs jprobe_saved_regs;
594
static struct pt_regs *jprobe_saved_regs_location;
595
static kprobe_opcode_t jprobe_saved_stack[MAX_STACK_SIZE];
596
597
int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
598
{
599
struct jprobe *jp = container_of(p, struct jprobe, kp);
600
601
jprobe_saved_regs_location = regs;
602
memcpy(&jprobe_saved_regs, regs, sizeof(struct pt_regs));
603
604
/* Save a whole stack frame, this gets arguments
605
* pushed onto the stack after using up all the
606
* arg registers.
607
*/
608
memcpy(&jprobe_saved_stack, regs + 1, sizeof(jprobe_saved_stack));
609
610
/* setup return addr to the jprobe handler routine */
611
regs->pc = (unsigned long) jp->entry;
612
return 1;
613
}
614
615
void __kprobes jprobe_return(void)
616
{
617
void *orig_sp = jprobe_saved_regs_location + 1;
618
619
preempt_enable_no_resched();
620
asm volatile(" mov %0,sp\n"
621
".globl jprobe_return_bp_addr\n"
622
"jprobe_return_bp_addr:\n\t"
623
" .byte 0xff\n"
624
: : "d" (orig_sp));
625
}
626
627
extern void jprobe_return_bp_addr(void);
628
629
int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
630
{
631
u8 *addr = (u8 *) regs->pc;
632
633
if (addr == (u8 *) jprobe_return_bp_addr) {
634
if (jprobe_saved_regs_location != regs) {
635
printk(KERN_ERR"JPROBE:"
636
" Current regs (%p) does not match saved regs"
637
" (%p).\n",
638
regs, jprobe_saved_regs_location);
639
BUG();
640
}
641
642
/* Restore old register state.
643
*/
644
memcpy(regs, &jprobe_saved_regs, sizeof(struct pt_regs));
645
646
memcpy(regs + 1, &jprobe_saved_stack,
647
sizeof(jprobe_saved_stack));
648
return 1;
649
}
650
return 0;
651
}
652
653
int __init arch_init_kprobes(void)
654
{
655
return 0;
656
}
657
658