Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/parisc/kernel/firmware.c
10817 views
1
/*
2
* arch/parisc/kernel/firmware.c - safe PDC access routines
3
*
4
* PDC == Processor Dependent Code
5
*
6
* See http://www.parisc-linux.org/documentation/index.html
7
* for documentation describing the entry points and calling
8
* conventions defined below.
9
*
10
* Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, [email protected])
11
* Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
12
* Copyright 2003 Grant Grundler <grundler parisc-linux org>
13
* Copyright 2003,2004 Ryan Bradetich <[email protected]>
14
* Copyright 2004,2006 Thibaut VARENE <[email protected]>
15
*
16
* This program is free software; you can redistribute it and/or modify
17
* it under the terms of the GNU General Public License as published by
18
* the Free Software Foundation; either version 2 of the License, or
19
* (at your option) any later version.
20
*
21
*/
22
23
/* I think it would be in everyone's best interest to follow this
24
* guidelines when writing PDC wrappers:
25
*
26
* - the name of the pdc wrapper should match one of the macros
27
* used for the first two arguments
28
* - don't use caps for random parts of the name
29
* - use the static PDC result buffers and "copyout" to structs
30
* supplied by the caller to encapsulate alignment restrictions
31
* - hold pdc_lock while in PDC or using static result buffers
32
* - use __pa() to convert virtual (kernel) pointers to physical
33
* ones.
34
* - the name of the struct used for pdc return values should equal
35
* one of the macros used for the first two arguments to the
36
* corresponding PDC call
37
* - keep the order of arguments
38
* - don't be smart (setting trailing NUL bytes for strings, return
39
* something useful even if the call failed) unless you are sure
40
* it's not going to affect functionality or performance
41
*
42
* Example:
43
* int pdc_cache_info(struct pdc_cache_info *cache_info )
44
* {
45
* int retval;
46
*
47
* spin_lock_irq(&pdc_lock);
48
* retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
49
* convert_to_wide(pdc_result);
50
* memcpy(cache_info, pdc_result, sizeof(*cache_info));
51
* spin_unlock_irq(&pdc_lock);
52
*
53
* return retval;
54
* }
55
* prumpf 991016
56
*/
57
58
#include <stdarg.h>
59
60
#include <linux/delay.h>
61
#include <linux/init.h>
62
#include <linux/kernel.h>
63
#include <linux/module.h>
64
#include <linux/string.h>
65
#include <linux/spinlock.h>
66
67
#include <asm/page.h>
68
#include <asm/pdc.h>
69
#include <asm/pdcpat.h>
70
#include <asm/system.h>
71
#include <asm/processor.h> /* for boot_cpu_data */
72
73
static DEFINE_SPINLOCK(pdc_lock);
74
extern unsigned long pdc_result[NUM_PDC_RESULT];
75
extern unsigned long pdc_result2[NUM_PDC_RESULT];
76
77
#ifdef CONFIG_64BIT
78
#define WIDE_FIRMWARE 0x1
79
#define NARROW_FIRMWARE 0x2
80
81
/* Firmware needs to be initially set to narrow to determine the
82
* actual firmware width. */
83
int parisc_narrow_firmware __read_mostly = 1;
84
#endif
85
86
/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
87
* and MEM_PDC calls are always the same width as the OS.
88
* Some PAT boxes may have 64-bit IODC I/O.
89
*
90
* Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
91
* 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
92
* This allowed wide kernels to run on Cxxx boxes.
93
* We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
94
* when running a 64-bit kernel on such boxes (e.g. C200 or C360).
95
*/
96
97
#ifdef CONFIG_64BIT
98
long real64_call(unsigned long function, ...);
99
#endif
100
long real32_call(unsigned long function, ...);
101
102
#ifdef CONFIG_64BIT
103
# define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
104
# define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
105
#else
106
# define MEM_PDC (unsigned long)PAGE0->mem_pdc
107
# define mem_pdc_call(args...) real32_call(MEM_PDC, args)
108
#endif
109
110
111
/**
112
* f_extend - Convert PDC addresses to kernel addresses.
113
* @address: Address returned from PDC.
114
*
115
* This function is used to convert PDC addresses into kernel addresses
116
* when the PDC address size and kernel address size are different.
117
*/
118
static unsigned long f_extend(unsigned long address)
119
{
120
#ifdef CONFIG_64BIT
121
if(unlikely(parisc_narrow_firmware)) {
122
if((address & 0xff000000) == 0xf0000000)
123
return 0xf0f0f0f000000000UL | (u32)address;
124
125
if((address & 0xf0000000) == 0xf0000000)
126
return 0xffffffff00000000UL | (u32)address;
127
}
128
#endif
129
return address;
130
}
131
132
/**
133
* convert_to_wide - Convert the return buffer addresses into kernel addresses.
134
* @address: The return buffer from PDC.
135
*
136
* This function is used to convert the return buffer addresses retrieved from PDC
137
* into kernel addresses when the PDC address size and kernel address size are
138
* different.
139
*/
140
static void convert_to_wide(unsigned long *addr)
141
{
142
#ifdef CONFIG_64BIT
143
int i;
144
unsigned int *p = (unsigned int *)addr;
145
146
if(unlikely(parisc_narrow_firmware)) {
147
for(i = 31; i >= 0; --i)
148
addr[i] = p[i];
149
}
150
#endif
151
}
152
153
#ifdef CONFIG_64BIT
154
void __cpuinit set_firmware_width_unlocked(void)
155
{
156
int ret;
157
158
ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
159
__pa(pdc_result), 0);
160
convert_to_wide(pdc_result);
161
if (pdc_result[0] != NARROW_FIRMWARE)
162
parisc_narrow_firmware = 0;
163
}
164
165
/**
166
* set_firmware_width - Determine if the firmware is wide or narrow.
167
*
168
* This function must be called before any pdc_* function that uses the
169
* convert_to_wide function.
170
*/
171
void __cpuinit set_firmware_width(void)
172
{
173
unsigned long flags;
174
spin_lock_irqsave(&pdc_lock, flags);
175
set_firmware_width_unlocked();
176
spin_unlock_irqrestore(&pdc_lock, flags);
177
}
178
#else
179
void __cpuinit set_firmware_width_unlocked(void) {
180
return;
181
}
182
183
void __cpuinit set_firmware_width(void) {
184
return;
185
}
186
#endif /*CONFIG_64BIT*/
187
188
/**
189
* pdc_emergency_unlock - Unlock the linux pdc lock
190
*
191
* This call unlocks the linux pdc lock in case we need some PDC functions
192
* (like pdc_add_valid) during kernel stack dump.
193
*/
194
void pdc_emergency_unlock(void)
195
{
196
/* Spinlock DEBUG code freaks out if we unconditionally unlock */
197
if (spin_is_locked(&pdc_lock))
198
spin_unlock(&pdc_lock);
199
}
200
201
202
/**
203
* pdc_add_valid - Verify address can be accessed without causing a HPMC.
204
* @address: Address to be verified.
205
*
206
* This PDC call attempts to read from the specified address and verifies
207
* if the address is valid.
208
*
209
* The return value is PDC_OK (0) in case accessing this address is valid.
210
*/
211
int pdc_add_valid(unsigned long address)
212
{
213
int retval;
214
unsigned long flags;
215
216
spin_lock_irqsave(&pdc_lock, flags);
217
retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
218
spin_unlock_irqrestore(&pdc_lock, flags);
219
220
return retval;
221
}
222
EXPORT_SYMBOL(pdc_add_valid);
223
224
/**
225
* pdc_chassis_info - Return chassis information.
226
* @result: The return buffer.
227
* @chassis_info: The memory buffer address.
228
* @len: The size of the memory buffer address.
229
*
230
* An HVERSION dependent call for returning the chassis information.
231
*/
232
int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
233
{
234
int retval;
235
unsigned long flags;
236
237
spin_lock_irqsave(&pdc_lock, flags);
238
memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
239
memcpy(&pdc_result2, led_info, len);
240
retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
241
__pa(pdc_result), __pa(pdc_result2), len);
242
memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
243
memcpy(led_info, pdc_result2, len);
244
spin_unlock_irqrestore(&pdc_lock, flags);
245
246
return retval;
247
}
248
249
/**
250
* pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
251
* @retval: -1 on error, 0 on success. Other value are PDC errors
252
*
253
* Must be correctly formatted or expect system crash
254
*/
255
#ifdef CONFIG_64BIT
256
int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
257
{
258
int retval = 0;
259
unsigned long flags;
260
261
if (!is_pdc_pat())
262
return -1;
263
264
spin_lock_irqsave(&pdc_lock, flags);
265
retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
266
spin_unlock_irqrestore(&pdc_lock, flags);
267
268
return retval;
269
}
270
#endif
271
272
/**
273
* pdc_chassis_disp - Updates chassis code
274
* @retval: -1 on error, 0 on success
275
*/
276
int pdc_chassis_disp(unsigned long disp)
277
{
278
int retval = 0;
279
unsigned long flags;
280
281
spin_lock_irqsave(&pdc_lock, flags);
282
retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
283
spin_unlock_irqrestore(&pdc_lock, flags);
284
285
return retval;
286
}
287
288
/**
289
* pdc_chassis_warn - Fetches chassis warnings
290
* @retval: -1 on error, 0 on success
291
*/
292
int pdc_chassis_warn(unsigned long *warn)
293
{
294
int retval = 0;
295
unsigned long flags;
296
297
spin_lock_irqsave(&pdc_lock, flags);
298
retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
299
*warn = pdc_result[0];
300
spin_unlock_irqrestore(&pdc_lock, flags);
301
302
return retval;
303
}
304
305
int __cpuinit pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
306
{
307
int ret;
308
309
ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
310
convert_to_wide(pdc_result);
311
pdc_coproc_info->ccr_functional = pdc_result[0];
312
pdc_coproc_info->ccr_present = pdc_result[1];
313
pdc_coproc_info->revision = pdc_result[17];
314
pdc_coproc_info->model = pdc_result[18];
315
316
return ret;
317
}
318
319
/**
320
* pdc_coproc_cfg - To identify coprocessors attached to the processor.
321
* @pdc_coproc_info: Return buffer address.
322
*
323
* This PDC call returns the presence and status of all the coprocessors
324
* attached to the processor.
325
*/
326
int __cpuinit pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
327
{
328
int ret;
329
unsigned long flags;
330
331
spin_lock_irqsave(&pdc_lock, flags);
332
ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
333
spin_unlock_irqrestore(&pdc_lock, flags);
334
335
return ret;
336
}
337
338
/**
339
* pdc_iodc_read - Read data from the modules IODC.
340
* @actcnt: The actual number of bytes.
341
* @hpa: The HPA of the module for the iodc read.
342
* @index: The iodc entry point.
343
* @iodc_data: A buffer memory for the iodc options.
344
* @iodc_data_size: Size of the memory buffer.
345
*
346
* This PDC call reads from the IODC of the module specified by the hpa
347
* argument.
348
*/
349
int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
350
void *iodc_data, unsigned int iodc_data_size)
351
{
352
int retval;
353
unsigned long flags;
354
355
spin_lock_irqsave(&pdc_lock, flags);
356
retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
357
index, __pa(pdc_result2), iodc_data_size);
358
convert_to_wide(pdc_result);
359
*actcnt = pdc_result[0];
360
memcpy(iodc_data, pdc_result2, iodc_data_size);
361
spin_unlock_irqrestore(&pdc_lock, flags);
362
363
return retval;
364
}
365
EXPORT_SYMBOL(pdc_iodc_read);
366
367
/**
368
* pdc_system_map_find_mods - Locate unarchitected modules.
369
* @pdc_mod_info: Return buffer address.
370
* @mod_path: pointer to dev path structure.
371
* @mod_index: fixed address module index.
372
*
373
* To locate and identify modules which reside at fixed I/O addresses, which
374
* do not self-identify via architected bus walks.
375
*/
376
int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
377
struct pdc_module_path *mod_path, long mod_index)
378
{
379
int retval;
380
unsigned long flags;
381
382
spin_lock_irqsave(&pdc_lock, flags);
383
retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
384
__pa(pdc_result2), mod_index);
385
convert_to_wide(pdc_result);
386
memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
387
memcpy(mod_path, pdc_result2, sizeof(*mod_path));
388
spin_unlock_irqrestore(&pdc_lock, flags);
389
390
pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
391
return retval;
392
}
393
394
/**
395
* pdc_system_map_find_addrs - Retrieve additional address ranges.
396
* @pdc_addr_info: Return buffer address.
397
* @mod_index: Fixed address module index.
398
* @addr_index: Address range index.
399
*
400
* Retrieve additional information about subsequent address ranges for modules
401
* with multiple address ranges.
402
*/
403
int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
404
long mod_index, long addr_index)
405
{
406
int retval;
407
unsigned long flags;
408
409
spin_lock_irqsave(&pdc_lock, flags);
410
retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
411
mod_index, addr_index);
412
convert_to_wide(pdc_result);
413
memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
414
spin_unlock_irqrestore(&pdc_lock, flags);
415
416
pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
417
return retval;
418
}
419
420
/**
421
* pdc_model_info - Return model information about the processor.
422
* @model: The return buffer.
423
*
424
* Returns the version numbers, identifiers, and capabilities from the processor module.
425
*/
426
int pdc_model_info(struct pdc_model *model)
427
{
428
int retval;
429
unsigned long flags;
430
431
spin_lock_irqsave(&pdc_lock, flags);
432
retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
433
convert_to_wide(pdc_result);
434
memcpy(model, pdc_result, sizeof(*model));
435
spin_unlock_irqrestore(&pdc_lock, flags);
436
437
return retval;
438
}
439
440
/**
441
* pdc_model_sysmodel - Get the system model name.
442
* @name: A char array of at least 81 characters.
443
*
444
* Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
445
* Using OS_ID_HPUX will return the equivalent of the 'modelname' command
446
* on HP/UX.
447
*/
448
int pdc_model_sysmodel(char *name)
449
{
450
int retval;
451
unsigned long flags;
452
453
spin_lock_irqsave(&pdc_lock, flags);
454
retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
455
OS_ID_HPUX, __pa(name));
456
convert_to_wide(pdc_result);
457
458
if (retval == PDC_OK) {
459
name[pdc_result[0]] = '\0'; /* add trailing '\0' */
460
} else {
461
name[0] = 0;
462
}
463
spin_unlock_irqrestore(&pdc_lock, flags);
464
465
return retval;
466
}
467
468
/**
469
* pdc_model_versions - Identify the version number of each processor.
470
* @cpu_id: The return buffer.
471
* @id: The id of the processor to check.
472
*
473
* Returns the version number for each processor component.
474
*
475
* This comment was here before, but I do not know what it means :( -RB
476
* id: 0 = cpu revision, 1 = boot-rom-version
477
*/
478
int pdc_model_versions(unsigned long *versions, int id)
479
{
480
int retval;
481
unsigned long flags;
482
483
spin_lock_irqsave(&pdc_lock, flags);
484
retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
485
convert_to_wide(pdc_result);
486
*versions = pdc_result[0];
487
spin_unlock_irqrestore(&pdc_lock, flags);
488
489
return retval;
490
}
491
492
/**
493
* pdc_model_cpuid - Returns the CPU_ID.
494
* @cpu_id: The return buffer.
495
*
496
* Returns the CPU_ID value which uniquely identifies the cpu portion of
497
* the processor module.
498
*/
499
int pdc_model_cpuid(unsigned long *cpu_id)
500
{
501
int retval;
502
unsigned long flags;
503
504
spin_lock_irqsave(&pdc_lock, flags);
505
pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
506
retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
507
convert_to_wide(pdc_result);
508
*cpu_id = pdc_result[0];
509
spin_unlock_irqrestore(&pdc_lock, flags);
510
511
return retval;
512
}
513
514
/**
515
* pdc_model_capabilities - Returns the platform capabilities.
516
* @capabilities: The return buffer.
517
*
518
* Returns information about platform support for 32- and/or 64-bit
519
* OSes, IO-PDIR coherency, and virtual aliasing.
520
*/
521
int pdc_model_capabilities(unsigned long *capabilities)
522
{
523
int retval;
524
unsigned long flags;
525
526
spin_lock_irqsave(&pdc_lock, flags);
527
pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
528
retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
529
convert_to_wide(pdc_result);
530
if (retval == PDC_OK) {
531
*capabilities = pdc_result[0];
532
} else {
533
*capabilities = PDC_MODEL_OS32;
534
}
535
spin_unlock_irqrestore(&pdc_lock, flags);
536
537
return retval;
538
}
539
540
/**
541
* pdc_cache_info - Return cache and TLB information.
542
* @cache_info: The return buffer.
543
*
544
* Returns information about the processor's cache and TLB.
545
*/
546
int pdc_cache_info(struct pdc_cache_info *cache_info)
547
{
548
int retval;
549
unsigned long flags;
550
551
spin_lock_irqsave(&pdc_lock, flags);
552
retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
553
convert_to_wide(pdc_result);
554
memcpy(cache_info, pdc_result, sizeof(*cache_info));
555
spin_unlock_irqrestore(&pdc_lock, flags);
556
557
return retval;
558
}
559
560
/**
561
* pdc_spaceid_bits - Return whether Space ID hashing is turned on.
562
* @space_bits: Should be 0, if not, bad mojo!
563
*
564
* Returns information about Space ID hashing.
565
*/
566
int pdc_spaceid_bits(unsigned long *space_bits)
567
{
568
int retval;
569
unsigned long flags;
570
571
spin_lock_irqsave(&pdc_lock, flags);
572
pdc_result[0] = 0;
573
retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
574
convert_to_wide(pdc_result);
575
*space_bits = pdc_result[0];
576
spin_unlock_irqrestore(&pdc_lock, flags);
577
578
return retval;
579
}
580
581
#ifndef CONFIG_PA20
582
/**
583
* pdc_btlb_info - Return block TLB information.
584
* @btlb: The return buffer.
585
*
586
* Returns information about the hardware Block TLB.
587
*/
588
int pdc_btlb_info(struct pdc_btlb_info *btlb)
589
{
590
int retval;
591
unsigned long flags;
592
593
spin_lock_irqsave(&pdc_lock, flags);
594
retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
595
memcpy(btlb, pdc_result, sizeof(*btlb));
596
spin_unlock_irqrestore(&pdc_lock, flags);
597
598
if(retval < 0) {
599
btlb->max_size = 0;
600
}
601
return retval;
602
}
603
604
/**
605
* pdc_mem_map_hpa - Find fixed module information.
606
* @address: The return buffer
607
* @mod_path: pointer to dev path structure.
608
*
609
* This call was developed for S700 workstations to allow the kernel to find
610
* the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
611
* call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
612
* call.
613
*
614
* This call is supported by all existing S700 workstations (up to Gecko).
615
*/
616
int pdc_mem_map_hpa(struct pdc_memory_map *address,
617
struct pdc_module_path *mod_path)
618
{
619
int retval;
620
unsigned long flags;
621
622
spin_lock_irqsave(&pdc_lock, flags);
623
memcpy(pdc_result2, mod_path, sizeof(*mod_path));
624
retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
625
__pa(pdc_result2));
626
memcpy(address, pdc_result, sizeof(*address));
627
spin_unlock_irqrestore(&pdc_lock, flags);
628
629
return retval;
630
}
631
#endif /* !CONFIG_PA20 */
632
633
/**
634
* pdc_lan_station_id - Get the LAN address.
635
* @lan_addr: The return buffer.
636
* @hpa: The network device HPA.
637
*
638
* Get the LAN station address when it is not directly available from the LAN hardware.
639
*/
640
int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
641
{
642
int retval;
643
unsigned long flags;
644
645
spin_lock_irqsave(&pdc_lock, flags);
646
retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
647
__pa(pdc_result), hpa);
648
if (retval < 0) {
649
/* FIXME: else read MAC from NVRAM */
650
memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
651
} else {
652
memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
653
}
654
spin_unlock_irqrestore(&pdc_lock, flags);
655
656
return retval;
657
}
658
EXPORT_SYMBOL(pdc_lan_station_id);
659
660
/**
661
* pdc_stable_read - Read data from Stable Storage.
662
* @staddr: Stable Storage address to access.
663
* @memaddr: The memory address where Stable Storage data shall be copied.
664
* @count: number of bytes to transfer. count is multiple of 4.
665
*
666
* This PDC call reads from the Stable Storage address supplied in staddr
667
* and copies count bytes to the memory address memaddr.
668
* The call will fail if staddr+count > PDC_STABLE size.
669
*/
670
int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
671
{
672
int retval;
673
unsigned long flags;
674
675
spin_lock_irqsave(&pdc_lock, flags);
676
retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
677
__pa(pdc_result), count);
678
convert_to_wide(pdc_result);
679
memcpy(memaddr, pdc_result, count);
680
spin_unlock_irqrestore(&pdc_lock, flags);
681
682
return retval;
683
}
684
EXPORT_SYMBOL(pdc_stable_read);
685
686
/**
687
* pdc_stable_write - Write data to Stable Storage.
688
* @staddr: Stable Storage address to access.
689
* @memaddr: The memory address where Stable Storage data shall be read from.
690
* @count: number of bytes to transfer. count is multiple of 4.
691
*
692
* This PDC call reads count bytes from the supplied memaddr address,
693
* and copies count bytes to the Stable Storage address staddr.
694
* The call will fail if staddr+count > PDC_STABLE size.
695
*/
696
int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
697
{
698
int retval;
699
unsigned long flags;
700
701
spin_lock_irqsave(&pdc_lock, flags);
702
memcpy(pdc_result, memaddr, count);
703
convert_to_wide(pdc_result);
704
retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
705
__pa(pdc_result), count);
706
spin_unlock_irqrestore(&pdc_lock, flags);
707
708
return retval;
709
}
710
EXPORT_SYMBOL(pdc_stable_write);
711
712
/**
713
* pdc_stable_get_size - Get Stable Storage size in bytes.
714
* @size: pointer where the size will be stored.
715
*
716
* This PDC call returns the number of bytes in the processor's Stable
717
* Storage, which is the number of contiguous bytes implemented in Stable
718
* Storage starting from staddr=0. size in an unsigned 64-bit integer
719
* which is a multiple of four.
720
*/
721
int pdc_stable_get_size(unsigned long *size)
722
{
723
int retval;
724
unsigned long flags;
725
726
spin_lock_irqsave(&pdc_lock, flags);
727
retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
728
*size = pdc_result[0];
729
spin_unlock_irqrestore(&pdc_lock, flags);
730
731
return retval;
732
}
733
EXPORT_SYMBOL(pdc_stable_get_size);
734
735
/**
736
* pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
737
*
738
* This PDC call is meant to be used to check the integrity of the current
739
* contents of Stable Storage.
740
*/
741
int pdc_stable_verify_contents(void)
742
{
743
int retval;
744
unsigned long flags;
745
746
spin_lock_irqsave(&pdc_lock, flags);
747
retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
748
spin_unlock_irqrestore(&pdc_lock, flags);
749
750
return retval;
751
}
752
EXPORT_SYMBOL(pdc_stable_verify_contents);
753
754
/**
755
* pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
756
* the validity indicator.
757
*
758
* This PDC call will erase all contents of Stable Storage. Use with care!
759
*/
760
int pdc_stable_initialize(void)
761
{
762
int retval;
763
unsigned long flags;
764
765
spin_lock_irqsave(&pdc_lock, flags);
766
retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
767
spin_unlock_irqrestore(&pdc_lock, flags);
768
769
return retval;
770
}
771
EXPORT_SYMBOL(pdc_stable_initialize);
772
773
/**
774
* pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
775
* @hwpath: fully bc.mod style path to the device.
776
* @initiator: the array to return the result into
777
*
778
* Get the SCSI operational parameters from PDC.
779
* Needed since HPUX never used BIOS or symbios card NVRAM.
780
* Most ncr/sym cards won't have an entry and just use whatever
781
* capabilities of the card are (eg Ultra, LVD). But there are
782
* several cases where it's useful:
783
* o set SCSI id for Multi-initiator clusters,
784
* o cable too long (ie SE scsi 10Mhz won't support 6m length),
785
* o bus width exported is less than what the interface chip supports.
786
*/
787
int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
788
{
789
int retval;
790
unsigned long flags;
791
792
spin_lock_irqsave(&pdc_lock, flags);
793
794
/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
795
#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
796
strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
797
798
retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
799
__pa(pdc_result), __pa(hwpath));
800
if (retval < PDC_OK)
801
goto out;
802
803
if (pdc_result[0] < 16) {
804
initiator->host_id = pdc_result[0];
805
} else {
806
initiator->host_id = -1;
807
}
808
809
/*
810
* Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns
811
* 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
812
*/
813
switch (pdc_result[1]) {
814
case 1: initiator->factor = 50; break;
815
case 2: initiator->factor = 25; break;
816
case 5: initiator->factor = 12; break;
817
case 25: initiator->factor = 10; break;
818
case 20: initiator->factor = 12; break;
819
case 40: initiator->factor = 10; break;
820
default: initiator->factor = -1; break;
821
}
822
823
if (IS_SPROCKETS()) {
824
initiator->width = pdc_result[4];
825
initiator->mode = pdc_result[5];
826
} else {
827
initiator->width = -1;
828
initiator->mode = -1;
829
}
830
831
out:
832
spin_unlock_irqrestore(&pdc_lock, flags);
833
834
return (retval >= PDC_OK);
835
}
836
EXPORT_SYMBOL(pdc_get_initiator);
837
838
839
/**
840
* pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
841
* @num_entries: The return value.
842
* @hpa: The HPA for the device.
843
*
844
* This PDC function returns the number of entries in the specified cell's
845
* interrupt table.
846
* Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
847
*/
848
int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
849
{
850
int retval;
851
unsigned long flags;
852
853
spin_lock_irqsave(&pdc_lock, flags);
854
retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
855
__pa(pdc_result), hpa);
856
convert_to_wide(pdc_result);
857
*num_entries = pdc_result[0];
858
spin_unlock_irqrestore(&pdc_lock, flags);
859
860
return retval;
861
}
862
863
/**
864
* pdc_pci_irt - Get the PCI interrupt routing table.
865
* @num_entries: The number of entries in the table.
866
* @hpa: The Hard Physical Address of the device.
867
* @tbl:
868
*
869
* Get the PCI interrupt routing table for the device at the given HPA.
870
* Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
871
*/
872
int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
873
{
874
int retval;
875
unsigned long flags;
876
877
BUG_ON((unsigned long)tbl & 0x7);
878
879
spin_lock_irqsave(&pdc_lock, flags);
880
pdc_result[0] = num_entries;
881
retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
882
__pa(pdc_result), hpa, __pa(tbl));
883
spin_unlock_irqrestore(&pdc_lock, flags);
884
885
return retval;
886
}
887
888
889
#if 0 /* UNTEST CODE - left here in case someone needs it */
890
891
/**
892
* pdc_pci_config_read - read PCI config space.
893
* @hpa token from PDC to indicate which PCI device
894
* @pci_addr configuration space address to read from
895
*
896
* Read PCI Configuration space *before* linux PCI subsystem is running.
897
*/
898
unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
899
{
900
int retval;
901
unsigned long flags;
902
903
spin_lock_irqsave(&pdc_lock, flags);
904
pdc_result[0] = 0;
905
pdc_result[1] = 0;
906
retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
907
__pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
908
spin_unlock_irqrestore(&pdc_lock, flags);
909
910
return retval ? ~0 : (unsigned int) pdc_result[0];
911
}
912
913
914
/**
915
* pdc_pci_config_write - read PCI config space.
916
* @hpa token from PDC to indicate which PCI device
917
* @pci_addr configuration space address to write
918
* @val value we want in the 32-bit register
919
*
920
* Write PCI Configuration space *before* linux PCI subsystem is running.
921
*/
922
void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
923
{
924
int retval;
925
unsigned long flags;
926
927
spin_lock_irqsave(&pdc_lock, flags);
928
pdc_result[0] = 0;
929
retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
930
__pa(pdc_result), hpa,
931
cfg_addr&~3UL, 4UL, (unsigned long) val);
932
spin_unlock_irqrestore(&pdc_lock, flags);
933
934
return retval;
935
}
936
#endif /* UNTESTED CODE */
937
938
/**
939
* pdc_tod_read - Read the Time-Of-Day clock.
940
* @tod: The return buffer:
941
*
942
* Read the Time-Of-Day clock
943
*/
944
int pdc_tod_read(struct pdc_tod *tod)
945
{
946
int retval;
947
unsigned long flags;
948
949
spin_lock_irqsave(&pdc_lock, flags);
950
retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
951
convert_to_wide(pdc_result);
952
memcpy(tod, pdc_result, sizeof(*tod));
953
spin_unlock_irqrestore(&pdc_lock, flags);
954
955
return retval;
956
}
957
EXPORT_SYMBOL(pdc_tod_read);
958
959
/**
960
* pdc_tod_set - Set the Time-Of-Day clock.
961
* @sec: The number of seconds since epoch.
962
* @usec: The number of micro seconds.
963
*
964
* Set the Time-Of-Day clock.
965
*/
966
int pdc_tod_set(unsigned long sec, unsigned long usec)
967
{
968
int retval;
969
unsigned long flags;
970
971
spin_lock_irqsave(&pdc_lock, flags);
972
retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
973
spin_unlock_irqrestore(&pdc_lock, flags);
974
975
return retval;
976
}
977
EXPORT_SYMBOL(pdc_tod_set);
978
979
#ifdef CONFIG_64BIT
980
int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
981
struct pdc_memory_table *tbl, unsigned long entries)
982
{
983
int retval;
984
unsigned long flags;
985
986
spin_lock_irqsave(&pdc_lock, flags);
987
retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
988
convert_to_wide(pdc_result);
989
memcpy(r_addr, pdc_result, sizeof(*r_addr));
990
memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
991
spin_unlock_irqrestore(&pdc_lock, flags);
992
993
return retval;
994
}
995
#endif /* CONFIG_64BIT */
996
997
/* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap
998
* so I guessed at unsigned long. Someone who knows what this does, can fix
999
* it later. :)
1000
*/
1001
int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1002
{
1003
int retval;
1004
unsigned long flags;
1005
1006
spin_lock_irqsave(&pdc_lock, flags);
1007
retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1008
PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1009
spin_unlock_irqrestore(&pdc_lock, flags);
1010
1011
return retval;
1012
}
1013
1014
/*
1015
* pdc_do_reset - Reset the system.
1016
*
1017
* Reset the system.
1018
*/
1019
int pdc_do_reset(void)
1020
{
1021
int retval;
1022
unsigned long flags;
1023
1024
spin_lock_irqsave(&pdc_lock, flags);
1025
retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1026
spin_unlock_irqrestore(&pdc_lock, flags);
1027
1028
return retval;
1029
}
1030
1031
/*
1032
* pdc_soft_power_info - Enable soft power switch.
1033
* @power_reg: address of soft power register
1034
*
1035
* Return the absolute address of the soft power switch register
1036
*/
1037
int __init pdc_soft_power_info(unsigned long *power_reg)
1038
{
1039
int retval;
1040
unsigned long flags;
1041
1042
*power_reg = (unsigned long) (-1);
1043
1044
spin_lock_irqsave(&pdc_lock, flags);
1045
retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1046
if (retval == PDC_OK) {
1047
convert_to_wide(pdc_result);
1048
*power_reg = f_extend(pdc_result[0]);
1049
}
1050
spin_unlock_irqrestore(&pdc_lock, flags);
1051
1052
return retval;
1053
}
1054
1055
/*
1056
* pdc_soft_power_button - Control the soft power button behaviour
1057
* @sw_control: 0 for hardware control, 1 for software control
1058
*
1059
*
1060
* This PDC function places the soft power button under software or
1061
* hardware control.
1062
* Under software control the OS may control to when to allow to shut
1063
* down the system. Under hardware control pressing the power button
1064
* powers off the system immediately.
1065
*/
1066
int pdc_soft_power_button(int sw_control)
1067
{
1068
int retval;
1069
unsigned long flags;
1070
1071
spin_lock_irqsave(&pdc_lock, flags);
1072
retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1073
spin_unlock_irqrestore(&pdc_lock, flags);
1074
1075
return retval;
1076
}
1077
1078
/*
1079
* pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1080
* Primarily a problem on T600 (which parisc-linux doesn't support) but
1081
* who knows what other platform firmware might do with this OS "hook".
1082
*/
1083
void pdc_io_reset(void)
1084
{
1085
unsigned long flags;
1086
1087
spin_lock_irqsave(&pdc_lock, flags);
1088
mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1089
spin_unlock_irqrestore(&pdc_lock, flags);
1090
}
1091
1092
/*
1093
* pdc_io_reset_devices - Hack to Stop USB controller
1094
*
1095
* If PDC used the usb controller, the usb controller
1096
* is still running and will crash the machines during iommu
1097
* setup, because of still running DMA. This PDC call
1098
* stops the USB controller.
1099
* Normally called after calling pdc_io_reset().
1100
*/
1101
void pdc_io_reset_devices(void)
1102
{
1103
unsigned long flags;
1104
1105
spin_lock_irqsave(&pdc_lock, flags);
1106
mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1107
spin_unlock_irqrestore(&pdc_lock, flags);
1108
}
1109
1110
/* locked by pdc_console_lock */
1111
static int __attribute__((aligned(8))) iodc_retbuf[32];
1112
static char __attribute__((aligned(64))) iodc_dbuf[4096];
1113
1114
/**
1115
* pdc_iodc_print - Console print using IODC.
1116
* @str: the string to output.
1117
* @count: length of str
1118
*
1119
* Note that only these special chars are architected for console IODC io:
1120
* BEL, BS, CR, and LF. Others are passed through.
1121
* Since the HP console requires CR+LF to perform a 'newline', we translate
1122
* "\n" to "\r\n".
1123
*/
1124
int pdc_iodc_print(const unsigned char *str, unsigned count)
1125
{
1126
unsigned int i;
1127
unsigned long flags;
1128
1129
for (i = 0; i < count;) {
1130
switch(str[i]) {
1131
case '\n':
1132
iodc_dbuf[i+0] = '\r';
1133
iodc_dbuf[i+1] = '\n';
1134
i += 2;
1135
goto print;
1136
default:
1137
iodc_dbuf[i] = str[i];
1138
i++;
1139
break;
1140
}
1141
}
1142
1143
print:
1144
spin_lock_irqsave(&pdc_lock, flags);
1145
real32_call(PAGE0->mem_cons.iodc_io,
1146
(unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1147
PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1148
__pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1149
spin_unlock_irqrestore(&pdc_lock, flags);
1150
1151
return i;
1152
}
1153
1154
/**
1155
* pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1156
*
1157
* Read a character (non-blocking) from the PDC console, returns -1 if
1158
* key is not present.
1159
*/
1160
int pdc_iodc_getc(void)
1161
{
1162
int ch;
1163
int status;
1164
unsigned long flags;
1165
1166
/* Bail if no console input device. */
1167
if (!PAGE0->mem_kbd.iodc_io)
1168
return 0;
1169
1170
/* wait for a keyboard (rs232)-input */
1171
spin_lock_irqsave(&pdc_lock, flags);
1172
real32_call(PAGE0->mem_kbd.iodc_io,
1173
(unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1174
PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1175
__pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1176
1177
ch = *iodc_dbuf;
1178
status = *iodc_retbuf;
1179
spin_unlock_irqrestore(&pdc_lock, flags);
1180
1181
if (status == 0)
1182
return -1;
1183
1184
return ch;
1185
}
1186
1187
int pdc_sti_call(unsigned long func, unsigned long flags,
1188
unsigned long inptr, unsigned long outputr,
1189
unsigned long glob_cfg)
1190
{
1191
int retval;
1192
unsigned long irqflags;
1193
1194
spin_lock_irqsave(&pdc_lock, irqflags);
1195
retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1196
spin_unlock_irqrestore(&pdc_lock, irqflags);
1197
1198
return retval;
1199
}
1200
EXPORT_SYMBOL(pdc_sti_call);
1201
1202
#ifdef CONFIG_64BIT
1203
/**
1204
* pdc_pat_cell_get_number - Returns the cell number.
1205
* @cell_info: The return buffer.
1206
*
1207
* This PDC call returns the cell number of the cell from which the call
1208
* is made.
1209
*/
1210
int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1211
{
1212
int retval;
1213
unsigned long flags;
1214
1215
spin_lock_irqsave(&pdc_lock, flags);
1216
retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1217
memcpy(cell_info, pdc_result, sizeof(*cell_info));
1218
spin_unlock_irqrestore(&pdc_lock, flags);
1219
1220
return retval;
1221
}
1222
1223
/**
1224
* pdc_pat_cell_module - Retrieve the cell's module information.
1225
* @actcnt: The number of bytes written to mem_addr.
1226
* @ploc: The physical location.
1227
* @mod: The module index.
1228
* @view_type: The view of the address type.
1229
* @mem_addr: The return buffer.
1230
*
1231
* This PDC call returns information about each module attached to the cell
1232
* at the specified location.
1233
*/
1234
int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1235
unsigned long view_type, void *mem_addr)
1236
{
1237
int retval;
1238
unsigned long flags;
1239
static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1240
1241
spin_lock_irqsave(&pdc_lock, flags);
1242
retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1243
ploc, mod, view_type, __pa(&result));
1244
if(!retval) {
1245
*actcnt = pdc_result[0];
1246
memcpy(mem_addr, &result, *actcnt);
1247
}
1248
spin_unlock_irqrestore(&pdc_lock, flags);
1249
1250
return retval;
1251
}
1252
1253
/**
1254
* pdc_pat_cpu_get_number - Retrieve the cpu number.
1255
* @cpu_info: The return buffer.
1256
* @hpa: The Hard Physical Address of the CPU.
1257
*
1258
* Retrieve the cpu number for the cpu at the specified HPA.
1259
*/
1260
int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa)
1261
{
1262
int retval;
1263
unsigned long flags;
1264
1265
spin_lock_irqsave(&pdc_lock, flags);
1266
retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1267
__pa(&pdc_result), hpa);
1268
memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1269
spin_unlock_irqrestore(&pdc_lock, flags);
1270
1271
return retval;
1272
}
1273
1274
/**
1275
* pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1276
* @num_entries: The return value.
1277
* @cell_num: The target cell.
1278
*
1279
* This PDC function returns the number of entries in the specified cell's
1280
* interrupt table.
1281
*/
1282
int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1283
{
1284
int retval;
1285
unsigned long flags;
1286
1287
spin_lock_irqsave(&pdc_lock, flags);
1288
retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1289
__pa(pdc_result), cell_num);
1290
*num_entries = pdc_result[0];
1291
spin_unlock_irqrestore(&pdc_lock, flags);
1292
1293
return retval;
1294
}
1295
1296
/**
1297
* pdc_pat_get_irt - Retrieve the cell's interrupt table.
1298
* @r_addr: The return buffer.
1299
* @cell_num: The target cell.
1300
*
1301
* This PDC function returns the actual interrupt table for the specified cell.
1302
*/
1303
int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1304
{
1305
int retval;
1306
unsigned long flags;
1307
1308
spin_lock_irqsave(&pdc_lock, flags);
1309
retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1310
__pa(r_addr), cell_num);
1311
spin_unlock_irqrestore(&pdc_lock, flags);
1312
1313
return retval;
1314
}
1315
1316
/**
1317
* pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1318
* @actlen: The return buffer.
1319
* @mem_addr: Pointer to the memory buffer.
1320
* @count: The number of bytes to read from the buffer.
1321
* @offset: The offset with respect to the beginning of the buffer.
1322
*
1323
*/
1324
int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1325
unsigned long count, unsigned long offset)
1326
{
1327
int retval;
1328
unsigned long flags;
1329
1330
spin_lock_irqsave(&pdc_lock, flags);
1331
retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1332
__pa(pdc_result2), count, offset);
1333
*actual_len = pdc_result[0];
1334
memcpy(mem_addr, pdc_result2, *actual_len);
1335
spin_unlock_irqrestore(&pdc_lock, flags);
1336
1337
return retval;
1338
}
1339
1340
/**
1341
* pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1342
* @pci_addr: PCI configuration space address for which the read request is being made.
1343
* @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1344
* @mem_addr: Pointer to return memory buffer.
1345
*
1346
*/
1347
int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1348
{
1349
int retval;
1350
unsigned long flags;
1351
1352
spin_lock_irqsave(&pdc_lock, flags);
1353
retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1354
__pa(pdc_result), pci_addr, pci_size);
1355
switch(pci_size) {
1356
case 1: *(u8 *) mem_addr = (u8) pdc_result[0];
1357
case 2: *(u16 *)mem_addr = (u16) pdc_result[0];
1358
case 4: *(u32 *)mem_addr = (u32) pdc_result[0];
1359
}
1360
spin_unlock_irqrestore(&pdc_lock, flags);
1361
1362
return retval;
1363
}
1364
1365
/**
1366
* pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1367
* @pci_addr: PCI configuration space address for which the write request is being made.
1368
* @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1369
* @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1370
* written to PCI Config space.
1371
*
1372
*/
1373
int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1374
{
1375
int retval;
1376
unsigned long flags;
1377
1378
spin_lock_irqsave(&pdc_lock, flags);
1379
retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1380
pci_addr, pci_size, val);
1381
spin_unlock_irqrestore(&pdc_lock, flags);
1382
1383
return retval;
1384
}
1385
#endif /* CONFIG_64BIT */
1386
1387
1388
/***************** 32-bit real-mode calls ***********/
1389
/* The struct below is used
1390
* to overlay real_stack (real2.S), preparing a 32-bit call frame.
1391
* real32_call_asm() then uses this stack in narrow real mode
1392
*/
1393
1394
struct narrow_stack {
1395
/* use int, not long which is 64 bits */
1396
unsigned int arg13;
1397
unsigned int arg12;
1398
unsigned int arg11;
1399
unsigned int arg10;
1400
unsigned int arg9;
1401
unsigned int arg8;
1402
unsigned int arg7;
1403
unsigned int arg6;
1404
unsigned int arg5;
1405
unsigned int arg4;
1406
unsigned int arg3;
1407
unsigned int arg2;
1408
unsigned int arg1;
1409
unsigned int arg0;
1410
unsigned int frame_marker[8];
1411
unsigned int sp;
1412
/* in reality, there's nearly 8k of stack after this */
1413
};
1414
1415
long real32_call(unsigned long fn, ...)
1416
{
1417
va_list args;
1418
extern struct narrow_stack real_stack;
1419
extern unsigned long real32_call_asm(unsigned int *,
1420
unsigned int *,
1421
unsigned int);
1422
1423
va_start(args, fn);
1424
real_stack.arg0 = va_arg(args, unsigned int);
1425
real_stack.arg1 = va_arg(args, unsigned int);
1426
real_stack.arg2 = va_arg(args, unsigned int);
1427
real_stack.arg3 = va_arg(args, unsigned int);
1428
real_stack.arg4 = va_arg(args, unsigned int);
1429
real_stack.arg5 = va_arg(args, unsigned int);
1430
real_stack.arg6 = va_arg(args, unsigned int);
1431
real_stack.arg7 = va_arg(args, unsigned int);
1432
real_stack.arg8 = va_arg(args, unsigned int);
1433
real_stack.arg9 = va_arg(args, unsigned int);
1434
real_stack.arg10 = va_arg(args, unsigned int);
1435
real_stack.arg11 = va_arg(args, unsigned int);
1436
real_stack.arg12 = va_arg(args, unsigned int);
1437
real_stack.arg13 = va_arg(args, unsigned int);
1438
va_end(args);
1439
1440
return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1441
}
1442
1443
#ifdef CONFIG_64BIT
1444
/***************** 64-bit real-mode calls ***********/
1445
1446
struct wide_stack {
1447
unsigned long arg0;
1448
unsigned long arg1;
1449
unsigned long arg2;
1450
unsigned long arg3;
1451
unsigned long arg4;
1452
unsigned long arg5;
1453
unsigned long arg6;
1454
unsigned long arg7;
1455
unsigned long arg8;
1456
unsigned long arg9;
1457
unsigned long arg10;
1458
unsigned long arg11;
1459
unsigned long arg12;
1460
unsigned long arg13;
1461
unsigned long frame_marker[2]; /* rp, previous sp */
1462
unsigned long sp;
1463
/* in reality, there's nearly 8k of stack after this */
1464
};
1465
1466
long real64_call(unsigned long fn, ...)
1467
{
1468
va_list args;
1469
extern struct wide_stack real64_stack;
1470
extern unsigned long real64_call_asm(unsigned long *,
1471
unsigned long *,
1472
unsigned long);
1473
1474
va_start(args, fn);
1475
real64_stack.arg0 = va_arg(args, unsigned long);
1476
real64_stack.arg1 = va_arg(args, unsigned long);
1477
real64_stack.arg2 = va_arg(args, unsigned long);
1478
real64_stack.arg3 = va_arg(args, unsigned long);
1479
real64_stack.arg4 = va_arg(args, unsigned long);
1480
real64_stack.arg5 = va_arg(args, unsigned long);
1481
real64_stack.arg6 = va_arg(args, unsigned long);
1482
real64_stack.arg7 = va_arg(args, unsigned long);
1483
real64_stack.arg8 = va_arg(args, unsigned long);
1484
real64_stack.arg9 = va_arg(args, unsigned long);
1485
real64_stack.arg10 = va_arg(args, unsigned long);
1486
real64_stack.arg11 = va_arg(args, unsigned long);
1487
real64_stack.arg12 = va_arg(args, unsigned long);
1488
real64_stack.arg13 = va_arg(args, unsigned long);
1489
va_end(args);
1490
1491
return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1492
}
1493
1494
#endif /* CONFIG_64BIT */
1495
1496
1497