Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/parisc/kernel/pci-dma.c
10817 views
1
/*
2
** PARISC 1.1 Dynamic DMA mapping support.
3
** This implementation is for PA-RISC platforms that do not support
4
** I/O TLBs (aka DMA address translation hardware).
5
** See Documentation/PCI/PCI-DMA-mapping.txt for interface definitions.
6
**
7
** (c) Copyright 1999,2000 Hewlett-Packard Company
8
** (c) Copyright 2000 Grant Grundler
9
** (c) Copyright 2000 Philipp Rumpf <[email protected]>
10
** (c) Copyright 2000 John Marvin
11
**
12
** "leveraged" from 2.3.47: arch/ia64/kernel/pci-dma.c.
13
** (I assume it's from David Mosberger-Tang but there was no Copyright)
14
**
15
** AFAIK, all PA7100LC and PA7300LC platforms can use this code.
16
**
17
** - ggg
18
*/
19
20
#include <linux/init.h>
21
#include <linux/gfp.h>
22
#include <linux/mm.h>
23
#include <linux/pci.h>
24
#include <linux/proc_fs.h>
25
#include <linux/seq_file.h>
26
#include <linux/string.h>
27
#include <linux/types.h>
28
#include <linux/scatterlist.h>
29
30
#include <asm/cacheflush.h>
31
#include <asm/dma.h> /* for DMA_CHUNK_SIZE */
32
#include <asm/io.h>
33
#include <asm/page.h> /* get_order */
34
#include <asm/pgalloc.h>
35
#include <asm/uaccess.h>
36
#include <asm/tlbflush.h> /* for purge_tlb_*() macros */
37
38
static struct proc_dir_entry * proc_gsc_root __read_mostly = NULL;
39
static unsigned long pcxl_used_bytes __read_mostly = 0;
40
static unsigned long pcxl_used_pages __read_mostly = 0;
41
42
extern unsigned long pcxl_dma_start; /* Start of pcxl dma mapping area */
43
static spinlock_t pcxl_res_lock;
44
static char *pcxl_res_map;
45
static int pcxl_res_hint;
46
static int pcxl_res_size;
47
48
#ifdef DEBUG_PCXL_RESOURCE
49
#define DBG_RES(x...) printk(x)
50
#else
51
#define DBG_RES(x...)
52
#endif
53
54
55
/*
56
** Dump a hex representation of the resource map.
57
*/
58
59
#ifdef DUMP_RESMAP
60
static
61
void dump_resmap(void)
62
{
63
u_long *res_ptr = (unsigned long *)pcxl_res_map;
64
u_long i = 0;
65
66
printk("res_map: ");
67
for(; i < (pcxl_res_size / sizeof(unsigned long)); ++i, ++res_ptr)
68
printk("%08lx ", *res_ptr);
69
70
printk("\n");
71
}
72
#else
73
static inline void dump_resmap(void) {;}
74
#endif
75
76
static int pa11_dma_supported( struct device *dev, u64 mask)
77
{
78
return 1;
79
}
80
81
static inline int map_pte_uncached(pte_t * pte,
82
unsigned long vaddr,
83
unsigned long size, unsigned long *paddr_ptr)
84
{
85
unsigned long end;
86
unsigned long orig_vaddr = vaddr;
87
88
vaddr &= ~PMD_MASK;
89
end = vaddr + size;
90
if (end > PMD_SIZE)
91
end = PMD_SIZE;
92
do {
93
unsigned long flags;
94
95
if (!pte_none(*pte))
96
printk(KERN_ERR "map_pte_uncached: page already exists\n");
97
set_pte(pte, __mk_pte(*paddr_ptr, PAGE_KERNEL_UNC));
98
purge_tlb_start(flags);
99
pdtlb_kernel(orig_vaddr);
100
purge_tlb_end(flags);
101
vaddr += PAGE_SIZE;
102
orig_vaddr += PAGE_SIZE;
103
(*paddr_ptr) += PAGE_SIZE;
104
pte++;
105
} while (vaddr < end);
106
return 0;
107
}
108
109
static inline int map_pmd_uncached(pmd_t * pmd, unsigned long vaddr,
110
unsigned long size, unsigned long *paddr_ptr)
111
{
112
unsigned long end;
113
unsigned long orig_vaddr = vaddr;
114
115
vaddr &= ~PGDIR_MASK;
116
end = vaddr + size;
117
if (end > PGDIR_SIZE)
118
end = PGDIR_SIZE;
119
do {
120
pte_t * pte = pte_alloc_kernel(pmd, vaddr);
121
if (!pte)
122
return -ENOMEM;
123
if (map_pte_uncached(pte, orig_vaddr, end - vaddr, paddr_ptr))
124
return -ENOMEM;
125
vaddr = (vaddr + PMD_SIZE) & PMD_MASK;
126
orig_vaddr += PMD_SIZE;
127
pmd++;
128
} while (vaddr < end);
129
return 0;
130
}
131
132
static inline int map_uncached_pages(unsigned long vaddr, unsigned long size,
133
unsigned long paddr)
134
{
135
pgd_t * dir;
136
unsigned long end = vaddr + size;
137
138
dir = pgd_offset_k(vaddr);
139
do {
140
pmd_t *pmd;
141
142
pmd = pmd_alloc(NULL, dir, vaddr);
143
if (!pmd)
144
return -ENOMEM;
145
if (map_pmd_uncached(pmd, vaddr, end - vaddr, &paddr))
146
return -ENOMEM;
147
vaddr = vaddr + PGDIR_SIZE;
148
dir++;
149
} while (vaddr && (vaddr < end));
150
return 0;
151
}
152
153
static inline void unmap_uncached_pte(pmd_t * pmd, unsigned long vaddr,
154
unsigned long size)
155
{
156
pte_t * pte;
157
unsigned long end;
158
unsigned long orig_vaddr = vaddr;
159
160
if (pmd_none(*pmd))
161
return;
162
if (pmd_bad(*pmd)) {
163
pmd_ERROR(*pmd);
164
pmd_clear(pmd);
165
return;
166
}
167
pte = pte_offset_map(pmd, vaddr);
168
vaddr &= ~PMD_MASK;
169
end = vaddr + size;
170
if (end > PMD_SIZE)
171
end = PMD_SIZE;
172
do {
173
unsigned long flags;
174
pte_t page = *pte;
175
176
pte_clear(&init_mm, vaddr, pte);
177
purge_tlb_start(flags);
178
pdtlb_kernel(orig_vaddr);
179
purge_tlb_end(flags);
180
vaddr += PAGE_SIZE;
181
orig_vaddr += PAGE_SIZE;
182
pte++;
183
if (pte_none(page) || pte_present(page))
184
continue;
185
printk(KERN_CRIT "Whee.. Swapped out page in kernel page table\n");
186
} while (vaddr < end);
187
}
188
189
static inline void unmap_uncached_pmd(pgd_t * dir, unsigned long vaddr,
190
unsigned long size)
191
{
192
pmd_t * pmd;
193
unsigned long end;
194
unsigned long orig_vaddr = vaddr;
195
196
if (pgd_none(*dir))
197
return;
198
if (pgd_bad(*dir)) {
199
pgd_ERROR(*dir);
200
pgd_clear(dir);
201
return;
202
}
203
pmd = pmd_offset(dir, vaddr);
204
vaddr &= ~PGDIR_MASK;
205
end = vaddr + size;
206
if (end > PGDIR_SIZE)
207
end = PGDIR_SIZE;
208
do {
209
unmap_uncached_pte(pmd, orig_vaddr, end - vaddr);
210
vaddr = (vaddr + PMD_SIZE) & PMD_MASK;
211
orig_vaddr += PMD_SIZE;
212
pmd++;
213
} while (vaddr < end);
214
}
215
216
static void unmap_uncached_pages(unsigned long vaddr, unsigned long size)
217
{
218
pgd_t * dir;
219
unsigned long end = vaddr + size;
220
221
dir = pgd_offset_k(vaddr);
222
do {
223
unmap_uncached_pmd(dir, vaddr, end - vaddr);
224
vaddr = vaddr + PGDIR_SIZE;
225
dir++;
226
} while (vaddr && (vaddr < end));
227
}
228
229
#define PCXL_SEARCH_LOOP(idx, mask, size) \
230
for(; res_ptr < res_end; ++res_ptr) \
231
{ \
232
if(0 == ((*res_ptr) & mask)) { \
233
*res_ptr |= mask; \
234
idx = (int)((u_long)res_ptr - (u_long)pcxl_res_map); \
235
pcxl_res_hint = idx + (size >> 3); \
236
goto resource_found; \
237
} \
238
}
239
240
#define PCXL_FIND_FREE_MAPPING(idx, mask, size) { \
241
u##size *res_ptr = (u##size *)&(pcxl_res_map[pcxl_res_hint & ~((size >> 3) - 1)]); \
242
u##size *res_end = (u##size *)&pcxl_res_map[pcxl_res_size]; \
243
PCXL_SEARCH_LOOP(idx, mask, size); \
244
res_ptr = (u##size *)&pcxl_res_map[0]; \
245
PCXL_SEARCH_LOOP(idx, mask, size); \
246
}
247
248
unsigned long
249
pcxl_alloc_range(size_t size)
250
{
251
int res_idx;
252
u_long mask, flags;
253
unsigned int pages_needed = size >> PAGE_SHIFT;
254
255
mask = (u_long) -1L;
256
mask >>= BITS_PER_LONG - pages_needed;
257
258
DBG_RES("pcxl_alloc_range() size: %d pages_needed %d pages_mask 0x%08lx\n",
259
size, pages_needed, mask);
260
261
spin_lock_irqsave(&pcxl_res_lock, flags);
262
263
if(pages_needed <= 8) {
264
PCXL_FIND_FREE_MAPPING(res_idx, mask, 8);
265
} else if(pages_needed <= 16) {
266
PCXL_FIND_FREE_MAPPING(res_idx, mask, 16);
267
} else if(pages_needed <= 32) {
268
PCXL_FIND_FREE_MAPPING(res_idx, mask, 32);
269
} else {
270
panic("%s: pcxl_alloc_range() Too many pages to map.\n",
271
__FILE__);
272
}
273
274
dump_resmap();
275
panic("%s: pcxl_alloc_range() out of dma mapping resources\n",
276
__FILE__);
277
278
resource_found:
279
280
DBG_RES("pcxl_alloc_range() res_idx %d mask 0x%08lx res_hint: %d\n",
281
res_idx, mask, pcxl_res_hint);
282
283
pcxl_used_pages += pages_needed;
284
pcxl_used_bytes += ((pages_needed >> 3) ? (pages_needed >> 3) : 1);
285
286
spin_unlock_irqrestore(&pcxl_res_lock, flags);
287
288
dump_resmap();
289
290
/*
291
** return the corresponding vaddr in the pcxl dma map
292
*/
293
return (pcxl_dma_start + (res_idx << (PAGE_SHIFT + 3)));
294
}
295
296
#define PCXL_FREE_MAPPINGS(idx, m, size) \
297
u##size *res_ptr = (u##size *)&(pcxl_res_map[(idx) + (((size >> 3) - 1) & (~((size >> 3) - 1)))]); \
298
/* BUG_ON((*res_ptr & m) != m); */ \
299
*res_ptr &= ~m;
300
301
/*
302
** clear bits in the pcxl resource map
303
*/
304
static void
305
pcxl_free_range(unsigned long vaddr, size_t size)
306
{
307
u_long mask, flags;
308
unsigned int res_idx = (vaddr - pcxl_dma_start) >> (PAGE_SHIFT + 3);
309
unsigned int pages_mapped = size >> PAGE_SHIFT;
310
311
mask = (u_long) -1L;
312
mask >>= BITS_PER_LONG - pages_mapped;
313
314
DBG_RES("pcxl_free_range() res_idx: %d size: %d pages_mapped %d mask 0x%08lx\n",
315
res_idx, size, pages_mapped, mask);
316
317
spin_lock_irqsave(&pcxl_res_lock, flags);
318
319
if(pages_mapped <= 8) {
320
PCXL_FREE_MAPPINGS(res_idx, mask, 8);
321
} else if(pages_mapped <= 16) {
322
PCXL_FREE_MAPPINGS(res_idx, mask, 16);
323
} else if(pages_mapped <= 32) {
324
PCXL_FREE_MAPPINGS(res_idx, mask, 32);
325
} else {
326
panic("%s: pcxl_free_range() Too many pages to unmap.\n",
327
__FILE__);
328
}
329
330
pcxl_used_pages -= (pages_mapped ? pages_mapped : 1);
331
pcxl_used_bytes -= ((pages_mapped >> 3) ? (pages_mapped >> 3) : 1);
332
333
spin_unlock_irqrestore(&pcxl_res_lock, flags);
334
335
dump_resmap();
336
}
337
338
static int proc_pcxl_dma_show(struct seq_file *m, void *v)
339
{
340
#if 0
341
u_long i = 0;
342
unsigned long *res_ptr = (u_long *)pcxl_res_map;
343
#endif
344
unsigned long total_pages = pcxl_res_size << 3; /* 8 bits per byte */
345
346
seq_printf(m, "\nDMA Mapping Area size : %d bytes (%ld pages)\n",
347
PCXL_DMA_MAP_SIZE, total_pages);
348
349
seq_printf(m, "Resource bitmap : %d bytes\n", pcxl_res_size);
350
351
seq_puts(m, " total: free: used: % used:\n");
352
seq_printf(m, "blocks %8d %8ld %8ld %8ld%%\n", pcxl_res_size,
353
pcxl_res_size - pcxl_used_bytes, pcxl_used_bytes,
354
(pcxl_used_bytes * 100) / pcxl_res_size);
355
356
seq_printf(m, "pages %8ld %8ld %8ld %8ld%%\n", total_pages,
357
total_pages - pcxl_used_pages, pcxl_used_pages,
358
(pcxl_used_pages * 100 / total_pages));
359
360
#if 0
361
seq_puts(m, "\nResource bitmap:");
362
363
for(; i < (pcxl_res_size / sizeof(u_long)); ++i, ++res_ptr) {
364
if ((i & 7) == 0)
365
seq_puts(m,"\n ");
366
seq_printf(m, "%s %08lx", buf, *res_ptr);
367
}
368
#endif
369
seq_putc(m, '\n');
370
return 0;
371
}
372
373
static int proc_pcxl_dma_open(struct inode *inode, struct file *file)
374
{
375
return single_open(file, proc_pcxl_dma_show, NULL);
376
}
377
378
static const struct file_operations proc_pcxl_dma_ops = {
379
.owner = THIS_MODULE,
380
.open = proc_pcxl_dma_open,
381
.read = seq_read,
382
.llseek = seq_lseek,
383
.release = single_release,
384
};
385
386
static int __init
387
pcxl_dma_init(void)
388
{
389
if (pcxl_dma_start == 0)
390
return 0;
391
392
spin_lock_init(&pcxl_res_lock);
393
pcxl_res_size = PCXL_DMA_MAP_SIZE >> (PAGE_SHIFT + 3);
394
pcxl_res_hint = 0;
395
pcxl_res_map = (char *)__get_free_pages(GFP_KERNEL,
396
get_order(pcxl_res_size));
397
memset(pcxl_res_map, 0, pcxl_res_size);
398
proc_gsc_root = proc_mkdir("gsc", NULL);
399
if (!proc_gsc_root)
400
printk(KERN_WARNING
401
"pcxl_dma_init: Unable to create gsc /proc dir entry\n");
402
else {
403
struct proc_dir_entry* ent;
404
ent = proc_create("pcxl_dma", 0, proc_gsc_root,
405
&proc_pcxl_dma_ops);
406
if (!ent)
407
printk(KERN_WARNING
408
"pci-dma.c: Unable to create pcxl_dma /proc entry.\n");
409
}
410
return 0;
411
}
412
413
__initcall(pcxl_dma_init);
414
415
static void * pa11_dma_alloc_consistent (struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag)
416
{
417
unsigned long vaddr;
418
unsigned long paddr;
419
int order;
420
421
order = get_order(size);
422
size = 1 << (order + PAGE_SHIFT);
423
vaddr = pcxl_alloc_range(size);
424
paddr = __get_free_pages(flag, order);
425
flush_kernel_dcache_range(paddr, size);
426
paddr = __pa(paddr);
427
map_uncached_pages(vaddr, size, paddr);
428
*dma_handle = (dma_addr_t) paddr;
429
430
#if 0
431
/* This probably isn't needed to support EISA cards.
432
** ISA cards will certainly only support 24-bit DMA addressing.
433
** Not clear if we can, want, or need to support ISA.
434
*/
435
if (!dev || *dev->coherent_dma_mask < 0xffffffff)
436
gfp |= GFP_DMA;
437
#endif
438
return (void *)vaddr;
439
}
440
441
static void pa11_dma_free_consistent (struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle)
442
{
443
int order;
444
445
order = get_order(size);
446
size = 1 << (order + PAGE_SHIFT);
447
unmap_uncached_pages((unsigned long)vaddr, size);
448
pcxl_free_range((unsigned long)vaddr, size);
449
free_pages((unsigned long)__va(dma_handle), order);
450
}
451
452
static dma_addr_t pa11_dma_map_single(struct device *dev, void *addr, size_t size, enum dma_data_direction direction)
453
{
454
BUG_ON(direction == DMA_NONE);
455
456
flush_kernel_dcache_range((unsigned long) addr, size);
457
return virt_to_phys(addr);
458
}
459
460
static void pa11_dma_unmap_single(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
461
{
462
BUG_ON(direction == DMA_NONE);
463
464
if (direction == DMA_TO_DEVICE)
465
return;
466
467
/*
468
* For PCI_DMA_FROMDEVICE this flush is not necessary for the
469
* simple map/unmap case. However, it IS necessary if if
470
* pci_dma_sync_single_* has been called and the buffer reused.
471
*/
472
473
flush_kernel_dcache_range((unsigned long) phys_to_virt(dma_handle), size);
474
return;
475
}
476
477
static int pa11_dma_map_sg(struct device *dev, struct scatterlist *sglist, int nents, enum dma_data_direction direction)
478
{
479
int i;
480
481
BUG_ON(direction == DMA_NONE);
482
483
for (i = 0; i < nents; i++, sglist++ ) {
484
unsigned long vaddr = sg_virt_addr(sglist);
485
sg_dma_address(sglist) = (dma_addr_t) virt_to_phys(vaddr);
486
sg_dma_len(sglist) = sglist->length;
487
flush_kernel_dcache_range(vaddr, sglist->length);
488
}
489
return nents;
490
}
491
492
static void pa11_dma_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents, enum dma_data_direction direction)
493
{
494
int i;
495
496
BUG_ON(direction == DMA_NONE);
497
498
if (direction == DMA_TO_DEVICE)
499
return;
500
501
/* once we do combining we'll need to use phys_to_virt(sg_dma_address(sglist)) */
502
503
for (i = 0; i < nents; i++, sglist++ )
504
flush_kernel_dcache_range(sg_virt_addr(sglist), sglist->length);
505
return;
506
}
507
508
static void pa11_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, unsigned long offset, size_t size, enum dma_data_direction direction)
509
{
510
BUG_ON(direction == DMA_NONE);
511
512
flush_kernel_dcache_range((unsigned long) phys_to_virt(dma_handle) + offset, size);
513
}
514
515
static void pa11_dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, unsigned long offset, size_t size, enum dma_data_direction direction)
516
{
517
BUG_ON(direction == DMA_NONE);
518
519
flush_kernel_dcache_range((unsigned long) phys_to_virt(dma_handle) + offset, size);
520
}
521
522
static void pa11_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sglist, int nents, enum dma_data_direction direction)
523
{
524
int i;
525
526
/* once we do combining we'll need to use phys_to_virt(sg_dma_address(sglist)) */
527
528
for (i = 0; i < nents; i++, sglist++ )
529
flush_kernel_dcache_range(sg_virt_addr(sglist), sglist->length);
530
}
531
532
static void pa11_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sglist, int nents, enum dma_data_direction direction)
533
{
534
int i;
535
536
/* once we do combining we'll need to use phys_to_virt(sg_dma_address(sglist)) */
537
538
for (i = 0; i < nents; i++, sglist++ )
539
flush_kernel_dcache_range(sg_virt_addr(sglist), sglist->length);
540
}
541
542
struct hppa_dma_ops pcxl_dma_ops = {
543
.dma_supported = pa11_dma_supported,
544
.alloc_consistent = pa11_dma_alloc_consistent,
545
.alloc_noncoherent = pa11_dma_alloc_consistent,
546
.free_consistent = pa11_dma_free_consistent,
547
.map_single = pa11_dma_map_single,
548
.unmap_single = pa11_dma_unmap_single,
549
.map_sg = pa11_dma_map_sg,
550
.unmap_sg = pa11_dma_unmap_sg,
551
.dma_sync_single_for_cpu = pa11_dma_sync_single_for_cpu,
552
.dma_sync_single_for_device = pa11_dma_sync_single_for_device,
553
.dma_sync_sg_for_cpu = pa11_dma_sync_sg_for_cpu,
554
.dma_sync_sg_for_device = pa11_dma_sync_sg_for_device,
555
};
556
557
static void *fail_alloc_consistent(struct device *dev, size_t size,
558
dma_addr_t *dma_handle, gfp_t flag)
559
{
560
return NULL;
561
}
562
563
static void *pa11_dma_alloc_noncoherent(struct device *dev, size_t size,
564
dma_addr_t *dma_handle, gfp_t flag)
565
{
566
void *addr;
567
568
addr = (void *)__get_free_pages(flag, get_order(size));
569
if (addr)
570
*dma_handle = (dma_addr_t)virt_to_phys(addr);
571
572
return addr;
573
}
574
575
static void pa11_dma_free_noncoherent(struct device *dev, size_t size,
576
void *vaddr, dma_addr_t iova)
577
{
578
free_pages((unsigned long)vaddr, get_order(size));
579
return;
580
}
581
582
struct hppa_dma_ops pcx_dma_ops = {
583
.dma_supported = pa11_dma_supported,
584
.alloc_consistent = fail_alloc_consistent,
585
.alloc_noncoherent = pa11_dma_alloc_noncoherent,
586
.free_consistent = pa11_dma_free_noncoherent,
587
.map_single = pa11_dma_map_single,
588
.unmap_single = pa11_dma_unmap_single,
589
.map_sg = pa11_dma_map_sg,
590
.unmap_sg = pa11_dma_unmap_sg,
591
.dma_sync_single_for_cpu = pa11_dma_sync_single_for_cpu,
592
.dma_sync_single_for_device = pa11_dma_sync_single_for_device,
593
.dma_sync_sg_for_cpu = pa11_dma_sync_sg_for_cpu,
594
.dma_sync_sg_for_device = pa11_dma_sync_sg_for_device,
595
};
596
597