Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/parisc/kernel/perf.c
10817 views
1
/*
2
* Parisc performance counters
3
* Copyright (C) 2001 Randolph Chung <[email protected]>
4
*
5
* This code is derived, with permission, from HP/UX sources.
6
*
7
* This program is free software; you can redistribute it and/or modify
8
* it under the terms of the GNU General Public License as published by
9
* the Free Software Foundation; either version 2, or (at your option)
10
* any later version.
11
*
12
* This program is distributed in the hope that it will be useful,
13
* but WITHOUT ANY WARRANTY; without even the implied warranty of
14
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15
* GNU General Public License for more details.
16
*
17
* You should have received a copy of the GNU General Public License
18
* along with this program; if not, write to the Free Software
19
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20
*/
21
22
/*
23
* Edited comment from original sources:
24
*
25
* This driver programs the PCX-U/PCX-W performance counters
26
* on the PA-RISC 2.0 chips. The driver keeps all images now
27
* internally to the kernel to hopefully eliminate the possibility
28
* of a bad image halting the CPU. Also, there are different
29
* images for the PCX-W and later chips vs the PCX-U chips.
30
*
31
* Only 1 process is allowed to access the driver at any time,
32
* so the only protection that is needed is at open and close.
33
* A variable "perf_enabled" is used to hold the state of the
34
* driver. The spinlock "perf_lock" is used to protect the
35
* modification of the state during open/close operations so
36
* multiple processes don't get into the driver simultaneously.
37
*
38
* This driver accesses the processor directly vs going through
39
* the PDC INTRIGUE calls. This is done to eliminate bugs introduced
40
* in various PDC revisions. The code is much more maintainable
41
* and reliable this way vs having to debug on every version of PDC
42
* on every box.
43
*/
44
45
#include <linux/capability.h>
46
#include <linux/init.h>
47
#include <linux/proc_fs.h>
48
#include <linux/miscdevice.h>
49
#include <linux/spinlock.h>
50
51
#include <asm/uaccess.h>
52
#include <asm/perf.h>
53
#include <asm/parisc-device.h>
54
#include <asm/processor.h>
55
#include <asm/runway.h>
56
#include <asm/io.h> /* for __raw_read() */
57
58
#include "perf_images.h"
59
60
#define MAX_RDR_WORDS 24
61
#define PERF_VERSION 2 /* derived from hpux's PI v2 interface */
62
63
/* definition of RDR regs */
64
struct rdr_tbl_ent {
65
uint16_t width;
66
uint8_t num_words;
67
uint8_t write_control;
68
};
69
70
static int perf_processor_interface __read_mostly = UNKNOWN_INTF;
71
static int perf_enabled __read_mostly;
72
static spinlock_t perf_lock;
73
struct parisc_device *cpu_device __read_mostly;
74
75
/* RDRs to write for PCX-W */
76
static const int perf_rdrs_W[] =
77
{ 0, 1, 4, 5, 6, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 };
78
79
/* RDRs to write for PCX-U */
80
static const int perf_rdrs_U[] =
81
{ 0, 1, 4, 5, 6, 7, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 };
82
83
/* RDR register descriptions for PCX-W */
84
static const struct rdr_tbl_ent perf_rdr_tbl_W[] = {
85
{ 19, 1, 8 }, /* RDR 0 */
86
{ 16, 1, 16 }, /* RDR 1 */
87
{ 72, 2, 0 }, /* RDR 2 */
88
{ 81, 2, 0 }, /* RDR 3 */
89
{ 328, 6, 0 }, /* RDR 4 */
90
{ 160, 3, 0 }, /* RDR 5 */
91
{ 336, 6, 0 }, /* RDR 6 */
92
{ 164, 3, 0 }, /* RDR 7 */
93
{ 0, 0, 0 }, /* RDR 8 */
94
{ 35, 1, 0 }, /* RDR 9 */
95
{ 6, 1, 0 }, /* RDR 10 */
96
{ 18, 1, 0 }, /* RDR 11 */
97
{ 13, 1, 0 }, /* RDR 12 */
98
{ 8, 1, 0 }, /* RDR 13 */
99
{ 8, 1, 0 }, /* RDR 14 */
100
{ 8, 1, 0 }, /* RDR 15 */
101
{ 1530, 24, 0 }, /* RDR 16 */
102
{ 16, 1, 0 }, /* RDR 17 */
103
{ 4, 1, 0 }, /* RDR 18 */
104
{ 0, 0, 0 }, /* RDR 19 */
105
{ 152, 3, 24 }, /* RDR 20 */
106
{ 152, 3, 24 }, /* RDR 21 */
107
{ 233, 4, 48 }, /* RDR 22 */
108
{ 233, 4, 48 }, /* RDR 23 */
109
{ 71, 2, 0 }, /* RDR 24 */
110
{ 71, 2, 0 }, /* RDR 25 */
111
{ 11, 1, 0 }, /* RDR 26 */
112
{ 18, 1, 0 }, /* RDR 27 */
113
{ 128, 2, 0 }, /* RDR 28 */
114
{ 0, 0, 0 }, /* RDR 29 */
115
{ 16, 1, 0 }, /* RDR 30 */
116
{ 16, 1, 0 }, /* RDR 31 */
117
};
118
119
/* RDR register descriptions for PCX-U */
120
static const struct rdr_tbl_ent perf_rdr_tbl_U[] = {
121
{ 19, 1, 8 }, /* RDR 0 */
122
{ 32, 1, 16 }, /* RDR 1 */
123
{ 20, 1, 0 }, /* RDR 2 */
124
{ 0, 0, 0 }, /* RDR 3 */
125
{ 344, 6, 0 }, /* RDR 4 */
126
{ 176, 3, 0 }, /* RDR 5 */
127
{ 336, 6, 0 }, /* RDR 6 */
128
{ 0, 0, 0 }, /* RDR 7 */
129
{ 0, 0, 0 }, /* RDR 8 */
130
{ 0, 0, 0 }, /* RDR 9 */
131
{ 28, 1, 0 }, /* RDR 10 */
132
{ 33, 1, 0 }, /* RDR 11 */
133
{ 0, 0, 0 }, /* RDR 12 */
134
{ 230, 4, 0 }, /* RDR 13 */
135
{ 32, 1, 0 }, /* RDR 14 */
136
{ 128, 2, 0 }, /* RDR 15 */
137
{ 1494, 24, 0 }, /* RDR 16 */
138
{ 18, 1, 0 }, /* RDR 17 */
139
{ 4, 1, 0 }, /* RDR 18 */
140
{ 0, 0, 0 }, /* RDR 19 */
141
{ 158, 3, 24 }, /* RDR 20 */
142
{ 158, 3, 24 }, /* RDR 21 */
143
{ 194, 4, 48 }, /* RDR 22 */
144
{ 194, 4, 48 }, /* RDR 23 */
145
{ 71, 2, 0 }, /* RDR 24 */
146
{ 71, 2, 0 }, /* RDR 25 */
147
{ 28, 1, 0 }, /* RDR 26 */
148
{ 33, 1, 0 }, /* RDR 27 */
149
{ 88, 2, 0 }, /* RDR 28 */
150
{ 32, 1, 0 }, /* RDR 29 */
151
{ 24, 1, 0 }, /* RDR 30 */
152
{ 16, 1, 0 }, /* RDR 31 */
153
};
154
155
/*
156
* A non-zero write_control in the above tables is a byte offset into
157
* this array.
158
*/
159
static const uint64_t perf_bitmasks[] = {
160
0x0000000000000000ul, /* first dbl word must be zero */
161
0xfdffe00000000000ul, /* RDR0 bitmask */
162
0x003f000000000000ul, /* RDR1 bitmask */
163
0x00fffffffffffffful, /* RDR20-RDR21 bitmask (152 bits) */
164
0xfffffffffffffffful,
165
0xfffffffc00000000ul,
166
0xfffffffffffffffful, /* RDR22-RDR23 bitmask (233 bits) */
167
0xfffffffffffffffful,
168
0xfffffffffffffffcul,
169
0xff00000000000000ul
170
};
171
172
/*
173
* Write control bitmasks for Pa-8700 processor given
174
* some things have changed slightly.
175
*/
176
static const uint64_t perf_bitmasks_piranha[] = {
177
0x0000000000000000ul, /* first dbl word must be zero */
178
0xfdffe00000000000ul, /* RDR0 bitmask */
179
0x003f000000000000ul, /* RDR1 bitmask */
180
0x00fffffffffffffful, /* RDR20-RDR21 bitmask (158 bits) */
181
0xfffffffffffffffful,
182
0xfffffffc00000000ul,
183
0xfffffffffffffffful, /* RDR22-RDR23 bitmask (210 bits) */
184
0xfffffffffffffffful,
185
0xfffffffffffffffful,
186
0xfffc000000000000ul
187
};
188
189
static const uint64_t *bitmask_array; /* array of bitmasks to use */
190
191
/******************************************************************************
192
* Function Prototypes
193
*****************************************************************************/
194
static int perf_config(uint32_t *image_ptr);
195
static int perf_release(struct inode *inode, struct file *file);
196
static int perf_open(struct inode *inode, struct file *file);
197
static ssize_t perf_read(struct file *file, char __user *buf, size_t cnt, loff_t *ppos);
198
static ssize_t perf_write(struct file *file, const char __user *buf, size_t count,
199
loff_t *ppos);
200
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
201
static void perf_start_counters(void);
202
static int perf_stop_counters(uint32_t *raddr);
203
static const struct rdr_tbl_ent * perf_rdr_get_entry(uint32_t rdr_num);
204
static int perf_rdr_read_ubuf(uint32_t rdr_num, uint64_t *buffer);
205
static int perf_rdr_clear(uint32_t rdr_num);
206
static int perf_write_image(uint64_t *memaddr);
207
static void perf_rdr_write(uint32_t rdr_num, uint64_t *buffer);
208
209
/* External Assembly Routines */
210
extern uint64_t perf_rdr_shift_in_W (uint32_t rdr_num, uint16_t width);
211
extern uint64_t perf_rdr_shift_in_U (uint32_t rdr_num, uint16_t width);
212
extern void perf_rdr_shift_out_W (uint32_t rdr_num, uint64_t buffer);
213
extern void perf_rdr_shift_out_U (uint32_t rdr_num, uint64_t buffer);
214
extern void perf_intrigue_enable_perf_counters (void);
215
extern void perf_intrigue_disable_perf_counters (void);
216
217
/******************************************************************************
218
* Function Definitions
219
*****************************************************************************/
220
221
222
/*
223
* configure:
224
*
225
* Configure the cpu with a given data image. First turn off the counters,
226
* then download the image, then turn the counters back on.
227
*/
228
static int perf_config(uint32_t *image_ptr)
229
{
230
long error;
231
uint32_t raddr[4];
232
233
/* Stop the counters*/
234
error = perf_stop_counters(raddr);
235
if (error != 0) {
236
printk("perf_config: perf_stop_counters = %ld\n", error);
237
return -EINVAL;
238
}
239
240
printk("Preparing to write image\n");
241
/* Write the image to the chip */
242
error = perf_write_image((uint64_t *)image_ptr);
243
if (error != 0) {
244
printk("perf_config: DOWNLOAD = %ld\n", error);
245
return -EINVAL;
246
}
247
248
printk("Preparing to start counters\n");
249
250
/* Start the counters */
251
perf_start_counters();
252
253
return sizeof(uint32_t);
254
}
255
256
/*
257
* Open the device and initialize all of its memory. The device is only
258
* opened once, but can be "queried" by multiple processes that know its
259
* file descriptor.
260
*/
261
static int perf_open(struct inode *inode, struct file *file)
262
{
263
spin_lock(&perf_lock);
264
if (perf_enabled) {
265
spin_unlock(&perf_lock);
266
return -EBUSY;
267
}
268
perf_enabled = 1;
269
spin_unlock(&perf_lock);
270
271
return 0;
272
}
273
274
/*
275
* Close the device.
276
*/
277
static int perf_release(struct inode *inode, struct file *file)
278
{
279
spin_lock(&perf_lock);
280
perf_enabled = 0;
281
spin_unlock(&perf_lock);
282
283
return 0;
284
}
285
286
/*
287
* Read does nothing for this driver
288
*/
289
static ssize_t perf_read(struct file *file, char __user *buf, size_t cnt, loff_t *ppos)
290
{
291
return 0;
292
}
293
294
/*
295
* write:
296
*
297
* This routine downloads the image to the chip. It must be
298
* called on the processor that the download should happen
299
* on.
300
*/
301
static ssize_t perf_write(struct file *file, const char __user *buf, size_t count,
302
loff_t *ppos)
303
{
304
int err;
305
size_t image_size;
306
uint32_t image_type;
307
uint32_t interface_type;
308
uint32_t test;
309
310
if (perf_processor_interface == ONYX_INTF)
311
image_size = PCXU_IMAGE_SIZE;
312
else if (perf_processor_interface == CUDA_INTF)
313
image_size = PCXW_IMAGE_SIZE;
314
else
315
return -EFAULT;
316
317
if (!capable(CAP_SYS_ADMIN))
318
return -EACCES;
319
320
if (count != sizeof(uint32_t))
321
return -EIO;
322
323
if ((err = copy_from_user(&image_type, buf, sizeof(uint32_t))) != 0)
324
return err;
325
326
/* Get the interface type and test type */
327
interface_type = (image_type >> 16) & 0xffff;
328
test = (image_type & 0xffff);
329
330
/* Make sure everything makes sense */
331
332
/* First check the machine type is correct for
333
the requested image */
334
if (((perf_processor_interface == CUDA_INTF) &&
335
(interface_type != CUDA_INTF)) ||
336
((perf_processor_interface == ONYX_INTF) &&
337
(interface_type != ONYX_INTF)))
338
return -EINVAL;
339
340
/* Next check to make sure the requested image
341
is valid */
342
if (((interface_type == CUDA_INTF) &&
343
(test >= MAX_CUDA_IMAGES)) ||
344
((interface_type == ONYX_INTF) &&
345
(test >= MAX_ONYX_IMAGES)))
346
return -EINVAL;
347
348
/* Copy the image into the processor */
349
if (interface_type == CUDA_INTF)
350
return perf_config(cuda_images[test]);
351
else
352
return perf_config(onyx_images[test]);
353
354
return count;
355
}
356
357
/*
358
* Patch the images that need to know the IVA addresses.
359
*/
360
static void perf_patch_images(void)
361
{
362
#if 0 /* FIXME!! */
363
/*
364
* NOTE: this routine is VERY specific to the current TLB image.
365
* If the image is changed, this routine might also need to be changed.
366
*/
367
extern void $i_itlb_miss_2_0();
368
extern void $i_dtlb_miss_2_0();
369
extern void PA2_0_iva();
370
371
/*
372
* We can only use the lower 32-bits, the upper 32-bits should be 0
373
* anyway given this is in the kernel
374
*/
375
uint32_t itlb_addr = (uint32_t)&($i_itlb_miss_2_0);
376
uint32_t dtlb_addr = (uint32_t)&($i_dtlb_miss_2_0);
377
uint32_t IVAaddress = (uint32_t)&PA2_0_iva;
378
379
if (perf_processor_interface == ONYX_INTF) {
380
/* clear last 2 bytes */
381
onyx_images[TLBMISS][15] &= 0xffffff00;
382
/* set 2 bytes */
383
onyx_images[TLBMISS][15] |= (0x000000ff&((dtlb_addr) >> 24));
384
onyx_images[TLBMISS][16] = (dtlb_addr << 8)&0xffffff00;
385
onyx_images[TLBMISS][17] = itlb_addr;
386
387
/* clear last 2 bytes */
388
onyx_images[TLBHANDMISS][15] &= 0xffffff00;
389
/* set 2 bytes */
390
onyx_images[TLBHANDMISS][15] |= (0x000000ff&((dtlb_addr) >> 24));
391
onyx_images[TLBHANDMISS][16] = (dtlb_addr << 8)&0xffffff00;
392
onyx_images[TLBHANDMISS][17] = itlb_addr;
393
394
/* clear last 2 bytes */
395
onyx_images[BIG_CPI][15] &= 0xffffff00;
396
/* set 2 bytes */
397
onyx_images[BIG_CPI][15] |= (0x000000ff&((dtlb_addr) >> 24));
398
onyx_images[BIG_CPI][16] = (dtlb_addr << 8)&0xffffff00;
399
onyx_images[BIG_CPI][17] = itlb_addr;
400
401
onyx_images[PANIC][15] &= 0xffffff00; /* clear last 2 bytes */
402
onyx_images[PANIC][15] |= (0x000000ff&((IVAaddress) >> 24)); /* set 2 bytes */
403
onyx_images[PANIC][16] = (IVAaddress << 8)&0xffffff00;
404
405
406
} else if (perf_processor_interface == CUDA_INTF) {
407
/* Cuda interface */
408
cuda_images[TLBMISS][16] =
409
(cuda_images[TLBMISS][16]&0xffff0000) |
410
((dtlb_addr >> 8)&0x0000ffff);
411
cuda_images[TLBMISS][17] =
412
((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
413
cuda_images[TLBMISS][18] = (itlb_addr << 16)&0xffff0000;
414
415
cuda_images[TLBHANDMISS][16] =
416
(cuda_images[TLBHANDMISS][16]&0xffff0000) |
417
((dtlb_addr >> 8)&0x0000ffff);
418
cuda_images[TLBHANDMISS][17] =
419
((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
420
cuda_images[TLBHANDMISS][18] = (itlb_addr << 16)&0xffff0000;
421
422
cuda_images[BIG_CPI][16] =
423
(cuda_images[BIG_CPI][16]&0xffff0000) |
424
((dtlb_addr >> 8)&0x0000ffff);
425
cuda_images[BIG_CPI][17] =
426
((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
427
cuda_images[BIG_CPI][18] = (itlb_addr << 16)&0xffff0000;
428
} else {
429
/* Unknown type */
430
}
431
#endif
432
}
433
434
435
/*
436
* ioctl routine
437
* All routines effect the processor that they are executed on. Thus you
438
* must be running on the processor that you wish to change.
439
*/
440
441
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
442
{
443
long error_start;
444
uint32_t raddr[4];
445
int error = 0;
446
447
switch (cmd) {
448
449
case PA_PERF_ON:
450
/* Start the counters */
451
perf_start_counters();
452
break;
453
454
case PA_PERF_OFF:
455
error_start = perf_stop_counters(raddr);
456
if (error_start != 0) {
457
printk(KERN_ERR "perf_off: perf_stop_counters = %ld\n", error_start);
458
error = -EFAULT;
459
break;
460
}
461
462
/* copy out the Counters */
463
if (copy_to_user((void __user *)arg, raddr,
464
sizeof (raddr)) != 0) {
465
error = -EFAULT;
466
break;
467
}
468
break;
469
470
case PA_PERF_VERSION:
471
/* Return the version # */
472
error = put_user(PERF_VERSION, (int *)arg);
473
break;
474
475
default:
476
error = -ENOTTY;
477
}
478
479
return error;
480
}
481
482
static const struct file_operations perf_fops = {
483
.llseek = no_llseek,
484
.read = perf_read,
485
.write = perf_write,
486
.unlocked_ioctl = perf_ioctl,
487
.compat_ioctl = perf_ioctl,
488
.open = perf_open,
489
.release = perf_release
490
};
491
492
static struct miscdevice perf_dev = {
493
MISC_DYNAMIC_MINOR,
494
PA_PERF_DEV,
495
&perf_fops
496
};
497
498
/*
499
* Initialize the module
500
*/
501
static int __init perf_init(void)
502
{
503
int ret;
504
505
/* Determine correct processor interface to use */
506
bitmask_array = perf_bitmasks;
507
508
if (boot_cpu_data.cpu_type == pcxu ||
509
boot_cpu_data.cpu_type == pcxu_) {
510
perf_processor_interface = ONYX_INTF;
511
} else if (boot_cpu_data.cpu_type == pcxw ||
512
boot_cpu_data.cpu_type == pcxw_ ||
513
boot_cpu_data.cpu_type == pcxw2 ||
514
boot_cpu_data.cpu_type == mako ||
515
boot_cpu_data.cpu_type == mako2) {
516
perf_processor_interface = CUDA_INTF;
517
if (boot_cpu_data.cpu_type == pcxw2 ||
518
boot_cpu_data.cpu_type == mako ||
519
boot_cpu_data.cpu_type == mako2)
520
bitmask_array = perf_bitmasks_piranha;
521
} else {
522
perf_processor_interface = UNKNOWN_INTF;
523
printk("Performance monitoring counters not supported on this processor\n");
524
return -ENODEV;
525
}
526
527
ret = misc_register(&perf_dev);
528
if (ret) {
529
printk(KERN_ERR "Performance monitoring counters: "
530
"cannot register misc device.\n");
531
return ret;
532
}
533
534
/* Patch the images to match the system */
535
perf_patch_images();
536
537
spin_lock_init(&perf_lock);
538
539
/* TODO: this only lets us access the first cpu.. what to do for SMP? */
540
cpu_device = per_cpu(cpu_data, 0).dev;
541
printk("Performance monitoring counters enabled for %s\n",
542
per_cpu(cpu_data, 0).dev->name);
543
544
return 0;
545
}
546
547
/*
548
* perf_start_counters(void)
549
*
550
* Start the counters.
551
*/
552
static void perf_start_counters(void)
553
{
554
/* Enable performance monitor counters */
555
perf_intrigue_enable_perf_counters();
556
}
557
558
/*
559
* perf_stop_counters
560
*
561
* Stop the performance counters and save counts
562
* in a per_processor array.
563
*/
564
static int perf_stop_counters(uint32_t *raddr)
565
{
566
uint64_t userbuf[MAX_RDR_WORDS];
567
568
/* Disable performance counters */
569
perf_intrigue_disable_perf_counters();
570
571
if (perf_processor_interface == ONYX_INTF) {
572
uint64_t tmp64;
573
/*
574
* Read the counters
575
*/
576
if (!perf_rdr_read_ubuf(16, userbuf))
577
return -13;
578
579
/* Counter0 is bits 1398 to 1429 */
580
tmp64 = (userbuf[21] << 22) & 0x00000000ffc00000;
581
tmp64 |= (userbuf[22] >> 42) & 0x00000000003fffff;
582
/* OR sticky0 (bit 1430) to counter0 bit 32 */
583
tmp64 |= (userbuf[22] >> 10) & 0x0000000080000000;
584
raddr[0] = (uint32_t)tmp64;
585
586
/* Counter1 is bits 1431 to 1462 */
587
tmp64 = (userbuf[22] >> 9) & 0x00000000ffffffff;
588
/* OR sticky1 (bit 1463) to counter1 bit 32 */
589
tmp64 |= (userbuf[22] << 23) & 0x0000000080000000;
590
raddr[1] = (uint32_t)tmp64;
591
592
/* Counter2 is bits 1464 to 1495 */
593
tmp64 = (userbuf[22] << 24) & 0x00000000ff000000;
594
tmp64 |= (userbuf[23] >> 40) & 0x0000000000ffffff;
595
/* OR sticky2 (bit 1496) to counter2 bit 32 */
596
tmp64 |= (userbuf[23] >> 8) & 0x0000000080000000;
597
raddr[2] = (uint32_t)tmp64;
598
599
/* Counter3 is bits 1497 to 1528 */
600
tmp64 = (userbuf[23] >> 7) & 0x00000000ffffffff;
601
/* OR sticky3 (bit 1529) to counter3 bit 32 */
602
tmp64 |= (userbuf[23] << 25) & 0x0000000080000000;
603
raddr[3] = (uint32_t)tmp64;
604
605
/*
606
* Zero out the counters
607
*/
608
609
/*
610
* The counters and sticky-bits comprise the last 132 bits
611
* (1398 - 1529) of RDR16 on a U chip. We'll zero these
612
* out the easy way: zero out last 10 bits of dword 21,
613
* all of dword 22 and 58 bits (plus 6 don't care bits) of
614
* dword 23.
615
*/
616
userbuf[21] &= 0xfffffffffffffc00ul; /* 0 to last 10 bits */
617
userbuf[22] = 0;
618
userbuf[23] = 0;
619
620
/*
621
* Write back the zeroed bytes + the image given
622
* the read was destructive.
623
*/
624
perf_rdr_write(16, userbuf);
625
} else {
626
627
/*
628
* Read RDR-15 which contains the counters and sticky bits
629
*/
630
if (!perf_rdr_read_ubuf(15, userbuf)) {
631
return -13;
632
}
633
634
/*
635
* Clear out the counters
636
*/
637
perf_rdr_clear(15);
638
639
/*
640
* Copy the counters
641
*/
642
raddr[0] = (uint32_t)((userbuf[0] >> 32) & 0x00000000ffffffffUL);
643
raddr[1] = (uint32_t)(userbuf[0] & 0x00000000ffffffffUL);
644
raddr[2] = (uint32_t)((userbuf[1] >> 32) & 0x00000000ffffffffUL);
645
raddr[3] = (uint32_t)(userbuf[1] & 0x00000000ffffffffUL);
646
}
647
648
return 0;
649
}
650
651
/*
652
* perf_rdr_get_entry
653
*
654
* Retrieve a pointer to the description of what this
655
* RDR contains.
656
*/
657
static const struct rdr_tbl_ent * perf_rdr_get_entry(uint32_t rdr_num)
658
{
659
if (perf_processor_interface == ONYX_INTF) {
660
return &perf_rdr_tbl_U[rdr_num];
661
} else {
662
return &perf_rdr_tbl_W[rdr_num];
663
}
664
}
665
666
/*
667
* perf_rdr_read_ubuf
668
*
669
* Read the RDR value into the buffer specified.
670
*/
671
static int perf_rdr_read_ubuf(uint32_t rdr_num, uint64_t *buffer)
672
{
673
uint64_t data, data_mask = 0;
674
uint32_t width, xbits, i;
675
const struct rdr_tbl_ent *tentry;
676
677
tentry = perf_rdr_get_entry(rdr_num);
678
if ((width = tentry->width) == 0)
679
return 0;
680
681
/* Clear out buffer */
682
i = tentry->num_words;
683
while (i--) {
684
buffer[i] = 0;
685
}
686
687
/* Check for bits an even number of 64 */
688
if ((xbits = width & 0x03f) != 0) {
689
data_mask = 1;
690
data_mask <<= (64 - xbits);
691
data_mask--;
692
}
693
694
/* Grab all of the data */
695
i = tentry->num_words;
696
while (i--) {
697
698
if (perf_processor_interface == ONYX_INTF) {
699
data = perf_rdr_shift_in_U(rdr_num, width);
700
} else {
701
data = perf_rdr_shift_in_W(rdr_num, width);
702
}
703
if (xbits) {
704
buffer[i] |= (data << (64 - xbits));
705
if (i) {
706
buffer[i-1] |= ((data >> xbits) & data_mask);
707
}
708
} else {
709
buffer[i] = data;
710
}
711
}
712
713
return 1;
714
}
715
716
/*
717
* perf_rdr_clear
718
*
719
* Zero out the given RDR register
720
*/
721
static int perf_rdr_clear(uint32_t rdr_num)
722
{
723
const struct rdr_tbl_ent *tentry;
724
int32_t i;
725
726
tentry = perf_rdr_get_entry(rdr_num);
727
728
if (tentry->width == 0) {
729
return -1;
730
}
731
732
i = tentry->num_words;
733
while (i--) {
734
if (perf_processor_interface == ONYX_INTF) {
735
perf_rdr_shift_out_U(rdr_num, 0UL);
736
} else {
737
perf_rdr_shift_out_W(rdr_num, 0UL);
738
}
739
}
740
741
return 0;
742
}
743
744
745
/*
746
* perf_write_image
747
*
748
* Write the given image out to the processor
749
*/
750
static int perf_write_image(uint64_t *memaddr)
751
{
752
uint64_t buffer[MAX_RDR_WORDS];
753
uint64_t *bptr;
754
uint32_t dwords;
755
const uint32_t *intrigue_rdr;
756
const uint64_t *intrigue_bitmask;
757
uint64_t tmp64;
758
void __iomem *runway;
759
const struct rdr_tbl_ent *tentry;
760
int i;
761
762
/* Clear out counters */
763
if (perf_processor_interface == ONYX_INTF) {
764
765
perf_rdr_clear(16);
766
767
/* Toggle performance monitor */
768
perf_intrigue_enable_perf_counters();
769
perf_intrigue_disable_perf_counters();
770
771
intrigue_rdr = perf_rdrs_U;
772
} else {
773
perf_rdr_clear(15);
774
intrigue_rdr = perf_rdrs_W;
775
}
776
777
/* Write all RDRs */
778
while (*intrigue_rdr != -1) {
779
tentry = perf_rdr_get_entry(*intrigue_rdr);
780
perf_rdr_read_ubuf(*intrigue_rdr, buffer);
781
bptr = &buffer[0];
782
dwords = tentry->num_words;
783
if (tentry->write_control) {
784
intrigue_bitmask = &bitmask_array[tentry->write_control >> 3];
785
while (dwords--) {
786
tmp64 = *intrigue_bitmask & *memaddr++;
787
tmp64 |= (~(*intrigue_bitmask++)) & *bptr;
788
*bptr++ = tmp64;
789
}
790
} else {
791
while (dwords--) {
792
*bptr++ = *memaddr++;
793
}
794
}
795
796
perf_rdr_write(*intrigue_rdr, buffer);
797
intrigue_rdr++;
798
}
799
800
/*
801
* Now copy out the Runway stuff which is not in RDRs
802
*/
803
804
if (cpu_device == NULL)
805
{
806
printk(KERN_ERR "write_image: cpu_device not yet initialized!\n");
807
return -1;
808
}
809
810
runway = ioremap_nocache(cpu_device->hpa.start, 4096);
811
812
/* Merge intrigue bits into Runway STATUS 0 */
813
tmp64 = __raw_readq(runway + RUNWAY_STATUS) & 0xffecfffffffffffful;
814
__raw_writeq(tmp64 | (*memaddr++ & 0x0013000000000000ul),
815
runway + RUNWAY_STATUS);
816
817
/* Write RUNWAY DEBUG registers */
818
for (i = 0; i < 8; i++) {
819
__raw_writeq(*memaddr++, runway + RUNWAY_DEBUG);
820
}
821
822
return 0;
823
}
824
825
/*
826
* perf_rdr_write
827
*
828
* Write the given RDR register with the contents
829
* of the given buffer.
830
*/
831
static void perf_rdr_write(uint32_t rdr_num, uint64_t *buffer)
832
{
833
const struct rdr_tbl_ent *tentry;
834
int32_t i;
835
836
printk("perf_rdr_write\n");
837
tentry = perf_rdr_get_entry(rdr_num);
838
if (tentry->width == 0) { return; }
839
840
i = tentry->num_words;
841
while (i--) {
842
if (perf_processor_interface == ONYX_INTF) {
843
perf_rdr_shift_out_U(rdr_num, buffer[i]);
844
} else {
845
perf_rdr_shift_out_W(rdr_num, buffer[i]);
846
}
847
}
848
printk("perf_rdr_write done\n");
849
}
850
851
module_init(perf_init);
852
853