Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/parisc/kernel/time.c
10819 views
1
/*
2
* linux/arch/parisc/kernel/time.c
3
*
4
* Copyright (C) 1991, 1992, 1995 Linus Torvalds
5
* Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
6
* Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, [email protected])
7
*
8
* 1994-07-02 Alan Modra
9
* fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10
* 1998-12-20 Updated NTP code according to technical memorandum Jan '96
11
* "A Kernel Model for Precision Timekeeping" by Dave Mills
12
*/
13
#include <linux/errno.h>
14
#include <linux/module.h>
15
#include <linux/sched.h>
16
#include <linux/kernel.h>
17
#include <linux/param.h>
18
#include <linux/string.h>
19
#include <linux/mm.h>
20
#include <linux/interrupt.h>
21
#include <linux/time.h>
22
#include <linux/init.h>
23
#include <linux/smp.h>
24
#include <linux/profile.h>
25
#include <linux/clocksource.h>
26
#include <linux/platform_device.h>
27
#include <linux/ftrace.h>
28
29
#include <asm/uaccess.h>
30
#include <asm/io.h>
31
#include <asm/irq.h>
32
#include <asm/param.h>
33
#include <asm/pdc.h>
34
#include <asm/led.h>
35
36
#include <linux/timex.h>
37
38
static unsigned long clocktick __read_mostly; /* timer cycles per tick */
39
40
/*
41
* We keep time on PA-RISC Linux by using the Interval Timer which is
42
* a pair of registers; one is read-only and one is write-only; both
43
* accessed through CR16. The read-only register is 32 or 64 bits wide,
44
* and increments by 1 every CPU clock tick. The architecture only
45
* guarantees us a rate between 0.5 and 2, but all implementations use a
46
* rate of 1. The write-only register is 32-bits wide. When the lowest
47
* 32 bits of the read-only register compare equal to the write-only
48
* register, it raises a maskable external interrupt. Each processor has
49
* an Interval Timer of its own and they are not synchronised.
50
*
51
* We want to generate an interrupt every 1/HZ seconds. So we program
52
* CR16 to interrupt every @clocktick cycles. The it_value in cpu_data
53
* is programmed with the intended time of the next tick. We can be
54
* held off for an arbitrarily long period of time by interrupts being
55
* disabled, so we may miss one or more ticks.
56
*/
57
irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
58
{
59
unsigned long now, now2;
60
unsigned long next_tick;
61
unsigned long cycles_elapsed, ticks_elapsed = 1;
62
unsigned long cycles_remainder;
63
unsigned int cpu = smp_processor_id();
64
struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
65
66
/* gcc can optimize for "read-only" case with a local clocktick */
67
unsigned long cpt = clocktick;
68
69
profile_tick(CPU_PROFILING);
70
71
/* Initialize next_tick to the expected tick time. */
72
next_tick = cpuinfo->it_value;
73
74
/* Get current cycle counter (Control Register 16). */
75
now = mfctl(16);
76
77
cycles_elapsed = now - next_tick;
78
79
if ((cycles_elapsed >> 6) < cpt) {
80
/* use "cheap" math (add/subtract) instead
81
* of the more expensive div/mul method
82
*/
83
cycles_remainder = cycles_elapsed;
84
while (cycles_remainder > cpt) {
85
cycles_remainder -= cpt;
86
ticks_elapsed++;
87
}
88
} else {
89
/* TODO: Reduce this to one fdiv op */
90
cycles_remainder = cycles_elapsed % cpt;
91
ticks_elapsed += cycles_elapsed / cpt;
92
}
93
94
/* convert from "division remainder" to "remainder of clock tick" */
95
cycles_remainder = cpt - cycles_remainder;
96
97
/* Determine when (in CR16 cycles) next IT interrupt will fire.
98
* We want IT to fire modulo clocktick even if we miss/skip some.
99
* But those interrupts don't in fact get delivered that regularly.
100
*/
101
next_tick = now + cycles_remainder;
102
103
cpuinfo->it_value = next_tick;
104
105
/* Program the IT when to deliver the next interrupt.
106
* Only bottom 32-bits of next_tick are writable in CR16!
107
*/
108
mtctl(next_tick, 16);
109
110
/* Skip one clocktick on purpose if we missed next_tick.
111
* The new CR16 must be "later" than current CR16 otherwise
112
* itimer would not fire until CR16 wrapped - e.g 4 seconds
113
* later on a 1Ghz processor. We'll account for the missed
114
* tick on the next timer interrupt.
115
*
116
* "next_tick - now" will always give the difference regardless
117
* if one or the other wrapped. If "now" is "bigger" we'll end up
118
* with a very large unsigned number.
119
*/
120
now2 = mfctl(16);
121
if (next_tick - now2 > cpt)
122
mtctl(next_tick+cpt, 16);
123
124
#if 1
125
/*
126
* GGG: DEBUG code for how many cycles programming CR16 used.
127
*/
128
if (unlikely(now2 - now > 0x3000)) /* 12K cycles */
129
printk (KERN_CRIT "timer_interrupt(CPU %d): SLOW! 0x%lx cycles!"
130
" cyc %lX rem %lX "
131
" next/now %lX/%lX\n",
132
cpu, now2 - now, cycles_elapsed, cycles_remainder,
133
next_tick, now );
134
#endif
135
136
/* Can we differentiate between "early CR16" (aka Scenario 1) and
137
* "long delay" (aka Scenario 3)? I don't think so.
138
*
139
* Timer_interrupt will be delivered at least a few hundred cycles
140
* after the IT fires. But it's arbitrary how much time passes
141
* before we call it "late". I've picked one second.
142
*
143
* It's important NO printk's are between reading CR16 and
144
* setting up the next value. May introduce huge variance.
145
*/
146
if (unlikely(ticks_elapsed > HZ)) {
147
/* Scenario 3: very long delay? bad in any case */
148
printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
149
" cycles %lX rem %lX "
150
" next/now %lX/%lX\n",
151
cpu,
152
cycles_elapsed, cycles_remainder,
153
next_tick, now );
154
}
155
156
/* Done mucking with unreliable delivery of interrupts.
157
* Go do system house keeping.
158
*/
159
160
if (!--cpuinfo->prof_counter) {
161
cpuinfo->prof_counter = cpuinfo->prof_multiplier;
162
update_process_times(user_mode(get_irq_regs()));
163
}
164
165
if (cpu == 0)
166
xtime_update(ticks_elapsed);
167
168
return IRQ_HANDLED;
169
}
170
171
172
unsigned long profile_pc(struct pt_regs *regs)
173
{
174
unsigned long pc = instruction_pointer(regs);
175
176
if (regs->gr[0] & PSW_N)
177
pc -= 4;
178
179
#ifdef CONFIG_SMP
180
if (in_lock_functions(pc))
181
pc = regs->gr[2];
182
#endif
183
184
return pc;
185
}
186
EXPORT_SYMBOL(profile_pc);
187
188
189
/* clock source code */
190
191
static cycle_t read_cr16(struct clocksource *cs)
192
{
193
return get_cycles();
194
}
195
196
static struct clocksource clocksource_cr16 = {
197
.name = "cr16",
198
.rating = 300,
199
.read = read_cr16,
200
.mask = CLOCKSOURCE_MASK(BITS_PER_LONG),
201
.mult = 0, /* to be set */
202
.shift = 22,
203
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
204
};
205
206
#ifdef CONFIG_SMP
207
int update_cr16_clocksource(void)
208
{
209
/* since the cr16 cycle counters are not synchronized across CPUs,
210
we'll check if we should switch to a safe clocksource: */
211
if (clocksource_cr16.rating != 0 && num_online_cpus() > 1) {
212
clocksource_change_rating(&clocksource_cr16, 0);
213
return 1;
214
}
215
216
return 0;
217
}
218
#else
219
int update_cr16_clocksource(void)
220
{
221
return 0; /* no change */
222
}
223
#endif /*CONFIG_SMP*/
224
225
void __init start_cpu_itimer(void)
226
{
227
unsigned int cpu = smp_processor_id();
228
unsigned long next_tick = mfctl(16) + clocktick;
229
230
mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */
231
232
per_cpu(cpu_data, cpu).it_value = next_tick;
233
}
234
235
static struct platform_device rtc_generic_dev = {
236
.name = "rtc-generic",
237
.id = -1,
238
};
239
240
static int __init rtc_init(void)
241
{
242
if (platform_device_register(&rtc_generic_dev) < 0)
243
printk(KERN_ERR "unable to register rtc device...\n");
244
245
/* not necessarily an error */
246
return 0;
247
}
248
module_init(rtc_init);
249
250
void read_persistent_clock(struct timespec *ts)
251
{
252
static struct pdc_tod tod_data;
253
if (pdc_tod_read(&tod_data) == 0) {
254
ts->tv_sec = tod_data.tod_sec;
255
ts->tv_nsec = tod_data.tod_usec * 1000;
256
} else {
257
printk(KERN_ERR "Error reading tod clock\n");
258
ts->tv_sec = 0;
259
ts->tv_nsec = 0;
260
}
261
}
262
263
void __init time_init(void)
264
{
265
unsigned long current_cr16_khz;
266
267
clocktick = (100 * PAGE0->mem_10msec) / HZ;
268
269
start_cpu_itimer(); /* get CPU 0 started */
270
271
/* register at clocksource framework */
272
current_cr16_khz = PAGE0->mem_10msec/10; /* kHz */
273
clocksource_cr16.mult = clocksource_khz2mult(current_cr16_khz,
274
clocksource_cr16.shift);
275
clocksource_register(&clocksource_cr16);
276
}
277
278