/*1* linux/arch/parisc/kernel/time.c2*3* Copyright (C) 1991, 1992, 1995 Linus Torvalds4* Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King5* Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, [email protected])6*7* 1994-07-02 Alan Modra8* fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime9* 1998-12-20 Updated NTP code according to technical memorandum Jan '9610* "A Kernel Model for Precision Timekeeping" by Dave Mills11*/12#include <linux/errno.h>13#include <linux/module.h>14#include <linux/sched.h>15#include <linux/kernel.h>16#include <linux/param.h>17#include <linux/string.h>18#include <linux/mm.h>19#include <linux/interrupt.h>20#include <linux/time.h>21#include <linux/init.h>22#include <linux/smp.h>23#include <linux/profile.h>24#include <linux/clocksource.h>25#include <linux/platform_device.h>26#include <linux/ftrace.h>2728#include <asm/uaccess.h>29#include <asm/io.h>30#include <asm/irq.h>31#include <asm/param.h>32#include <asm/pdc.h>33#include <asm/led.h>3435#include <linux/timex.h>3637static unsigned long clocktick __read_mostly; /* timer cycles per tick */3839/*40* We keep time on PA-RISC Linux by using the Interval Timer which is41* a pair of registers; one is read-only and one is write-only; both42* accessed through CR16. The read-only register is 32 or 64 bits wide,43* and increments by 1 every CPU clock tick. The architecture only44* guarantees us a rate between 0.5 and 2, but all implementations use a45* rate of 1. The write-only register is 32-bits wide. When the lowest46* 32 bits of the read-only register compare equal to the write-only47* register, it raises a maskable external interrupt. Each processor has48* an Interval Timer of its own and they are not synchronised.49*50* We want to generate an interrupt every 1/HZ seconds. So we program51* CR16 to interrupt every @clocktick cycles. The it_value in cpu_data52* is programmed with the intended time of the next tick. We can be53* held off for an arbitrarily long period of time by interrupts being54* disabled, so we may miss one or more ticks.55*/56irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)57{58unsigned long now, now2;59unsigned long next_tick;60unsigned long cycles_elapsed, ticks_elapsed = 1;61unsigned long cycles_remainder;62unsigned int cpu = smp_processor_id();63struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);6465/* gcc can optimize for "read-only" case with a local clocktick */66unsigned long cpt = clocktick;6768profile_tick(CPU_PROFILING);6970/* Initialize next_tick to the expected tick time. */71next_tick = cpuinfo->it_value;7273/* Get current cycle counter (Control Register 16). */74now = mfctl(16);7576cycles_elapsed = now - next_tick;7778if ((cycles_elapsed >> 6) < cpt) {79/* use "cheap" math (add/subtract) instead80* of the more expensive div/mul method81*/82cycles_remainder = cycles_elapsed;83while (cycles_remainder > cpt) {84cycles_remainder -= cpt;85ticks_elapsed++;86}87} else {88/* TODO: Reduce this to one fdiv op */89cycles_remainder = cycles_elapsed % cpt;90ticks_elapsed += cycles_elapsed / cpt;91}9293/* convert from "division remainder" to "remainder of clock tick" */94cycles_remainder = cpt - cycles_remainder;9596/* Determine when (in CR16 cycles) next IT interrupt will fire.97* We want IT to fire modulo clocktick even if we miss/skip some.98* But those interrupts don't in fact get delivered that regularly.99*/100next_tick = now + cycles_remainder;101102cpuinfo->it_value = next_tick;103104/* Program the IT when to deliver the next interrupt.105* Only bottom 32-bits of next_tick are writable in CR16!106*/107mtctl(next_tick, 16);108109/* Skip one clocktick on purpose if we missed next_tick.110* The new CR16 must be "later" than current CR16 otherwise111* itimer would not fire until CR16 wrapped - e.g 4 seconds112* later on a 1Ghz processor. We'll account for the missed113* tick on the next timer interrupt.114*115* "next_tick - now" will always give the difference regardless116* if one or the other wrapped. If "now" is "bigger" we'll end up117* with a very large unsigned number.118*/119now2 = mfctl(16);120if (next_tick - now2 > cpt)121mtctl(next_tick+cpt, 16);122123#if 1124/*125* GGG: DEBUG code for how many cycles programming CR16 used.126*/127if (unlikely(now2 - now > 0x3000)) /* 12K cycles */128printk (KERN_CRIT "timer_interrupt(CPU %d): SLOW! 0x%lx cycles!"129" cyc %lX rem %lX "130" next/now %lX/%lX\n",131cpu, now2 - now, cycles_elapsed, cycles_remainder,132next_tick, now );133#endif134135/* Can we differentiate between "early CR16" (aka Scenario 1) and136* "long delay" (aka Scenario 3)? I don't think so.137*138* Timer_interrupt will be delivered at least a few hundred cycles139* after the IT fires. But it's arbitrary how much time passes140* before we call it "late". I've picked one second.141*142* It's important NO printk's are between reading CR16 and143* setting up the next value. May introduce huge variance.144*/145if (unlikely(ticks_elapsed > HZ)) {146/* Scenario 3: very long delay? bad in any case */147printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"148" cycles %lX rem %lX "149" next/now %lX/%lX\n",150cpu,151cycles_elapsed, cycles_remainder,152next_tick, now );153}154155/* Done mucking with unreliable delivery of interrupts.156* Go do system house keeping.157*/158159if (!--cpuinfo->prof_counter) {160cpuinfo->prof_counter = cpuinfo->prof_multiplier;161update_process_times(user_mode(get_irq_regs()));162}163164if (cpu == 0)165xtime_update(ticks_elapsed);166167return IRQ_HANDLED;168}169170171unsigned long profile_pc(struct pt_regs *regs)172{173unsigned long pc = instruction_pointer(regs);174175if (regs->gr[0] & PSW_N)176pc -= 4;177178#ifdef CONFIG_SMP179if (in_lock_functions(pc))180pc = regs->gr[2];181#endif182183return pc;184}185EXPORT_SYMBOL(profile_pc);186187188/* clock source code */189190static cycle_t read_cr16(struct clocksource *cs)191{192return get_cycles();193}194195static struct clocksource clocksource_cr16 = {196.name = "cr16",197.rating = 300,198.read = read_cr16,199.mask = CLOCKSOURCE_MASK(BITS_PER_LONG),200.mult = 0, /* to be set */201.shift = 22,202.flags = CLOCK_SOURCE_IS_CONTINUOUS,203};204205#ifdef CONFIG_SMP206int update_cr16_clocksource(void)207{208/* since the cr16 cycle counters are not synchronized across CPUs,209we'll check if we should switch to a safe clocksource: */210if (clocksource_cr16.rating != 0 && num_online_cpus() > 1) {211clocksource_change_rating(&clocksource_cr16, 0);212return 1;213}214215return 0;216}217#else218int update_cr16_clocksource(void)219{220return 0; /* no change */221}222#endif /*CONFIG_SMP*/223224void __init start_cpu_itimer(void)225{226unsigned int cpu = smp_processor_id();227unsigned long next_tick = mfctl(16) + clocktick;228229mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */230231per_cpu(cpu_data, cpu).it_value = next_tick;232}233234static struct platform_device rtc_generic_dev = {235.name = "rtc-generic",236.id = -1,237};238239static int __init rtc_init(void)240{241if (platform_device_register(&rtc_generic_dev) < 0)242printk(KERN_ERR "unable to register rtc device...\n");243244/* not necessarily an error */245return 0;246}247module_init(rtc_init);248249void read_persistent_clock(struct timespec *ts)250{251static struct pdc_tod tod_data;252if (pdc_tod_read(&tod_data) == 0) {253ts->tv_sec = tod_data.tod_sec;254ts->tv_nsec = tod_data.tod_usec * 1000;255} else {256printk(KERN_ERR "Error reading tod clock\n");257ts->tv_sec = 0;258ts->tv_nsec = 0;259}260}261262void __init time_init(void)263{264unsigned long current_cr16_khz;265266clocktick = (100 * PAGE0->mem_10msec) / HZ;267268start_cpu_itimer(); /* get CPU 0 started */269270/* register at clocksource framework */271current_cr16_khz = PAGE0->mem_10msec/10; /* kHz */272clocksource_cr16.mult = clocksource_khz2mult(current_cr16_khz,273clocksource_cr16.shift);274clocksource_register(&clocksource_cr16);275}276277278