Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/parisc/math-emu/dbl_float.h
10817 views
1
/*
2
* Linux/PA-RISC Project (http://www.parisc-linux.org/)
3
*
4
* Floating-point emulation code
5
* Copyright (C) 2001 Hewlett-Packard (Paul Bame) <[email protected]>
6
*
7
* This program is free software; you can redistribute it and/or modify
8
* it under the terms of the GNU General Public License as published by
9
* the Free Software Foundation; either version 2, or (at your option)
10
* any later version.
11
*
12
* This program is distributed in the hope that it will be useful,
13
* but WITHOUT ANY WARRANTY; without even the implied warranty of
14
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15
* GNU General Public License for more details.
16
*
17
* You should have received a copy of the GNU General Public License
18
* along with this program; if not, write to the Free Software
19
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20
*/
21
#ifdef __NO_PA_HDRS
22
PA header file -- do not include this header file for non-PA builds.
23
#endif
24
25
/* 32-bit word grabbing functions */
26
#define Dbl_firstword(value) Dallp1(value)
27
#define Dbl_secondword(value) Dallp2(value)
28
#define Dbl_thirdword(value) dummy_location
29
#define Dbl_fourthword(value) dummy_location
30
31
#define Dbl_sign(object) Dsign(object)
32
#define Dbl_exponent(object) Dexponent(object)
33
#define Dbl_signexponent(object) Dsignexponent(object)
34
#define Dbl_mantissap1(object) Dmantissap1(object)
35
#define Dbl_mantissap2(object) Dmantissap2(object)
36
#define Dbl_exponentmantissap1(object) Dexponentmantissap1(object)
37
#define Dbl_allp1(object) Dallp1(object)
38
#define Dbl_allp2(object) Dallp2(object)
39
40
/* dbl_and_signs ANDs the sign bits of each argument and puts the result
41
* into the first argument. dbl_or_signs ors those same sign bits */
42
#define Dbl_and_signs( src1dst, src2) \
43
Dallp1(src1dst) = (Dallp1(src2)|~((unsigned int)1<<31)) & Dallp1(src1dst)
44
#define Dbl_or_signs( src1dst, src2) \
45
Dallp1(src1dst) = (Dallp1(src2)&((unsigned int)1<<31)) | Dallp1(src1dst)
46
47
/* The hidden bit is always the low bit of the exponent */
48
#define Dbl_clear_exponent_set_hidden(srcdst) Deposit_dexponent(srcdst,1)
49
#define Dbl_clear_signexponent_set_hidden(srcdst) \
50
Deposit_dsignexponent(srcdst,1)
51
#define Dbl_clear_sign(srcdst) Dallp1(srcdst) &= ~((unsigned int)1<<31)
52
#define Dbl_clear_signexponent(srcdst) \
53
Dallp1(srcdst) &= Dmantissap1((unsigned int)-1)
54
55
/* Exponent field for doubles has already been cleared and may be
56
* included in the shift. Here we need to generate two double width
57
* variable shifts. The insignificant bits can be ignored.
58
* MTSAR f(varamount)
59
* VSHD srcdst.high,srcdst.low => srcdst.low
60
* VSHD 0,srcdst.high => srcdst.high
61
* This is very difficult to model with C expressions since the shift amount
62
* could exceed 32. */
63
/* varamount must be less than 64 */
64
#define Dbl_rightshift(srcdstA, srcdstB, varamount) \
65
{if((varamount) >= 32) { \
66
Dallp2(srcdstB) = Dallp1(srcdstA) >> (varamount-32); \
67
Dallp1(srcdstA)=0; \
68
} \
69
else if(varamount > 0) { \
70
Variable_shift_double(Dallp1(srcdstA), Dallp2(srcdstB), \
71
(varamount), Dallp2(srcdstB)); \
72
Dallp1(srcdstA) >>= varamount; \
73
} }
74
/* varamount must be less than 64 */
75
#define Dbl_rightshift_exponentmantissa(srcdstA, srcdstB, varamount) \
76
{if((varamount) >= 32) { \
77
Dallp2(srcdstB) = Dexponentmantissap1(srcdstA) >> (varamount-32); \
78
Dallp1(srcdstA) &= ((unsigned int)1<<31); /* clear expmant field */ \
79
} \
80
else if(varamount > 0) { \
81
Variable_shift_double(Dexponentmantissap1(srcdstA), Dallp2(srcdstB), \
82
(varamount), Dallp2(srcdstB)); \
83
Deposit_dexponentmantissap1(srcdstA, \
84
(Dexponentmantissap1(srcdstA)>>varamount)); \
85
} }
86
/* varamount must be less than 64 */
87
#define Dbl_leftshift(srcdstA, srcdstB, varamount) \
88
{if((varamount) >= 32) { \
89
Dallp1(srcdstA) = Dallp2(srcdstB) << (varamount-32); \
90
Dallp2(srcdstB)=0; \
91
} \
92
else { \
93
if ((varamount) > 0) { \
94
Dallp1(srcdstA) = (Dallp1(srcdstA) << (varamount)) | \
95
(Dallp2(srcdstB) >> (32-(varamount))); \
96
Dallp2(srcdstB) <<= varamount; \
97
} \
98
} }
99
#define Dbl_leftshiftby1_withextent(lefta,leftb,right,resulta,resultb) \
100
Shiftdouble(Dallp1(lefta), Dallp2(leftb), 31, Dallp1(resulta)); \
101
Shiftdouble(Dallp2(leftb), Extall(right), 31, Dallp2(resultb))
102
103
#define Dbl_rightshiftby1_withextent(leftb,right,dst) \
104
Extall(dst) = (Dallp2(leftb) << 31) | ((unsigned int)Extall(right) >> 1) | \
105
Extlow(right)
106
107
#define Dbl_arithrightshiftby1(srcdstA,srcdstB) \
108
Shiftdouble(Dallp1(srcdstA),Dallp2(srcdstB),1,Dallp2(srcdstB));\
109
Dallp1(srcdstA) = (int)Dallp1(srcdstA) >> 1
110
111
/* Sign extend the sign bit with an integer destination */
112
#define Dbl_signextendedsign(value) Dsignedsign(value)
113
114
#define Dbl_isone_hidden(dbl_value) (Is_dhidden(dbl_value)!=0)
115
/* Singles and doubles may include the sign and exponent fields. The
116
* hidden bit and the hidden overflow must be included. */
117
#define Dbl_increment(dbl_valueA,dbl_valueB) \
118
if( (Dallp2(dbl_valueB) += 1) == 0 ) Dallp1(dbl_valueA) += 1
119
#define Dbl_increment_mantissa(dbl_valueA,dbl_valueB) \
120
if( (Dmantissap2(dbl_valueB) += 1) == 0 ) \
121
Deposit_dmantissap1(dbl_valueA,dbl_valueA+1)
122
#define Dbl_decrement(dbl_valueA,dbl_valueB) \
123
if( Dallp2(dbl_valueB) == 0 ) Dallp1(dbl_valueA) -= 1; \
124
Dallp2(dbl_valueB) -= 1
125
126
#define Dbl_isone_sign(dbl_value) (Is_dsign(dbl_value)!=0)
127
#define Dbl_isone_hiddenoverflow(dbl_value) (Is_dhiddenoverflow(dbl_value)!=0)
128
#define Dbl_isone_lowmantissap1(dbl_valueA) (Is_dlowp1(dbl_valueA)!=0)
129
#define Dbl_isone_lowmantissap2(dbl_valueB) (Is_dlowp2(dbl_valueB)!=0)
130
#define Dbl_isone_signaling(dbl_value) (Is_dsignaling(dbl_value)!=0)
131
#define Dbl_is_signalingnan(dbl_value) (Dsignalingnan(dbl_value)==0xfff)
132
#define Dbl_isnotzero(dbl_valueA,dbl_valueB) \
133
(Dallp1(dbl_valueA) || Dallp2(dbl_valueB))
134
#define Dbl_isnotzero_hiddenhigh7mantissa(dbl_value) \
135
(Dhiddenhigh7mantissa(dbl_value)!=0)
136
#define Dbl_isnotzero_exponent(dbl_value) (Dexponent(dbl_value)!=0)
137
#define Dbl_isnotzero_mantissa(dbl_valueA,dbl_valueB) \
138
(Dmantissap1(dbl_valueA) || Dmantissap2(dbl_valueB))
139
#define Dbl_isnotzero_mantissap1(dbl_valueA) (Dmantissap1(dbl_valueA)!=0)
140
#define Dbl_isnotzero_mantissap2(dbl_valueB) (Dmantissap2(dbl_valueB)!=0)
141
#define Dbl_isnotzero_exponentmantissa(dbl_valueA,dbl_valueB) \
142
(Dexponentmantissap1(dbl_valueA) || Dmantissap2(dbl_valueB))
143
#define Dbl_isnotzero_low4p2(dbl_value) (Dlow4p2(dbl_value)!=0)
144
#define Dbl_iszero(dbl_valueA,dbl_valueB) (Dallp1(dbl_valueA)==0 && \
145
Dallp2(dbl_valueB)==0)
146
#define Dbl_iszero_allp1(dbl_value) (Dallp1(dbl_value)==0)
147
#define Dbl_iszero_allp2(dbl_value) (Dallp2(dbl_value)==0)
148
#define Dbl_iszero_hidden(dbl_value) (Is_dhidden(dbl_value)==0)
149
#define Dbl_iszero_hiddenoverflow(dbl_value) (Is_dhiddenoverflow(dbl_value)==0)
150
#define Dbl_iszero_hiddenhigh3mantissa(dbl_value) \
151
(Dhiddenhigh3mantissa(dbl_value)==0)
152
#define Dbl_iszero_hiddenhigh7mantissa(dbl_value) \
153
(Dhiddenhigh7mantissa(dbl_value)==0)
154
#define Dbl_iszero_sign(dbl_value) (Is_dsign(dbl_value)==0)
155
#define Dbl_iszero_exponent(dbl_value) (Dexponent(dbl_value)==0)
156
#define Dbl_iszero_mantissa(dbl_valueA,dbl_valueB) \
157
(Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)
158
#define Dbl_iszero_exponentmantissa(dbl_valueA,dbl_valueB) \
159
(Dexponentmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)
160
#define Dbl_isinfinity_exponent(dbl_value) \
161
(Dexponent(dbl_value)==DBL_INFINITY_EXPONENT)
162
#define Dbl_isnotinfinity_exponent(dbl_value) \
163
(Dexponent(dbl_value)!=DBL_INFINITY_EXPONENT)
164
#define Dbl_isinfinity(dbl_valueA,dbl_valueB) \
165
(Dexponent(dbl_valueA)==DBL_INFINITY_EXPONENT && \
166
Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)
167
#define Dbl_isnan(dbl_valueA,dbl_valueB) \
168
(Dexponent(dbl_valueA)==DBL_INFINITY_EXPONENT && \
169
(Dmantissap1(dbl_valueA)!=0 || Dmantissap2(dbl_valueB)!=0))
170
#define Dbl_isnotnan(dbl_valueA,dbl_valueB) \
171
(Dexponent(dbl_valueA)!=DBL_INFINITY_EXPONENT || \
172
(Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0))
173
174
#define Dbl_islessthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \
175
(Dallp1(dbl_op1a) < Dallp1(dbl_op2a) || \
176
(Dallp1(dbl_op1a) == Dallp1(dbl_op2a) && \
177
Dallp2(dbl_op1b) < Dallp2(dbl_op2b)))
178
#define Dbl_isgreaterthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \
179
(Dallp1(dbl_op1a) > Dallp1(dbl_op2a) || \
180
(Dallp1(dbl_op1a) == Dallp1(dbl_op2a) && \
181
Dallp2(dbl_op1b) > Dallp2(dbl_op2b)))
182
#define Dbl_isnotlessthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \
183
(Dallp1(dbl_op1a) > Dallp1(dbl_op2a) || \
184
(Dallp1(dbl_op1a) == Dallp1(dbl_op2a) && \
185
Dallp2(dbl_op1b) >= Dallp2(dbl_op2b)))
186
#define Dbl_isnotgreaterthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \
187
(Dallp1(dbl_op1a) < Dallp1(dbl_op2a) || \
188
(Dallp1(dbl_op1a) == Dallp1(dbl_op2a) && \
189
Dallp2(dbl_op1b) <= Dallp2(dbl_op2b)))
190
#define Dbl_isequal(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \
191
((Dallp1(dbl_op1a) == Dallp1(dbl_op2a)) && \
192
(Dallp2(dbl_op1b) == Dallp2(dbl_op2b)))
193
194
#define Dbl_leftshiftby8(dbl_valueA,dbl_valueB) \
195
Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),24,Dallp1(dbl_valueA)); \
196
Dallp2(dbl_valueB) <<= 8
197
#define Dbl_leftshiftby7(dbl_valueA,dbl_valueB) \
198
Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),25,Dallp1(dbl_valueA)); \
199
Dallp2(dbl_valueB) <<= 7
200
#define Dbl_leftshiftby4(dbl_valueA,dbl_valueB) \
201
Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),28,Dallp1(dbl_valueA)); \
202
Dallp2(dbl_valueB) <<= 4
203
#define Dbl_leftshiftby3(dbl_valueA,dbl_valueB) \
204
Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),29,Dallp1(dbl_valueA)); \
205
Dallp2(dbl_valueB) <<= 3
206
#define Dbl_leftshiftby2(dbl_valueA,dbl_valueB) \
207
Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),30,Dallp1(dbl_valueA)); \
208
Dallp2(dbl_valueB) <<= 2
209
#define Dbl_leftshiftby1(dbl_valueA,dbl_valueB) \
210
Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),31,Dallp1(dbl_valueA)); \
211
Dallp2(dbl_valueB) <<= 1
212
213
#define Dbl_rightshiftby8(dbl_valueA,dbl_valueB) \
214
Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),8,Dallp2(dbl_valueB)); \
215
Dallp1(dbl_valueA) >>= 8
216
#define Dbl_rightshiftby4(dbl_valueA,dbl_valueB) \
217
Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),4,Dallp2(dbl_valueB)); \
218
Dallp1(dbl_valueA) >>= 4
219
#define Dbl_rightshiftby2(dbl_valueA,dbl_valueB) \
220
Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),2,Dallp2(dbl_valueB)); \
221
Dallp1(dbl_valueA) >>= 2
222
#define Dbl_rightshiftby1(dbl_valueA,dbl_valueB) \
223
Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),1,Dallp2(dbl_valueB)); \
224
Dallp1(dbl_valueA) >>= 1
225
226
/* This magnitude comparison uses the signless first words and
227
* the regular part2 words. The comparison is graphically:
228
*
229
* 1st greater? -------------
230
* |
231
* 1st less?-----------------+---------
232
* | |
233
* 2nd greater or equal----->| |
234
* False True
235
*/
236
#define Dbl_ismagnitudeless(leftB,rightB,signlessleft,signlessright) \
237
((signlessleft <= signlessright) && \
238
( (signlessleft < signlessright) || (Dallp2(leftB)<Dallp2(rightB)) ))
239
240
#define Dbl_copytoint_exponentmantissap1(src,dest) \
241
dest = Dexponentmantissap1(src)
242
243
/* A quiet NaN has the high mantissa bit clear and at least on other (in this
244
* case the adjacent bit) bit set. */
245
#define Dbl_set_quiet(dbl_value) Deposit_dhigh2mantissa(dbl_value,1)
246
#define Dbl_set_exponent(dbl_value, exp) Deposit_dexponent(dbl_value,exp)
247
248
#define Dbl_set_mantissa(desta,destb,valuea,valueb) \
249
Deposit_dmantissap1(desta,valuea); \
250
Dmantissap2(destb) = Dmantissap2(valueb)
251
#define Dbl_set_mantissap1(desta,valuea) \
252
Deposit_dmantissap1(desta,valuea)
253
#define Dbl_set_mantissap2(destb,valueb) \
254
Dmantissap2(destb) = Dmantissap2(valueb)
255
256
#define Dbl_set_exponentmantissa(desta,destb,valuea,valueb) \
257
Deposit_dexponentmantissap1(desta,valuea); \
258
Dmantissap2(destb) = Dmantissap2(valueb)
259
#define Dbl_set_exponentmantissap1(dest,value) \
260
Deposit_dexponentmantissap1(dest,value)
261
262
#define Dbl_copyfromptr(src,desta,destb) \
263
Dallp1(desta) = src->wd0; \
264
Dallp2(destb) = src->wd1
265
#define Dbl_copytoptr(srca,srcb,dest) \
266
dest->wd0 = Dallp1(srca); \
267
dest->wd1 = Dallp2(srcb)
268
269
/* An infinity is represented with the max exponent and a zero mantissa */
270
#define Dbl_setinfinity_exponent(dbl_value) \
271
Deposit_dexponent(dbl_value,DBL_INFINITY_EXPONENT)
272
#define Dbl_setinfinity_exponentmantissa(dbl_valueA,dbl_valueB) \
273
Deposit_dexponentmantissap1(dbl_valueA, \
274
(DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH)))); \
275
Dmantissap2(dbl_valueB) = 0
276
#define Dbl_setinfinitypositive(dbl_valueA,dbl_valueB) \
277
Dallp1(dbl_valueA) \
278
= (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH))); \
279
Dmantissap2(dbl_valueB) = 0
280
#define Dbl_setinfinitynegative(dbl_valueA,dbl_valueB) \
281
Dallp1(dbl_valueA) = ((unsigned int)1<<31) | \
282
(DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH))); \
283
Dmantissap2(dbl_valueB) = 0
284
#define Dbl_setinfinity(dbl_valueA,dbl_valueB,sign) \
285
Dallp1(dbl_valueA) = ((unsigned int)sign << 31) | \
286
(DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH))); \
287
Dmantissap2(dbl_valueB) = 0
288
289
#define Dbl_sethigh4bits(dbl_value, extsign) Deposit_dhigh4p1(dbl_value,extsign)
290
#define Dbl_set_sign(dbl_value,sign) Deposit_dsign(dbl_value,sign)
291
#define Dbl_invert_sign(dbl_value) Deposit_dsign(dbl_value,~Dsign(dbl_value))
292
#define Dbl_setone_sign(dbl_value) Deposit_dsign(dbl_value,1)
293
#define Dbl_setone_lowmantissap2(dbl_value) Deposit_dlowp2(dbl_value,1)
294
#define Dbl_setzero_sign(dbl_value) Dallp1(dbl_value) &= 0x7fffffff
295
#define Dbl_setzero_exponent(dbl_value) \
296
Dallp1(dbl_value) &= 0x800fffff
297
#define Dbl_setzero_mantissa(dbl_valueA,dbl_valueB) \
298
Dallp1(dbl_valueA) &= 0xfff00000; \
299
Dallp2(dbl_valueB) = 0
300
#define Dbl_setzero_mantissap1(dbl_value) Dallp1(dbl_value) &= 0xfff00000
301
#define Dbl_setzero_mantissap2(dbl_value) Dallp2(dbl_value) = 0
302
#define Dbl_setzero_exponentmantissa(dbl_valueA,dbl_valueB) \
303
Dallp1(dbl_valueA) &= 0x80000000; \
304
Dallp2(dbl_valueB) = 0
305
#define Dbl_setzero_exponentmantissap1(dbl_valueA) \
306
Dallp1(dbl_valueA) &= 0x80000000
307
#define Dbl_setzero(dbl_valueA,dbl_valueB) \
308
Dallp1(dbl_valueA) = 0; Dallp2(dbl_valueB) = 0
309
#define Dbl_setzerop1(dbl_value) Dallp1(dbl_value) = 0
310
#define Dbl_setzerop2(dbl_value) Dallp2(dbl_value) = 0
311
#define Dbl_setnegativezero(dbl_value) \
312
Dallp1(dbl_value) = (unsigned int)1 << 31; Dallp2(dbl_value) = 0
313
#define Dbl_setnegativezerop1(dbl_value) Dallp1(dbl_value) = (unsigned int)1<<31
314
315
/* Use the following macro for both overflow & underflow conditions */
316
#define ovfl -
317
#define unfl +
318
#define Dbl_setwrapped_exponent(dbl_value,exponent,op) \
319
Deposit_dexponent(dbl_value,(exponent op DBL_WRAP))
320
321
#define Dbl_setlargestpositive(dbl_valueA,dbl_valueB) \
322
Dallp1(dbl_valueA) = ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \
323
| ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 ); \
324
Dallp2(dbl_valueB) = 0xFFFFFFFF
325
#define Dbl_setlargestnegative(dbl_valueA,dbl_valueB) \
326
Dallp1(dbl_valueA) = ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \
327
| ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 ) \
328
| ((unsigned int)1<<31); \
329
Dallp2(dbl_valueB) = 0xFFFFFFFF
330
#define Dbl_setlargest_exponentmantissa(dbl_valueA,dbl_valueB) \
331
Deposit_dexponentmantissap1(dbl_valueA, \
332
(((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \
333
| ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 ))); \
334
Dallp2(dbl_valueB) = 0xFFFFFFFF
335
336
#define Dbl_setnegativeinfinity(dbl_valueA,dbl_valueB) \
337
Dallp1(dbl_valueA) = ((1<<DBL_EXP_LENGTH) | DBL_INFINITY_EXPONENT) \
338
<< (32-(1+DBL_EXP_LENGTH)) ; \
339
Dallp2(dbl_valueB) = 0
340
#define Dbl_setlargest(dbl_valueA,dbl_valueB,sign) \
341
Dallp1(dbl_valueA) = ((unsigned int)sign << 31) | \
342
((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) | \
343
((1 << (32-(1+DBL_EXP_LENGTH))) - 1 ); \
344
Dallp2(dbl_valueB) = 0xFFFFFFFF
345
346
347
/* The high bit is always zero so arithmetic or logical shifts will work. */
348
#define Dbl_right_align(srcdstA,srcdstB,shift,extent) \
349
if( shift >= 32 ) \
350
{ \
351
/* Big shift requires examining the portion shift off \
352
the end to properly set inexact. */ \
353
if(shift < 64) \
354
{ \
355
if(shift > 32) \
356
{ \
357
Variable_shift_double(Dallp1(srcdstA),Dallp2(srcdstB), \
358
shift-32, Extall(extent)); \
359
if(Dallp2(srcdstB) << 64 - (shift)) Ext_setone_low(extent); \
360
} \
361
else Extall(extent) = Dallp2(srcdstB); \
362
Dallp2(srcdstB) = Dallp1(srcdstA) >> (shift - 32); \
363
} \
364
else \
365
{ \
366
Extall(extent) = Dallp1(srcdstA); \
367
if(Dallp2(srcdstB)) Ext_setone_low(extent); \
368
Dallp2(srcdstB) = 0; \
369
} \
370
Dallp1(srcdstA) = 0; \
371
} \
372
else \
373
{ \
374
/* Small alignment is simpler. Extension is easily set. */ \
375
if (shift > 0) \
376
{ \
377
Extall(extent) = Dallp2(srcdstB) << 32 - (shift); \
378
Variable_shift_double(Dallp1(srcdstA),Dallp2(srcdstB),shift, \
379
Dallp2(srcdstB)); \
380
Dallp1(srcdstA) >>= shift; \
381
} \
382
else Extall(extent) = 0; \
383
}
384
385
/*
386
* Here we need to shift the result right to correct for an overshift
387
* (due to the exponent becoming negative) during normalization.
388
*/
389
#define Dbl_fix_overshift(srcdstA,srcdstB,shift,extent) \
390
Extall(extent) = Dallp2(srcdstB) << 32 - (shift); \
391
Dallp2(srcdstB) = (Dallp1(srcdstA) << 32 - (shift)) | \
392
(Dallp2(srcdstB) >> (shift)); \
393
Dallp1(srcdstA) = Dallp1(srcdstA) >> shift
394
395
#define Dbl_hiddenhigh3mantissa(dbl_value) Dhiddenhigh3mantissa(dbl_value)
396
#define Dbl_hidden(dbl_value) Dhidden(dbl_value)
397
#define Dbl_lowmantissap2(dbl_value) Dlowp2(dbl_value)
398
399
/* The left argument is never smaller than the right argument */
400
#define Dbl_subtract(lefta,leftb,righta,rightb,resulta,resultb) \
401
if( Dallp2(rightb) > Dallp2(leftb) ) Dallp1(lefta)--; \
402
Dallp2(resultb) = Dallp2(leftb) - Dallp2(rightb); \
403
Dallp1(resulta) = Dallp1(lefta) - Dallp1(righta)
404
405
/* Subtract right augmented with extension from left augmented with zeros and
406
* store into result and extension. */
407
#define Dbl_subtract_withextension(lefta,leftb,righta,rightb,extent,resulta,resultb) \
408
Dbl_subtract(lefta,leftb,righta,rightb,resulta,resultb); \
409
if( (Extall(extent) = 0-Extall(extent)) ) \
410
{ \
411
if((Dallp2(resultb)--) == 0) Dallp1(resulta)--; \
412
}
413
414
#define Dbl_addition(lefta,leftb,righta,rightb,resulta,resultb) \
415
/* If the sum of the low words is less than either source, then \
416
* an overflow into the next word occurred. */ \
417
Dallp1(resulta) = Dallp1(lefta) + Dallp1(righta); \
418
if((Dallp2(resultb) = Dallp2(leftb) + Dallp2(rightb)) < Dallp2(rightb)) \
419
Dallp1(resulta)++
420
421
#define Dbl_xortointp1(left,right,result) \
422
result = Dallp1(left) XOR Dallp1(right)
423
424
#define Dbl_xorfromintp1(left,right,result) \
425
Dallp1(result) = left XOR Dallp1(right)
426
427
#define Dbl_swap_lower(left,right) \
428
Dallp2(left) = Dallp2(left) XOR Dallp2(right); \
429
Dallp2(right) = Dallp2(left) XOR Dallp2(right); \
430
Dallp2(left) = Dallp2(left) XOR Dallp2(right)
431
432
/* Need to Initialize */
433
#define Dbl_makequietnan(desta,destb) \
434
Dallp1(desta) = ((DBL_EMAX+DBL_BIAS)+1)<< (32-(1+DBL_EXP_LENGTH)) \
435
| (1<<(32-(1+DBL_EXP_LENGTH+2))); \
436
Dallp2(destb) = 0
437
#define Dbl_makesignalingnan(desta,destb) \
438
Dallp1(desta) = ((DBL_EMAX+DBL_BIAS)+1)<< (32-(1+DBL_EXP_LENGTH)) \
439
| (1<<(32-(1+DBL_EXP_LENGTH+1))); \
440
Dallp2(destb) = 0
441
442
#define Dbl_normalize(dbl_opndA,dbl_opndB,exponent) \
443
while(Dbl_iszero_hiddenhigh7mantissa(dbl_opndA)) { \
444
Dbl_leftshiftby8(dbl_opndA,dbl_opndB); \
445
exponent -= 8; \
446
} \
447
if(Dbl_iszero_hiddenhigh3mantissa(dbl_opndA)) { \
448
Dbl_leftshiftby4(dbl_opndA,dbl_opndB); \
449
exponent -= 4; \
450
} \
451
while(Dbl_iszero_hidden(dbl_opndA)) { \
452
Dbl_leftshiftby1(dbl_opndA,dbl_opndB); \
453
exponent -= 1; \
454
}
455
456
#define Twoword_add(src1dstA,src1dstB,src2A,src2B) \
457
/* \
458
* want this macro to generate: \
459
* ADD src1dstB,src2B,src1dstB; \
460
* ADDC src1dstA,src2A,src1dstA; \
461
*/ \
462
if ((src1dstB) + (src2B) < (src1dstB)) Dallp1(src1dstA)++; \
463
Dallp1(src1dstA) += (src2A); \
464
Dallp2(src1dstB) += (src2B)
465
466
#define Twoword_subtract(src1dstA,src1dstB,src2A,src2B) \
467
/* \
468
* want this macro to generate: \
469
* SUB src1dstB,src2B,src1dstB; \
470
* SUBB src1dstA,src2A,src1dstA; \
471
*/ \
472
if ((src1dstB) < (src2B)) Dallp1(src1dstA)--; \
473
Dallp1(src1dstA) -= (src2A); \
474
Dallp2(src1dstB) -= (src2B)
475
476
#define Dbl_setoverflow(resultA,resultB) \
477
/* set result to infinity or largest number */ \
478
switch (Rounding_mode()) { \
479
case ROUNDPLUS: \
480
if (Dbl_isone_sign(resultA)) { \
481
Dbl_setlargestnegative(resultA,resultB); \
482
} \
483
else { \
484
Dbl_setinfinitypositive(resultA,resultB); \
485
} \
486
break; \
487
case ROUNDMINUS: \
488
if (Dbl_iszero_sign(resultA)) { \
489
Dbl_setlargestpositive(resultA,resultB); \
490
} \
491
else { \
492
Dbl_setinfinitynegative(resultA,resultB); \
493
} \
494
break; \
495
case ROUNDNEAREST: \
496
Dbl_setinfinity_exponentmantissa(resultA,resultB); \
497
break; \
498
case ROUNDZERO: \
499
Dbl_setlargest_exponentmantissa(resultA,resultB); \
500
}
501
502
#define Dbl_denormalize(opndp1,opndp2,exponent,guard,sticky,inexact) \
503
Dbl_clear_signexponent_set_hidden(opndp1); \
504
if (exponent >= (1-DBL_P)) { \
505
if (exponent >= -31) { \
506
guard = (Dallp2(opndp2) >> -exponent) & 1; \
507
if (exponent < 0) sticky |= Dallp2(opndp2) << (32+exponent); \
508
if (exponent > -31) { \
509
Variable_shift_double(opndp1,opndp2,1-exponent,opndp2); \
510
Dallp1(opndp1) >>= 1-exponent; \
511
} \
512
else { \
513
Dallp2(opndp2) = Dallp1(opndp1); \
514
Dbl_setzerop1(opndp1); \
515
} \
516
} \
517
else { \
518
guard = (Dallp1(opndp1) >> -32-exponent) & 1; \
519
if (exponent == -32) sticky |= Dallp2(opndp2); \
520
else sticky |= (Dallp2(opndp2) | Dallp1(opndp1) << 64+exponent); \
521
Dallp2(opndp2) = Dallp1(opndp1) >> -31-exponent; \
522
Dbl_setzerop1(opndp1); \
523
} \
524
inexact = guard | sticky; \
525
} \
526
else { \
527
guard = 0; \
528
sticky |= (Dallp1(opndp1) | Dallp2(opndp2)); \
529
Dbl_setzero(opndp1,opndp2); \
530
inexact = sticky; \
531
}
532
533
/*
534
* The fused multiply add instructions requires a double extended format,
535
* with 106 bits of mantissa.
536
*/
537
#define DBLEXT_THRESHOLD 106
538
539
#define Dblext_setzero(valA,valB,valC,valD) \
540
Dextallp1(valA) = 0; Dextallp2(valB) = 0; \
541
Dextallp3(valC) = 0; Dextallp4(valD) = 0
542
543
544
#define Dblext_isnotzero_mantissap3(valC) (Dextallp3(valC)!=0)
545
#define Dblext_isnotzero_mantissap4(valD) (Dextallp3(valD)!=0)
546
#define Dblext_isone_lowp2(val) (Dextlowp2(val)!=0)
547
#define Dblext_isone_highp3(val) (Dexthighp3(val)!=0)
548
#define Dblext_isnotzero_low31p3(val) (Dextlow31p3(val)!=0)
549
#define Dblext_iszero(valA,valB,valC,valD) (Dextallp1(valA)==0 && \
550
Dextallp2(valB)==0 && Dextallp3(valC)==0 && Dextallp4(valD)==0)
551
552
#define Dblext_copy(srca,srcb,srcc,srcd,desta,destb,destc,destd) \
553
Dextallp1(desta) = Dextallp4(srca); \
554
Dextallp2(destb) = Dextallp4(srcb); \
555
Dextallp3(destc) = Dextallp4(srcc); \
556
Dextallp4(destd) = Dextallp4(srcd)
557
558
#define Dblext_swap_lower(leftp2,leftp3,leftp4,rightp2,rightp3,rightp4) \
559
Dextallp2(leftp2) = Dextallp2(leftp2) XOR Dextallp2(rightp2); \
560
Dextallp2(rightp2) = Dextallp2(leftp2) XOR Dextallp2(rightp2); \
561
Dextallp2(leftp2) = Dextallp2(leftp2) XOR Dextallp2(rightp2); \
562
Dextallp3(leftp3) = Dextallp3(leftp3) XOR Dextallp3(rightp3); \
563
Dextallp3(rightp3) = Dextallp3(leftp3) XOR Dextallp3(rightp3); \
564
Dextallp3(leftp3) = Dextallp3(leftp3) XOR Dextallp3(rightp3); \
565
Dextallp4(leftp4) = Dextallp4(leftp4) XOR Dextallp4(rightp4); \
566
Dextallp4(rightp4) = Dextallp4(leftp4) XOR Dextallp4(rightp4); \
567
Dextallp4(leftp4) = Dextallp4(leftp4) XOR Dextallp4(rightp4)
568
569
#define Dblext_setone_lowmantissap4(dbl_value) Deposit_dextlowp4(dbl_value,1)
570
571
/* The high bit is always zero so arithmetic or logical shifts will work. */
572
#define Dblext_right_align(srcdstA,srcdstB,srcdstC,srcdstD,shift) \
573
{int shiftamt, sticky; \
574
shiftamt = shift % 32; \
575
sticky = 0; \
576
switch (shift/32) { \
577
case 0: if (shiftamt > 0) { \
578
sticky = Dextallp4(srcdstD) << 32 - (shiftamt); \
579
Variable_shift_double(Dextallp3(srcdstC), \
580
Dextallp4(srcdstD),shiftamt,Dextallp4(srcdstD)); \
581
Variable_shift_double(Dextallp2(srcdstB), \
582
Dextallp3(srcdstC),shiftamt,Dextallp3(srcdstC)); \
583
Variable_shift_double(Dextallp1(srcdstA), \
584
Dextallp2(srcdstB),shiftamt,Dextallp2(srcdstB)); \
585
Dextallp1(srcdstA) >>= shiftamt; \
586
} \
587
break; \
588
case 1: if (shiftamt > 0) { \
589
sticky = (Dextallp3(srcdstC) << 31 - shiftamt) | \
590
Dextallp4(srcdstD); \
591
Variable_shift_double(Dextallp2(srcdstB), \
592
Dextallp3(srcdstC),shiftamt,Dextallp4(srcdstD)); \
593
Variable_shift_double(Dextallp1(srcdstA), \
594
Dextallp2(srcdstB),shiftamt,Dextallp3(srcdstC)); \
595
} \
596
else { \
597
sticky = Dextallp4(srcdstD); \
598
Dextallp4(srcdstD) = Dextallp3(srcdstC); \
599
Dextallp3(srcdstC) = Dextallp2(srcdstB); \
600
} \
601
Dextallp2(srcdstB) = Dextallp1(srcdstA) >> shiftamt; \
602
Dextallp1(srcdstA) = 0; \
603
break; \
604
case 2: if (shiftamt > 0) { \
605
sticky = (Dextallp2(srcdstB) << 31 - shiftamt) | \
606
Dextallp3(srcdstC) | Dextallp4(srcdstD); \
607
Variable_shift_double(Dextallp1(srcdstA), \
608
Dextallp2(srcdstB),shiftamt,Dextallp4(srcdstD)); \
609
} \
610
else { \
611
sticky = Dextallp3(srcdstC) | Dextallp4(srcdstD); \
612
Dextallp4(srcdstD) = Dextallp2(srcdstB); \
613
} \
614
Dextallp3(srcdstC) = Dextallp1(srcdstA) >> shiftamt; \
615
Dextallp1(srcdstA) = Dextallp2(srcdstB) = 0; \
616
break; \
617
case 3: if (shiftamt > 0) { \
618
sticky = (Dextallp1(srcdstA) << 31 - shiftamt) | \
619
Dextallp2(srcdstB) | Dextallp3(srcdstC) | \
620
Dextallp4(srcdstD); \
621
} \
622
else { \
623
sticky = Dextallp2(srcdstB) | Dextallp3(srcdstC) | \
624
Dextallp4(srcdstD); \
625
} \
626
Dextallp4(srcdstD) = Dextallp1(srcdstA) >> shiftamt; \
627
Dextallp1(srcdstA) = Dextallp2(srcdstB) = 0; \
628
Dextallp3(srcdstC) = 0; \
629
break; \
630
} \
631
if (sticky) Dblext_setone_lowmantissap4(srcdstD); \
632
}
633
634
/* The left argument is never smaller than the right argument */
635
#define Dblext_subtract(lefta,leftb,leftc,leftd,righta,rightb,rightc,rightd,resulta,resultb,resultc,resultd) \
636
if( Dextallp4(rightd) > Dextallp4(leftd) ) \
637
if( (Dextallp3(leftc)--) == 0) \
638
if( (Dextallp2(leftb)--) == 0) Dextallp1(lefta)--; \
639
Dextallp4(resultd) = Dextallp4(leftd) - Dextallp4(rightd); \
640
if( Dextallp3(rightc) > Dextallp3(leftc) ) \
641
if( (Dextallp2(leftb)--) == 0) Dextallp1(lefta)--; \
642
Dextallp3(resultc) = Dextallp3(leftc) - Dextallp3(rightc); \
643
if( Dextallp2(rightb) > Dextallp2(leftb) ) Dextallp1(lefta)--; \
644
Dextallp2(resultb) = Dextallp2(leftb) - Dextallp2(rightb); \
645
Dextallp1(resulta) = Dextallp1(lefta) - Dextallp1(righta)
646
647
#define Dblext_addition(lefta,leftb,leftc,leftd,righta,rightb,rightc,rightd,resulta,resultb,resultc,resultd) \
648
/* If the sum of the low words is less than either source, then \
649
* an overflow into the next word occurred. */ \
650
if ((Dextallp4(resultd) = Dextallp4(leftd)+Dextallp4(rightd)) < \
651
Dextallp4(rightd)) \
652
if((Dextallp3(resultc) = Dextallp3(leftc)+Dextallp3(rightc)+1) <= \
653
Dextallp3(rightc)) \
654
if((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)+1) \
655
<= Dextallp2(rightb)) \
656
Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \
657
else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \
658
else \
659
if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)) < \
660
Dextallp2(rightb)) \
661
Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \
662
else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \
663
else \
664
if ((Dextallp3(resultc) = Dextallp3(leftc)+Dextallp3(rightc)) < \
665
Dextallp3(rightc)) \
666
if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)+1) \
667
<= Dextallp2(rightb)) \
668
Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \
669
else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \
670
else \
671
if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)) < \
672
Dextallp2(rightb)) \
673
Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \
674
else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)
675
676
677
#define Dblext_arithrightshiftby1(srcdstA,srcdstB,srcdstC,srcdstD) \
678
Shiftdouble(Dextallp3(srcdstC),Dextallp4(srcdstD),1,Dextallp4(srcdstD)); \
679
Shiftdouble(Dextallp2(srcdstB),Dextallp3(srcdstC),1,Dextallp3(srcdstC)); \
680
Shiftdouble(Dextallp1(srcdstA),Dextallp2(srcdstB),1,Dextallp2(srcdstB)); \
681
Dextallp1(srcdstA) = (int)Dextallp1(srcdstA) >> 1
682
683
#define Dblext_leftshiftby8(valA,valB,valC,valD) \
684
Shiftdouble(Dextallp1(valA),Dextallp2(valB),24,Dextallp1(valA)); \
685
Shiftdouble(Dextallp2(valB),Dextallp3(valC),24,Dextallp2(valB)); \
686
Shiftdouble(Dextallp3(valC),Dextallp4(valD),24,Dextallp3(valC)); \
687
Dextallp4(valD) <<= 8
688
#define Dblext_leftshiftby4(valA,valB,valC,valD) \
689
Shiftdouble(Dextallp1(valA),Dextallp2(valB),28,Dextallp1(valA)); \
690
Shiftdouble(Dextallp2(valB),Dextallp3(valC),28,Dextallp2(valB)); \
691
Shiftdouble(Dextallp3(valC),Dextallp4(valD),28,Dextallp3(valC)); \
692
Dextallp4(valD) <<= 4
693
#define Dblext_leftshiftby3(valA,valB,valC,valD) \
694
Shiftdouble(Dextallp1(valA),Dextallp2(valB),29,Dextallp1(valA)); \
695
Shiftdouble(Dextallp2(valB),Dextallp3(valC),29,Dextallp2(valB)); \
696
Shiftdouble(Dextallp3(valC),Dextallp4(valD),29,Dextallp3(valC)); \
697
Dextallp4(valD) <<= 3
698
#define Dblext_leftshiftby2(valA,valB,valC,valD) \
699
Shiftdouble(Dextallp1(valA),Dextallp2(valB),30,Dextallp1(valA)); \
700
Shiftdouble(Dextallp2(valB),Dextallp3(valC),30,Dextallp2(valB)); \
701
Shiftdouble(Dextallp3(valC),Dextallp4(valD),30,Dextallp3(valC)); \
702
Dextallp4(valD) <<= 2
703
#define Dblext_leftshiftby1(valA,valB,valC,valD) \
704
Shiftdouble(Dextallp1(valA),Dextallp2(valB),31,Dextallp1(valA)); \
705
Shiftdouble(Dextallp2(valB),Dextallp3(valC),31,Dextallp2(valB)); \
706
Shiftdouble(Dextallp3(valC),Dextallp4(valD),31,Dextallp3(valC)); \
707
Dextallp4(valD) <<= 1
708
709
#define Dblext_rightshiftby4(valueA,valueB,valueC,valueD) \
710
Shiftdouble(Dextallp3(valueC),Dextallp4(valueD),4,Dextallp4(valueD)); \
711
Shiftdouble(Dextallp2(valueB),Dextallp3(valueC),4,Dextallp3(valueC)); \
712
Shiftdouble(Dextallp1(valueA),Dextallp2(valueB),4,Dextallp2(valueB)); \
713
Dextallp1(valueA) >>= 4
714
#define Dblext_rightshiftby1(valueA,valueB,valueC,valueD) \
715
Shiftdouble(Dextallp3(valueC),Dextallp4(valueD),1,Dextallp4(valueD)); \
716
Shiftdouble(Dextallp2(valueB),Dextallp3(valueC),1,Dextallp3(valueC)); \
717
Shiftdouble(Dextallp1(valueA),Dextallp2(valueB),1,Dextallp2(valueB)); \
718
Dextallp1(valueA) >>= 1
719
720
#define Dblext_xortointp1(left,right,result) Dbl_xortointp1(left,right,result)
721
722
#define Dblext_xorfromintp1(left,right,result) \
723
Dbl_xorfromintp1(left,right,result)
724
725
#define Dblext_copytoint_exponentmantissap1(src,dest) \
726
Dbl_copytoint_exponentmantissap1(src,dest)
727
728
#define Dblext_ismagnitudeless(leftB,rightB,signlessleft,signlessright) \
729
Dbl_ismagnitudeless(leftB,rightB,signlessleft,signlessright)
730
731
#define Dbl_copyto_dblext(src1,src2,dest1,dest2,dest3,dest4) \
732
Dextallp1(dest1) = Dallp1(src1); Dextallp2(dest2) = Dallp2(src2); \
733
Dextallp3(dest3) = 0; Dextallp4(dest4) = 0
734
735
#define Dblext_set_sign(dbl_value,sign) Dbl_set_sign(dbl_value,sign)
736
#define Dblext_clear_signexponent_set_hidden(srcdst) \
737
Dbl_clear_signexponent_set_hidden(srcdst)
738
#define Dblext_clear_signexponent(srcdst) Dbl_clear_signexponent(srcdst)
739
#define Dblext_clear_sign(srcdst) Dbl_clear_sign(srcdst)
740
#define Dblext_isone_hidden(dbl_value) Dbl_isone_hidden(dbl_value)
741
742
/*
743
* The Fourword_add() macro assumes that integers are 4 bytes in size.
744
* It will break if this is not the case.
745
*/
746
747
#define Fourword_add(src1dstA,src1dstB,src1dstC,src1dstD,src2A,src2B,src2C,src2D) \
748
/* \
749
* want this macro to generate: \
750
* ADD src1dstD,src2D,src1dstD; \
751
* ADDC src1dstC,src2C,src1dstC; \
752
* ADDC src1dstB,src2B,src1dstB; \
753
* ADDC src1dstA,src2A,src1dstA; \
754
*/ \
755
if ((unsigned int)(src1dstD += (src2D)) < (unsigned int)(src2D)) { \
756
if ((unsigned int)(src1dstC += (src2C) + 1) <= \
757
(unsigned int)(src2C)) { \
758
if ((unsigned int)(src1dstB += (src2B) + 1) <= \
759
(unsigned int)(src2B)) src1dstA++; \
760
} \
761
else if ((unsigned int)(src1dstB += (src2B)) < \
762
(unsigned int)(src2B)) src1dstA++; \
763
} \
764
else { \
765
if ((unsigned int)(src1dstC += (src2C)) < \
766
(unsigned int)(src2C)) { \
767
if ((unsigned int)(src1dstB += (src2B) + 1) <= \
768
(unsigned int)(src2B)) src1dstA++; \
769
} \
770
else if ((unsigned int)(src1dstB += (src2B)) < \
771
(unsigned int)(src2B)) src1dstA++; \
772
} \
773
src1dstA += (src2A)
774
775
#define Dblext_denormalize(opndp1,opndp2,opndp3,opndp4,exponent,is_tiny) \
776
{int shiftamt, sticky; \
777
is_tiny = TRUE; \
778
if (exponent == 0 && (Dextallp3(opndp3) || Dextallp4(opndp4))) { \
779
switch (Rounding_mode()) { \
780
case ROUNDPLUS: \
781
if (Dbl_iszero_sign(opndp1)) { \
782
Dbl_increment(opndp1,opndp2); \
783
if (Dbl_isone_hiddenoverflow(opndp1)) \
784
is_tiny = FALSE; \
785
Dbl_decrement(opndp1,opndp2); \
786
} \
787
break; \
788
case ROUNDMINUS: \
789
if (Dbl_isone_sign(opndp1)) { \
790
Dbl_increment(opndp1,opndp2); \
791
if (Dbl_isone_hiddenoverflow(opndp1)) \
792
is_tiny = FALSE; \
793
Dbl_decrement(opndp1,opndp2); \
794
} \
795
break; \
796
case ROUNDNEAREST: \
797
if (Dblext_isone_highp3(opndp3) && \
798
(Dblext_isone_lowp2(opndp2) || \
799
Dblext_isnotzero_low31p3(opndp3))) { \
800
Dbl_increment(opndp1,opndp2); \
801
if (Dbl_isone_hiddenoverflow(opndp1)) \
802
is_tiny = FALSE; \
803
Dbl_decrement(opndp1,opndp2); \
804
} \
805
break; \
806
} \
807
} \
808
Dblext_clear_signexponent_set_hidden(opndp1); \
809
if (exponent >= (1-QUAD_P)) { \
810
shiftamt = (1-exponent) % 32; \
811
switch((1-exponent)/32) { \
812
case 0: sticky = Dextallp4(opndp4) << 32-(shiftamt); \
813
Variableshiftdouble(opndp3,opndp4,shiftamt,opndp4); \
814
Variableshiftdouble(opndp2,opndp3,shiftamt,opndp3); \
815
Variableshiftdouble(opndp1,opndp2,shiftamt,opndp2); \
816
Dextallp1(opndp1) >>= shiftamt; \
817
break; \
818
case 1: sticky = (Dextallp3(opndp3) << 32-(shiftamt)) | \
819
Dextallp4(opndp4); \
820
Variableshiftdouble(opndp2,opndp3,shiftamt,opndp4); \
821
Variableshiftdouble(opndp1,opndp2,shiftamt,opndp3); \
822
Dextallp2(opndp2) = Dextallp1(opndp1) >> shiftamt; \
823
Dextallp1(opndp1) = 0; \
824
break; \
825
case 2: sticky = (Dextallp2(opndp2) << 32-(shiftamt)) | \
826
Dextallp3(opndp3) | Dextallp4(opndp4); \
827
Variableshiftdouble(opndp1,opndp2,shiftamt,opndp4); \
828
Dextallp3(opndp3) = Dextallp1(opndp1) >> shiftamt; \
829
Dextallp1(opndp1) = Dextallp2(opndp2) = 0; \
830
break; \
831
case 3: sticky = (Dextallp1(opndp1) << 32-(shiftamt)) | \
832
Dextallp2(opndp2) | Dextallp3(opndp3) | \
833
Dextallp4(opndp4); \
834
Dextallp4(opndp4) = Dextallp1(opndp1) >> shiftamt; \
835
Dextallp1(opndp1) = Dextallp2(opndp2) = 0; \
836
Dextallp3(opndp3) = 0; \
837
break; \
838
} \
839
} \
840
else { \
841
sticky = Dextallp1(opndp1) | Dextallp2(opndp2) | \
842
Dextallp3(opndp3) | Dextallp4(opndp4); \
843
Dblext_setzero(opndp1,opndp2,opndp3,opndp4); \
844
} \
845
if (sticky) Dblext_setone_lowmantissap4(opndp4); \
846
exponent = 0; \
847
}
848
849