Path: blob/master/arch/parisc/math-emu/dbl_float.h
10817 views
/*1* Linux/PA-RISC Project (http://www.parisc-linux.org/)2*3* Floating-point emulation code4* Copyright (C) 2001 Hewlett-Packard (Paul Bame) <[email protected]>5*6* This program is free software; you can redistribute it and/or modify7* it under the terms of the GNU General Public License as published by8* the Free Software Foundation; either version 2, or (at your option)9* any later version.10*11* This program is distributed in the hope that it will be useful,12* but WITHOUT ANY WARRANTY; without even the implied warranty of13* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the14* GNU General Public License for more details.15*16* You should have received a copy of the GNU General Public License17* along with this program; if not, write to the Free Software18* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA19*/20#ifdef __NO_PA_HDRS21PA header file -- do not include this header file for non-PA builds.22#endif2324/* 32-bit word grabbing functions */25#define Dbl_firstword(value) Dallp1(value)26#define Dbl_secondword(value) Dallp2(value)27#define Dbl_thirdword(value) dummy_location28#define Dbl_fourthword(value) dummy_location2930#define Dbl_sign(object) Dsign(object)31#define Dbl_exponent(object) Dexponent(object)32#define Dbl_signexponent(object) Dsignexponent(object)33#define Dbl_mantissap1(object) Dmantissap1(object)34#define Dbl_mantissap2(object) Dmantissap2(object)35#define Dbl_exponentmantissap1(object) Dexponentmantissap1(object)36#define Dbl_allp1(object) Dallp1(object)37#define Dbl_allp2(object) Dallp2(object)3839/* dbl_and_signs ANDs the sign bits of each argument and puts the result40* into the first argument. dbl_or_signs ors those same sign bits */41#define Dbl_and_signs( src1dst, src2) \42Dallp1(src1dst) = (Dallp1(src2)|~((unsigned int)1<<31)) & Dallp1(src1dst)43#define Dbl_or_signs( src1dst, src2) \44Dallp1(src1dst) = (Dallp1(src2)&((unsigned int)1<<31)) | Dallp1(src1dst)4546/* The hidden bit is always the low bit of the exponent */47#define Dbl_clear_exponent_set_hidden(srcdst) Deposit_dexponent(srcdst,1)48#define Dbl_clear_signexponent_set_hidden(srcdst) \49Deposit_dsignexponent(srcdst,1)50#define Dbl_clear_sign(srcdst) Dallp1(srcdst) &= ~((unsigned int)1<<31)51#define Dbl_clear_signexponent(srcdst) \52Dallp1(srcdst) &= Dmantissap1((unsigned int)-1)5354/* Exponent field for doubles has already been cleared and may be55* included in the shift. Here we need to generate two double width56* variable shifts. The insignificant bits can be ignored.57* MTSAR f(varamount)58* VSHD srcdst.high,srcdst.low => srcdst.low59* VSHD 0,srcdst.high => srcdst.high60* This is very difficult to model with C expressions since the shift amount61* could exceed 32. */62/* varamount must be less than 64 */63#define Dbl_rightshift(srcdstA, srcdstB, varamount) \64{if((varamount) >= 32) { \65Dallp2(srcdstB) = Dallp1(srcdstA) >> (varamount-32); \66Dallp1(srcdstA)=0; \67} \68else if(varamount > 0) { \69Variable_shift_double(Dallp1(srcdstA), Dallp2(srcdstB), \70(varamount), Dallp2(srcdstB)); \71Dallp1(srcdstA) >>= varamount; \72} }73/* varamount must be less than 64 */74#define Dbl_rightshift_exponentmantissa(srcdstA, srcdstB, varamount) \75{if((varamount) >= 32) { \76Dallp2(srcdstB) = Dexponentmantissap1(srcdstA) >> (varamount-32); \77Dallp1(srcdstA) &= ((unsigned int)1<<31); /* clear expmant field */ \78} \79else if(varamount > 0) { \80Variable_shift_double(Dexponentmantissap1(srcdstA), Dallp2(srcdstB), \81(varamount), Dallp2(srcdstB)); \82Deposit_dexponentmantissap1(srcdstA, \83(Dexponentmantissap1(srcdstA)>>varamount)); \84} }85/* varamount must be less than 64 */86#define Dbl_leftshift(srcdstA, srcdstB, varamount) \87{if((varamount) >= 32) { \88Dallp1(srcdstA) = Dallp2(srcdstB) << (varamount-32); \89Dallp2(srcdstB)=0; \90} \91else { \92if ((varamount) > 0) { \93Dallp1(srcdstA) = (Dallp1(srcdstA) << (varamount)) | \94(Dallp2(srcdstB) >> (32-(varamount))); \95Dallp2(srcdstB) <<= varamount; \96} \97} }98#define Dbl_leftshiftby1_withextent(lefta,leftb,right,resulta,resultb) \99Shiftdouble(Dallp1(lefta), Dallp2(leftb), 31, Dallp1(resulta)); \100Shiftdouble(Dallp2(leftb), Extall(right), 31, Dallp2(resultb))101102#define Dbl_rightshiftby1_withextent(leftb,right,dst) \103Extall(dst) = (Dallp2(leftb) << 31) | ((unsigned int)Extall(right) >> 1) | \104Extlow(right)105106#define Dbl_arithrightshiftby1(srcdstA,srcdstB) \107Shiftdouble(Dallp1(srcdstA),Dallp2(srcdstB),1,Dallp2(srcdstB));\108Dallp1(srcdstA) = (int)Dallp1(srcdstA) >> 1109110/* Sign extend the sign bit with an integer destination */111#define Dbl_signextendedsign(value) Dsignedsign(value)112113#define Dbl_isone_hidden(dbl_value) (Is_dhidden(dbl_value)!=0)114/* Singles and doubles may include the sign and exponent fields. The115* hidden bit and the hidden overflow must be included. */116#define Dbl_increment(dbl_valueA,dbl_valueB) \117if( (Dallp2(dbl_valueB) += 1) == 0 ) Dallp1(dbl_valueA) += 1118#define Dbl_increment_mantissa(dbl_valueA,dbl_valueB) \119if( (Dmantissap2(dbl_valueB) += 1) == 0 ) \120Deposit_dmantissap1(dbl_valueA,dbl_valueA+1)121#define Dbl_decrement(dbl_valueA,dbl_valueB) \122if( Dallp2(dbl_valueB) == 0 ) Dallp1(dbl_valueA) -= 1; \123Dallp2(dbl_valueB) -= 1124125#define Dbl_isone_sign(dbl_value) (Is_dsign(dbl_value)!=0)126#define Dbl_isone_hiddenoverflow(dbl_value) (Is_dhiddenoverflow(dbl_value)!=0)127#define Dbl_isone_lowmantissap1(dbl_valueA) (Is_dlowp1(dbl_valueA)!=0)128#define Dbl_isone_lowmantissap2(dbl_valueB) (Is_dlowp2(dbl_valueB)!=0)129#define Dbl_isone_signaling(dbl_value) (Is_dsignaling(dbl_value)!=0)130#define Dbl_is_signalingnan(dbl_value) (Dsignalingnan(dbl_value)==0xfff)131#define Dbl_isnotzero(dbl_valueA,dbl_valueB) \132(Dallp1(dbl_valueA) || Dallp2(dbl_valueB))133#define Dbl_isnotzero_hiddenhigh7mantissa(dbl_value) \134(Dhiddenhigh7mantissa(dbl_value)!=0)135#define Dbl_isnotzero_exponent(dbl_value) (Dexponent(dbl_value)!=0)136#define Dbl_isnotzero_mantissa(dbl_valueA,dbl_valueB) \137(Dmantissap1(dbl_valueA) || Dmantissap2(dbl_valueB))138#define Dbl_isnotzero_mantissap1(dbl_valueA) (Dmantissap1(dbl_valueA)!=0)139#define Dbl_isnotzero_mantissap2(dbl_valueB) (Dmantissap2(dbl_valueB)!=0)140#define Dbl_isnotzero_exponentmantissa(dbl_valueA,dbl_valueB) \141(Dexponentmantissap1(dbl_valueA) || Dmantissap2(dbl_valueB))142#define Dbl_isnotzero_low4p2(dbl_value) (Dlow4p2(dbl_value)!=0)143#define Dbl_iszero(dbl_valueA,dbl_valueB) (Dallp1(dbl_valueA)==0 && \144Dallp2(dbl_valueB)==0)145#define Dbl_iszero_allp1(dbl_value) (Dallp1(dbl_value)==0)146#define Dbl_iszero_allp2(dbl_value) (Dallp2(dbl_value)==0)147#define Dbl_iszero_hidden(dbl_value) (Is_dhidden(dbl_value)==0)148#define Dbl_iszero_hiddenoverflow(dbl_value) (Is_dhiddenoverflow(dbl_value)==0)149#define Dbl_iszero_hiddenhigh3mantissa(dbl_value) \150(Dhiddenhigh3mantissa(dbl_value)==0)151#define Dbl_iszero_hiddenhigh7mantissa(dbl_value) \152(Dhiddenhigh7mantissa(dbl_value)==0)153#define Dbl_iszero_sign(dbl_value) (Is_dsign(dbl_value)==0)154#define Dbl_iszero_exponent(dbl_value) (Dexponent(dbl_value)==0)155#define Dbl_iszero_mantissa(dbl_valueA,dbl_valueB) \156(Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)157#define Dbl_iszero_exponentmantissa(dbl_valueA,dbl_valueB) \158(Dexponentmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)159#define Dbl_isinfinity_exponent(dbl_value) \160(Dexponent(dbl_value)==DBL_INFINITY_EXPONENT)161#define Dbl_isnotinfinity_exponent(dbl_value) \162(Dexponent(dbl_value)!=DBL_INFINITY_EXPONENT)163#define Dbl_isinfinity(dbl_valueA,dbl_valueB) \164(Dexponent(dbl_valueA)==DBL_INFINITY_EXPONENT && \165Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)166#define Dbl_isnan(dbl_valueA,dbl_valueB) \167(Dexponent(dbl_valueA)==DBL_INFINITY_EXPONENT && \168(Dmantissap1(dbl_valueA)!=0 || Dmantissap2(dbl_valueB)!=0))169#define Dbl_isnotnan(dbl_valueA,dbl_valueB) \170(Dexponent(dbl_valueA)!=DBL_INFINITY_EXPONENT || \171(Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0))172173#define Dbl_islessthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \174(Dallp1(dbl_op1a) < Dallp1(dbl_op2a) || \175(Dallp1(dbl_op1a) == Dallp1(dbl_op2a) && \176Dallp2(dbl_op1b) < Dallp2(dbl_op2b)))177#define Dbl_isgreaterthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \178(Dallp1(dbl_op1a) > Dallp1(dbl_op2a) || \179(Dallp1(dbl_op1a) == Dallp1(dbl_op2a) && \180Dallp2(dbl_op1b) > Dallp2(dbl_op2b)))181#define Dbl_isnotlessthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \182(Dallp1(dbl_op1a) > Dallp1(dbl_op2a) || \183(Dallp1(dbl_op1a) == Dallp1(dbl_op2a) && \184Dallp2(dbl_op1b) >= Dallp2(dbl_op2b)))185#define Dbl_isnotgreaterthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \186(Dallp1(dbl_op1a) < Dallp1(dbl_op2a) || \187(Dallp1(dbl_op1a) == Dallp1(dbl_op2a) && \188Dallp2(dbl_op1b) <= Dallp2(dbl_op2b)))189#define Dbl_isequal(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \190((Dallp1(dbl_op1a) == Dallp1(dbl_op2a)) && \191(Dallp2(dbl_op1b) == Dallp2(dbl_op2b)))192193#define Dbl_leftshiftby8(dbl_valueA,dbl_valueB) \194Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),24,Dallp1(dbl_valueA)); \195Dallp2(dbl_valueB) <<= 8196#define Dbl_leftshiftby7(dbl_valueA,dbl_valueB) \197Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),25,Dallp1(dbl_valueA)); \198Dallp2(dbl_valueB) <<= 7199#define Dbl_leftshiftby4(dbl_valueA,dbl_valueB) \200Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),28,Dallp1(dbl_valueA)); \201Dallp2(dbl_valueB) <<= 4202#define Dbl_leftshiftby3(dbl_valueA,dbl_valueB) \203Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),29,Dallp1(dbl_valueA)); \204Dallp2(dbl_valueB) <<= 3205#define Dbl_leftshiftby2(dbl_valueA,dbl_valueB) \206Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),30,Dallp1(dbl_valueA)); \207Dallp2(dbl_valueB) <<= 2208#define Dbl_leftshiftby1(dbl_valueA,dbl_valueB) \209Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),31,Dallp1(dbl_valueA)); \210Dallp2(dbl_valueB) <<= 1211212#define Dbl_rightshiftby8(dbl_valueA,dbl_valueB) \213Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),8,Dallp2(dbl_valueB)); \214Dallp1(dbl_valueA) >>= 8215#define Dbl_rightshiftby4(dbl_valueA,dbl_valueB) \216Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),4,Dallp2(dbl_valueB)); \217Dallp1(dbl_valueA) >>= 4218#define Dbl_rightshiftby2(dbl_valueA,dbl_valueB) \219Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),2,Dallp2(dbl_valueB)); \220Dallp1(dbl_valueA) >>= 2221#define Dbl_rightshiftby1(dbl_valueA,dbl_valueB) \222Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),1,Dallp2(dbl_valueB)); \223Dallp1(dbl_valueA) >>= 1224225/* This magnitude comparison uses the signless first words and226* the regular part2 words. The comparison is graphically:227*228* 1st greater? -------------229* |230* 1st less?-----------------+---------231* | |232* 2nd greater or equal----->| |233* False True234*/235#define Dbl_ismagnitudeless(leftB,rightB,signlessleft,signlessright) \236((signlessleft <= signlessright) && \237( (signlessleft < signlessright) || (Dallp2(leftB)<Dallp2(rightB)) ))238239#define Dbl_copytoint_exponentmantissap1(src,dest) \240dest = Dexponentmantissap1(src)241242/* A quiet NaN has the high mantissa bit clear and at least on other (in this243* case the adjacent bit) bit set. */244#define Dbl_set_quiet(dbl_value) Deposit_dhigh2mantissa(dbl_value,1)245#define Dbl_set_exponent(dbl_value, exp) Deposit_dexponent(dbl_value,exp)246247#define Dbl_set_mantissa(desta,destb,valuea,valueb) \248Deposit_dmantissap1(desta,valuea); \249Dmantissap2(destb) = Dmantissap2(valueb)250#define Dbl_set_mantissap1(desta,valuea) \251Deposit_dmantissap1(desta,valuea)252#define Dbl_set_mantissap2(destb,valueb) \253Dmantissap2(destb) = Dmantissap2(valueb)254255#define Dbl_set_exponentmantissa(desta,destb,valuea,valueb) \256Deposit_dexponentmantissap1(desta,valuea); \257Dmantissap2(destb) = Dmantissap2(valueb)258#define Dbl_set_exponentmantissap1(dest,value) \259Deposit_dexponentmantissap1(dest,value)260261#define Dbl_copyfromptr(src,desta,destb) \262Dallp1(desta) = src->wd0; \263Dallp2(destb) = src->wd1264#define Dbl_copytoptr(srca,srcb,dest) \265dest->wd0 = Dallp1(srca); \266dest->wd1 = Dallp2(srcb)267268/* An infinity is represented with the max exponent and a zero mantissa */269#define Dbl_setinfinity_exponent(dbl_value) \270Deposit_dexponent(dbl_value,DBL_INFINITY_EXPONENT)271#define Dbl_setinfinity_exponentmantissa(dbl_valueA,dbl_valueB) \272Deposit_dexponentmantissap1(dbl_valueA, \273(DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH)))); \274Dmantissap2(dbl_valueB) = 0275#define Dbl_setinfinitypositive(dbl_valueA,dbl_valueB) \276Dallp1(dbl_valueA) \277= (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH))); \278Dmantissap2(dbl_valueB) = 0279#define Dbl_setinfinitynegative(dbl_valueA,dbl_valueB) \280Dallp1(dbl_valueA) = ((unsigned int)1<<31) | \281(DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH))); \282Dmantissap2(dbl_valueB) = 0283#define Dbl_setinfinity(dbl_valueA,dbl_valueB,sign) \284Dallp1(dbl_valueA) = ((unsigned int)sign << 31) | \285(DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH))); \286Dmantissap2(dbl_valueB) = 0287288#define Dbl_sethigh4bits(dbl_value, extsign) Deposit_dhigh4p1(dbl_value,extsign)289#define Dbl_set_sign(dbl_value,sign) Deposit_dsign(dbl_value,sign)290#define Dbl_invert_sign(dbl_value) Deposit_dsign(dbl_value,~Dsign(dbl_value))291#define Dbl_setone_sign(dbl_value) Deposit_dsign(dbl_value,1)292#define Dbl_setone_lowmantissap2(dbl_value) Deposit_dlowp2(dbl_value,1)293#define Dbl_setzero_sign(dbl_value) Dallp1(dbl_value) &= 0x7fffffff294#define Dbl_setzero_exponent(dbl_value) \295Dallp1(dbl_value) &= 0x800fffff296#define Dbl_setzero_mantissa(dbl_valueA,dbl_valueB) \297Dallp1(dbl_valueA) &= 0xfff00000; \298Dallp2(dbl_valueB) = 0299#define Dbl_setzero_mantissap1(dbl_value) Dallp1(dbl_value) &= 0xfff00000300#define Dbl_setzero_mantissap2(dbl_value) Dallp2(dbl_value) = 0301#define Dbl_setzero_exponentmantissa(dbl_valueA,dbl_valueB) \302Dallp1(dbl_valueA) &= 0x80000000; \303Dallp2(dbl_valueB) = 0304#define Dbl_setzero_exponentmantissap1(dbl_valueA) \305Dallp1(dbl_valueA) &= 0x80000000306#define Dbl_setzero(dbl_valueA,dbl_valueB) \307Dallp1(dbl_valueA) = 0; Dallp2(dbl_valueB) = 0308#define Dbl_setzerop1(dbl_value) Dallp1(dbl_value) = 0309#define Dbl_setzerop2(dbl_value) Dallp2(dbl_value) = 0310#define Dbl_setnegativezero(dbl_value) \311Dallp1(dbl_value) = (unsigned int)1 << 31; Dallp2(dbl_value) = 0312#define Dbl_setnegativezerop1(dbl_value) Dallp1(dbl_value) = (unsigned int)1<<31313314/* Use the following macro for both overflow & underflow conditions */315#define ovfl -316#define unfl +317#define Dbl_setwrapped_exponent(dbl_value,exponent,op) \318Deposit_dexponent(dbl_value,(exponent op DBL_WRAP))319320#define Dbl_setlargestpositive(dbl_valueA,dbl_valueB) \321Dallp1(dbl_valueA) = ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \322| ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 ); \323Dallp2(dbl_valueB) = 0xFFFFFFFF324#define Dbl_setlargestnegative(dbl_valueA,dbl_valueB) \325Dallp1(dbl_valueA) = ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \326| ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 ) \327| ((unsigned int)1<<31); \328Dallp2(dbl_valueB) = 0xFFFFFFFF329#define Dbl_setlargest_exponentmantissa(dbl_valueA,dbl_valueB) \330Deposit_dexponentmantissap1(dbl_valueA, \331(((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \332| ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 ))); \333Dallp2(dbl_valueB) = 0xFFFFFFFF334335#define Dbl_setnegativeinfinity(dbl_valueA,dbl_valueB) \336Dallp1(dbl_valueA) = ((1<<DBL_EXP_LENGTH) | DBL_INFINITY_EXPONENT) \337<< (32-(1+DBL_EXP_LENGTH)) ; \338Dallp2(dbl_valueB) = 0339#define Dbl_setlargest(dbl_valueA,dbl_valueB,sign) \340Dallp1(dbl_valueA) = ((unsigned int)sign << 31) | \341((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) | \342((1 << (32-(1+DBL_EXP_LENGTH))) - 1 ); \343Dallp2(dbl_valueB) = 0xFFFFFFFF344345346/* The high bit is always zero so arithmetic or logical shifts will work. */347#define Dbl_right_align(srcdstA,srcdstB,shift,extent) \348if( shift >= 32 ) \349{ \350/* Big shift requires examining the portion shift off \351the end to properly set inexact. */ \352if(shift < 64) \353{ \354if(shift > 32) \355{ \356Variable_shift_double(Dallp1(srcdstA),Dallp2(srcdstB), \357shift-32, Extall(extent)); \358if(Dallp2(srcdstB) << 64 - (shift)) Ext_setone_low(extent); \359} \360else Extall(extent) = Dallp2(srcdstB); \361Dallp2(srcdstB) = Dallp1(srcdstA) >> (shift - 32); \362} \363else \364{ \365Extall(extent) = Dallp1(srcdstA); \366if(Dallp2(srcdstB)) Ext_setone_low(extent); \367Dallp2(srcdstB) = 0; \368} \369Dallp1(srcdstA) = 0; \370} \371else \372{ \373/* Small alignment is simpler. Extension is easily set. */ \374if (shift > 0) \375{ \376Extall(extent) = Dallp2(srcdstB) << 32 - (shift); \377Variable_shift_double(Dallp1(srcdstA),Dallp2(srcdstB),shift, \378Dallp2(srcdstB)); \379Dallp1(srcdstA) >>= shift; \380} \381else Extall(extent) = 0; \382}383384/*385* Here we need to shift the result right to correct for an overshift386* (due to the exponent becoming negative) during normalization.387*/388#define Dbl_fix_overshift(srcdstA,srcdstB,shift,extent) \389Extall(extent) = Dallp2(srcdstB) << 32 - (shift); \390Dallp2(srcdstB) = (Dallp1(srcdstA) << 32 - (shift)) | \391(Dallp2(srcdstB) >> (shift)); \392Dallp1(srcdstA) = Dallp1(srcdstA) >> shift393394#define Dbl_hiddenhigh3mantissa(dbl_value) Dhiddenhigh3mantissa(dbl_value)395#define Dbl_hidden(dbl_value) Dhidden(dbl_value)396#define Dbl_lowmantissap2(dbl_value) Dlowp2(dbl_value)397398/* The left argument is never smaller than the right argument */399#define Dbl_subtract(lefta,leftb,righta,rightb,resulta,resultb) \400if( Dallp2(rightb) > Dallp2(leftb) ) Dallp1(lefta)--; \401Dallp2(resultb) = Dallp2(leftb) - Dallp2(rightb); \402Dallp1(resulta) = Dallp1(lefta) - Dallp1(righta)403404/* Subtract right augmented with extension from left augmented with zeros and405* store into result and extension. */406#define Dbl_subtract_withextension(lefta,leftb,righta,rightb,extent,resulta,resultb) \407Dbl_subtract(lefta,leftb,righta,rightb,resulta,resultb); \408if( (Extall(extent) = 0-Extall(extent)) ) \409{ \410if((Dallp2(resultb)--) == 0) Dallp1(resulta)--; \411}412413#define Dbl_addition(lefta,leftb,righta,rightb,resulta,resultb) \414/* If the sum of the low words is less than either source, then \415* an overflow into the next word occurred. */ \416Dallp1(resulta) = Dallp1(lefta) + Dallp1(righta); \417if((Dallp2(resultb) = Dallp2(leftb) + Dallp2(rightb)) < Dallp2(rightb)) \418Dallp1(resulta)++419420#define Dbl_xortointp1(left,right,result) \421result = Dallp1(left) XOR Dallp1(right)422423#define Dbl_xorfromintp1(left,right,result) \424Dallp1(result) = left XOR Dallp1(right)425426#define Dbl_swap_lower(left,right) \427Dallp2(left) = Dallp2(left) XOR Dallp2(right); \428Dallp2(right) = Dallp2(left) XOR Dallp2(right); \429Dallp2(left) = Dallp2(left) XOR Dallp2(right)430431/* Need to Initialize */432#define Dbl_makequietnan(desta,destb) \433Dallp1(desta) = ((DBL_EMAX+DBL_BIAS)+1)<< (32-(1+DBL_EXP_LENGTH)) \434| (1<<(32-(1+DBL_EXP_LENGTH+2))); \435Dallp2(destb) = 0436#define Dbl_makesignalingnan(desta,destb) \437Dallp1(desta) = ((DBL_EMAX+DBL_BIAS)+1)<< (32-(1+DBL_EXP_LENGTH)) \438| (1<<(32-(1+DBL_EXP_LENGTH+1))); \439Dallp2(destb) = 0440441#define Dbl_normalize(dbl_opndA,dbl_opndB,exponent) \442while(Dbl_iszero_hiddenhigh7mantissa(dbl_opndA)) { \443Dbl_leftshiftby8(dbl_opndA,dbl_opndB); \444exponent -= 8; \445} \446if(Dbl_iszero_hiddenhigh3mantissa(dbl_opndA)) { \447Dbl_leftshiftby4(dbl_opndA,dbl_opndB); \448exponent -= 4; \449} \450while(Dbl_iszero_hidden(dbl_opndA)) { \451Dbl_leftshiftby1(dbl_opndA,dbl_opndB); \452exponent -= 1; \453}454455#define Twoword_add(src1dstA,src1dstB,src2A,src2B) \456/* \457* want this macro to generate: \458* ADD src1dstB,src2B,src1dstB; \459* ADDC src1dstA,src2A,src1dstA; \460*/ \461if ((src1dstB) + (src2B) < (src1dstB)) Dallp1(src1dstA)++; \462Dallp1(src1dstA) += (src2A); \463Dallp2(src1dstB) += (src2B)464465#define Twoword_subtract(src1dstA,src1dstB,src2A,src2B) \466/* \467* want this macro to generate: \468* SUB src1dstB,src2B,src1dstB; \469* SUBB src1dstA,src2A,src1dstA; \470*/ \471if ((src1dstB) < (src2B)) Dallp1(src1dstA)--; \472Dallp1(src1dstA) -= (src2A); \473Dallp2(src1dstB) -= (src2B)474475#define Dbl_setoverflow(resultA,resultB) \476/* set result to infinity or largest number */ \477switch (Rounding_mode()) { \478case ROUNDPLUS: \479if (Dbl_isone_sign(resultA)) { \480Dbl_setlargestnegative(resultA,resultB); \481} \482else { \483Dbl_setinfinitypositive(resultA,resultB); \484} \485break; \486case ROUNDMINUS: \487if (Dbl_iszero_sign(resultA)) { \488Dbl_setlargestpositive(resultA,resultB); \489} \490else { \491Dbl_setinfinitynegative(resultA,resultB); \492} \493break; \494case ROUNDNEAREST: \495Dbl_setinfinity_exponentmantissa(resultA,resultB); \496break; \497case ROUNDZERO: \498Dbl_setlargest_exponentmantissa(resultA,resultB); \499}500501#define Dbl_denormalize(opndp1,opndp2,exponent,guard,sticky,inexact) \502Dbl_clear_signexponent_set_hidden(opndp1); \503if (exponent >= (1-DBL_P)) { \504if (exponent >= -31) { \505guard = (Dallp2(opndp2) >> -exponent) & 1; \506if (exponent < 0) sticky |= Dallp2(opndp2) << (32+exponent); \507if (exponent > -31) { \508Variable_shift_double(opndp1,opndp2,1-exponent,opndp2); \509Dallp1(opndp1) >>= 1-exponent; \510} \511else { \512Dallp2(opndp2) = Dallp1(opndp1); \513Dbl_setzerop1(opndp1); \514} \515} \516else { \517guard = (Dallp1(opndp1) >> -32-exponent) & 1; \518if (exponent == -32) sticky |= Dallp2(opndp2); \519else sticky |= (Dallp2(opndp2) | Dallp1(opndp1) << 64+exponent); \520Dallp2(opndp2) = Dallp1(opndp1) >> -31-exponent; \521Dbl_setzerop1(opndp1); \522} \523inexact = guard | sticky; \524} \525else { \526guard = 0; \527sticky |= (Dallp1(opndp1) | Dallp2(opndp2)); \528Dbl_setzero(opndp1,opndp2); \529inexact = sticky; \530}531532/*533* The fused multiply add instructions requires a double extended format,534* with 106 bits of mantissa.535*/536#define DBLEXT_THRESHOLD 106537538#define Dblext_setzero(valA,valB,valC,valD) \539Dextallp1(valA) = 0; Dextallp2(valB) = 0; \540Dextallp3(valC) = 0; Dextallp4(valD) = 0541542543#define Dblext_isnotzero_mantissap3(valC) (Dextallp3(valC)!=0)544#define Dblext_isnotzero_mantissap4(valD) (Dextallp3(valD)!=0)545#define Dblext_isone_lowp2(val) (Dextlowp2(val)!=0)546#define Dblext_isone_highp3(val) (Dexthighp3(val)!=0)547#define Dblext_isnotzero_low31p3(val) (Dextlow31p3(val)!=0)548#define Dblext_iszero(valA,valB,valC,valD) (Dextallp1(valA)==0 && \549Dextallp2(valB)==0 && Dextallp3(valC)==0 && Dextallp4(valD)==0)550551#define Dblext_copy(srca,srcb,srcc,srcd,desta,destb,destc,destd) \552Dextallp1(desta) = Dextallp4(srca); \553Dextallp2(destb) = Dextallp4(srcb); \554Dextallp3(destc) = Dextallp4(srcc); \555Dextallp4(destd) = Dextallp4(srcd)556557#define Dblext_swap_lower(leftp2,leftp3,leftp4,rightp2,rightp3,rightp4) \558Dextallp2(leftp2) = Dextallp2(leftp2) XOR Dextallp2(rightp2); \559Dextallp2(rightp2) = Dextallp2(leftp2) XOR Dextallp2(rightp2); \560Dextallp2(leftp2) = Dextallp2(leftp2) XOR Dextallp2(rightp2); \561Dextallp3(leftp3) = Dextallp3(leftp3) XOR Dextallp3(rightp3); \562Dextallp3(rightp3) = Dextallp3(leftp3) XOR Dextallp3(rightp3); \563Dextallp3(leftp3) = Dextallp3(leftp3) XOR Dextallp3(rightp3); \564Dextallp4(leftp4) = Dextallp4(leftp4) XOR Dextallp4(rightp4); \565Dextallp4(rightp4) = Dextallp4(leftp4) XOR Dextallp4(rightp4); \566Dextallp4(leftp4) = Dextallp4(leftp4) XOR Dextallp4(rightp4)567568#define Dblext_setone_lowmantissap4(dbl_value) Deposit_dextlowp4(dbl_value,1)569570/* The high bit is always zero so arithmetic or logical shifts will work. */571#define Dblext_right_align(srcdstA,srcdstB,srcdstC,srcdstD,shift) \572{int shiftamt, sticky; \573shiftamt = shift % 32; \574sticky = 0; \575switch (shift/32) { \576case 0: if (shiftamt > 0) { \577sticky = Dextallp4(srcdstD) << 32 - (shiftamt); \578Variable_shift_double(Dextallp3(srcdstC), \579Dextallp4(srcdstD),shiftamt,Dextallp4(srcdstD)); \580Variable_shift_double(Dextallp2(srcdstB), \581Dextallp3(srcdstC),shiftamt,Dextallp3(srcdstC)); \582Variable_shift_double(Dextallp1(srcdstA), \583Dextallp2(srcdstB),shiftamt,Dextallp2(srcdstB)); \584Dextallp1(srcdstA) >>= shiftamt; \585} \586break; \587case 1: if (shiftamt > 0) { \588sticky = (Dextallp3(srcdstC) << 31 - shiftamt) | \589Dextallp4(srcdstD); \590Variable_shift_double(Dextallp2(srcdstB), \591Dextallp3(srcdstC),shiftamt,Dextallp4(srcdstD)); \592Variable_shift_double(Dextallp1(srcdstA), \593Dextallp2(srcdstB),shiftamt,Dextallp3(srcdstC)); \594} \595else { \596sticky = Dextallp4(srcdstD); \597Dextallp4(srcdstD) = Dextallp3(srcdstC); \598Dextallp3(srcdstC) = Dextallp2(srcdstB); \599} \600Dextallp2(srcdstB) = Dextallp1(srcdstA) >> shiftamt; \601Dextallp1(srcdstA) = 0; \602break; \603case 2: if (shiftamt > 0) { \604sticky = (Dextallp2(srcdstB) << 31 - shiftamt) | \605Dextallp3(srcdstC) | Dextallp4(srcdstD); \606Variable_shift_double(Dextallp1(srcdstA), \607Dextallp2(srcdstB),shiftamt,Dextallp4(srcdstD)); \608} \609else { \610sticky = Dextallp3(srcdstC) | Dextallp4(srcdstD); \611Dextallp4(srcdstD) = Dextallp2(srcdstB); \612} \613Dextallp3(srcdstC) = Dextallp1(srcdstA) >> shiftamt; \614Dextallp1(srcdstA) = Dextallp2(srcdstB) = 0; \615break; \616case 3: if (shiftamt > 0) { \617sticky = (Dextallp1(srcdstA) << 31 - shiftamt) | \618Dextallp2(srcdstB) | Dextallp3(srcdstC) | \619Dextallp4(srcdstD); \620} \621else { \622sticky = Dextallp2(srcdstB) | Dextallp3(srcdstC) | \623Dextallp4(srcdstD); \624} \625Dextallp4(srcdstD) = Dextallp1(srcdstA) >> shiftamt; \626Dextallp1(srcdstA) = Dextallp2(srcdstB) = 0; \627Dextallp3(srcdstC) = 0; \628break; \629} \630if (sticky) Dblext_setone_lowmantissap4(srcdstD); \631}632633/* The left argument is never smaller than the right argument */634#define Dblext_subtract(lefta,leftb,leftc,leftd,righta,rightb,rightc,rightd,resulta,resultb,resultc,resultd) \635if( Dextallp4(rightd) > Dextallp4(leftd) ) \636if( (Dextallp3(leftc)--) == 0) \637if( (Dextallp2(leftb)--) == 0) Dextallp1(lefta)--; \638Dextallp4(resultd) = Dextallp4(leftd) - Dextallp4(rightd); \639if( Dextallp3(rightc) > Dextallp3(leftc) ) \640if( (Dextallp2(leftb)--) == 0) Dextallp1(lefta)--; \641Dextallp3(resultc) = Dextallp3(leftc) - Dextallp3(rightc); \642if( Dextallp2(rightb) > Dextallp2(leftb) ) Dextallp1(lefta)--; \643Dextallp2(resultb) = Dextallp2(leftb) - Dextallp2(rightb); \644Dextallp1(resulta) = Dextallp1(lefta) - Dextallp1(righta)645646#define Dblext_addition(lefta,leftb,leftc,leftd,righta,rightb,rightc,rightd,resulta,resultb,resultc,resultd) \647/* If the sum of the low words is less than either source, then \648* an overflow into the next word occurred. */ \649if ((Dextallp4(resultd) = Dextallp4(leftd)+Dextallp4(rightd)) < \650Dextallp4(rightd)) \651if((Dextallp3(resultc) = Dextallp3(leftc)+Dextallp3(rightc)+1) <= \652Dextallp3(rightc)) \653if((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)+1) \654<= Dextallp2(rightb)) \655Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \656else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \657else \658if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)) < \659Dextallp2(rightb)) \660Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \661else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \662else \663if ((Dextallp3(resultc) = Dextallp3(leftc)+Dextallp3(rightc)) < \664Dextallp3(rightc)) \665if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)+1) \666<= Dextallp2(rightb)) \667Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \668else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \669else \670if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)) < \671Dextallp2(rightb)) \672Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \673else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)674675676#define Dblext_arithrightshiftby1(srcdstA,srcdstB,srcdstC,srcdstD) \677Shiftdouble(Dextallp3(srcdstC),Dextallp4(srcdstD),1,Dextallp4(srcdstD)); \678Shiftdouble(Dextallp2(srcdstB),Dextallp3(srcdstC),1,Dextallp3(srcdstC)); \679Shiftdouble(Dextallp1(srcdstA),Dextallp2(srcdstB),1,Dextallp2(srcdstB)); \680Dextallp1(srcdstA) = (int)Dextallp1(srcdstA) >> 1681682#define Dblext_leftshiftby8(valA,valB,valC,valD) \683Shiftdouble(Dextallp1(valA),Dextallp2(valB),24,Dextallp1(valA)); \684Shiftdouble(Dextallp2(valB),Dextallp3(valC),24,Dextallp2(valB)); \685Shiftdouble(Dextallp3(valC),Dextallp4(valD),24,Dextallp3(valC)); \686Dextallp4(valD) <<= 8687#define Dblext_leftshiftby4(valA,valB,valC,valD) \688Shiftdouble(Dextallp1(valA),Dextallp2(valB),28,Dextallp1(valA)); \689Shiftdouble(Dextallp2(valB),Dextallp3(valC),28,Dextallp2(valB)); \690Shiftdouble(Dextallp3(valC),Dextallp4(valD),28,Dextallp3(valC)); \691Dextallp4(valD) <<= 4692#define Dblext_leftshiftby3(valA,valB,valC,valD) \693Shiftdouble(Dextallp1(valA),Dextallp2(valB),29,Dextallp1(valA)); \694Shiftdouble(Dextallp2(valB),Dextallp3(valC),29,Dextallp2(valB)); \695Shiftdouble(Dextallp3(valC),Dextallp4(valD),29,Dextallp3(valC)); \696Dextallp4(valD) <<= 3697#define Dblext_leftshiftby2(valA,valB,valC,valD) \698Shiftdouble(Dextallp1(valA),Dextallp2(valB),30,Dextallp1(valA)); \699Shiftdouble(Dextallp2(valB),Dextallp3(valC),30,Dextallp2(valB)); \700Shiftdouble(Dextallp3(valC),Dextallp4(valD),30,Dextallp3(valC)); \701Dextallp4(valD) <<= 2702#define Dblext_leftshiftby1(valA,valB,valC,valD) \703Shiftdouble(Dextallp1(valA),Dextallp2(valB),31,Dextallp1(valA)); \704Shiftdouble(Dextallp2(valB),Dextallp3(valC),31,Dextallp2(valB)); \705Shiftdouble(Dextallp3(valC),Dextallp4(valD),31,Dextallp3(valC)); \706Dextallp4(valD) <<= 1707708#define Dblext_rightshiftby4(valueA,valueB,valueC,valueD) \709Shiftdouble(Dextallp3(valueC),Dextallp4(valueD),4,Dextallp4(valueD)); \710Shiftdouble(Dextallp2(valueB),Dextallp3(valueC),4,Dextallp3(valueC)); \711Shiftdouble(Dextallp1(valueA),Dextallp2(valueB),4,Dextallp2(valueB)); \712Dextallp1(valueA) >>= 4713#define Dblext_rightshiftby1(valueA,valueB,valueC,valueD) \714Shiftdouble(Dextallp3(valueC),Dextallp4(valueD),1,Dextallp4(valueD)); \715Shiftdouble(Dextallp2(valueB),Dextallp3(valueC),1,Dextallp3(valueC)); \716Shiftdouble(Dextallp1(valueA),Dextallp2(valueB),1,Dextallp2(valueB)); \717Dextallp1(valueA) >>= 1718719#define Dblext_xortointp1(left,right,result) Dbl_xortointp1(left,right,result)720721#define Dblext_xorfromintp1(left,right,result) \722Dbl_xorfromintp1(left,right,result)723724#define Dblext_copytoint_exponentmantissap1(src,dest) \725Dbl_copytoint_exponentmantissap1(src,dest)726727#define Dblext_ismagnitudeless(leftB,rightB,signlessleft,signlessright) \728Dbl_ismagnitudeless(leftB,rightB,signlessleft,signlessright)729730#define Dbl_copyto_dblext(src1,src2,dest1,dest2,dest3,dest4) \731Dextallp1(dest1) = Dallp1(src1); Dextallp2(dest2) = Dallp2(src2); \732Dextallp3(dest3) = 0; Dextallp4(dest4) = 0733734#define Dblext_set_sign(dbl_value,sign) Dbl_set_sign(dbl_value,sign)735#define Dblext_clear_signexponent_set_hidden(srcdst) \736Dbl_clear_signexponent_set_hidden(srcdst)737#define Dblext_clear_signexponent(srcdst) Dbl_clear_signexponent(srcdst)738#define Dblext_clear_sign(srcdst) Dbl_clear_sign(srcdst)739#define Dblext_isone_hidden(dbl_value) Dbl_isone_hidden(dbl_value)740741/*742* The Fourword_add() macro assumes that integers are 4 bytes in size.743* It will break if this is not the case.744*/745746#define Fourword_add(src1dstA,src1dstB,src1dstC,src1dstD,src2A,src2B,src2C,src2D) \747/* \748* want this macro to generate: \749* ADD src1dstD,src2D,src1dstD; \750* ADDC src1dstC,src2C,src1dstC; \751* ADDC src1dstB,src2B,src1dstB; \752* ADDC src1dstA,src2A,src1dstA; \753*/ \754if ((unsigned int)(src1dstD += (src2D)) < (unsigned int)(src2D)) { \755if ((unsigned int)(src1dstC += (src2C) + 1) <= \756(unsigned int)(src2C)) { \757if ((unsigned int)(src1dstB += (src2B) + 1) <= \758(unsigned int)(src2B)) src1dstA++; \759} \760else if ((unsigned int)(src1dstB += (src2B)) < \761(unsigned int)(src2B)) src1dstA++; \762} \763else { \764if ((unsigned int)(src1dstC += (src2C)) < \765(unsigned int)(src2C)) { \766if ((unsigned int)(src1dstB += (src2B) + 1) <= \767(unsigned int)(src2B)) src1dstA++; \768} \769else if ((unsigned int)(src1dstB += (src2B)) < \770(unsigned int)(src2B)) src1dstA++; \771} \772src1dstA += (src2A)773774#define Dblext_denormalize(opndp1,opndp2,opndp3,opndp4,exponent,is_tiny) \775{int shiftamt, sticky; \776is_tiny = TRUE; \777if (exponent == 0 && (Dextallp3(opndp3) || Dextallp4(opndp4))) { \778switch (Rounding_mode()) { \779case ROUNDPLUS: \780if (Dbl_iszero_sign(opndp1)) { \781Dbl_increment(opndp1,opndp2); \782if (Dbl_isone_hiddenoverflow(opndp1)) \783is_tiny = FALSE; \784Dbl_decrement(opndp1,opndp2); \785} \786break; \787case ROUNDMINUS: \788if (Dbl_isone_sign(opndp1)) { \789Dbl_increment(opndp1,opndp2); \790if (Dbl_isone_hiddenoverflow(opndp1)) \791is_tiny = FALSE; \792Dbl_decrement(opndp1,opndp2); \793} \794break; \795case ROUNDNEAREST: \796if (Dblext_isone_highp3(opndp3) && \797(Dblext_isone_lowp2(opndp2) || \798Dblext_isnotzero_low31p3(opndp3))) { \799Dbl_increment(opndp1,opndp2); \800if (Dbl_isone_hiddenoverflow(opndp1)) \801is_tiny = FALSE; \802Dbl_decrement(opndp1,opndp2); \803} \804break; \805} \806} \807Dblext_clear_signexponent_set_hidden(opndp1); \808if (exponent >= (1-QUAD_P)) { \809shiftamt = (1-exponent) % 32; \810switch((1-exponent)/32) { \811case 0: sticky = Dextallp4(opndp4) << 32-(shiftamt); \812Variableshiftdouble(opndp3,opndp4,shiftamt,opndp4); \813Variableshiftdouble(opndp2,opndp3,shiftamt,opndp3); \814Variableshiftdouble(opndp1,opndp2,shiftamt,opndp2); \815Dextallp1(opndp1) >>= shiftamt; \816break; \817case 1: sticky = (Dextallp3(opndp3) << 32-(shiftamt)) | \818Dextallp4(opndp4); \819Variableshiftdouble(opndp2,opndp3,shiftamt,opndp4); \820Variableshiftdouble(opndp1,opndp2,shiftamt,opndp3); \821Dextallp2(opndp2) = Dextallp1(opndp1) >> shiftamt; \822Dextallp1(opndp1) = 0; \823break; \824case 2: sticky = (Dextallp2(opndp2) << 32-(shiftamt)) | \825Dextallp3(opndp3) | Dextallp4(opndp4); \826Variableshiftdouble(opndp1,opndp2,shiftamt,opndp4); \827Dextallp3(opndp3) = Dextallp1(opndp1) >> shiftamt; \828Dextallp1(opndp1) = Dextallp2(opndp2) = 0; \829break; \830case 3: sticky = (Dextallp1(opndp1) << 32-(shiftamt)) | \831Dextallp2(opndp2) | Dextallp3(opndp3) | \832Dextallp4(opndp4); \833Dextallp4(opndp4) = Dextallp1(opndp1) >> shiftamt; \834Dextallp1(opndp1) = Dextallp2(opndp2) = 0; \835Dextallp3(opndp3) = 0; \836break; \837} \838} \839else { \840sticky = Dextallp1(opndp1) | Dextallp2(opndp2) | \841Dextallp3(opndp3) | Dextallp4(opndp4); \842Dblext_setzero(opndp1,opndp2,opndp3,opndp4); \843} \844if (sticky) Dblext_setone_lowmantissap4(opndp4); \845exponent = 0; \846}847848849