Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/parisc/mm/fault.c
10817 views
1
/*
2
* This file is subject to the terms and conditions of the GNU General Public
3
* License. See the file "COPYING" in the main directory of this archive
4
* for more details.
5
*
6
*
7
* Copyright (C) 1995, 1996, 1997, 1998 by Ralf Baechle
8
* Copyright 1999 SuSE GmbH (Philipp Rumpf, [email protected])
9
* Copyright 1999 Hewlett Packard Co.
10
*
11
*/
12
13
#include <linux/mm.h>
14
#include <linux/ptrace.h>
15
#include <linux/sched.h>
16
#include <linux/interrupt.h>
17
#include <linux/module.h>
18
19
#include <asm/uaccess.h>
20
#include <asm/traps.h>
21
22
#define PRINT_USER_FAULTS /* (turn this on if you want user faults to be */
23
/* dumped to the console via printk) */
24
25
26
/* Various important other fields */
27
#define bit22set(x) (x & 0x00000200)
28
#define bits23_25set(x) (x & 0x000001c0)
29
#define isGraphicsFlushRead(x) ((x & 0xfc003fdf) == 0x04001a80)
30
/* extended opcode is 0x6a */
31
32
#define BITSSET 0x1c0 /* for identifying LDCW */
33
34
35
DEFINE_PER_CPU(struct exception_data, exception_data);
36
37
/*
38
* parisc_acctyp(unsigned int inst) --
39
* Given a PA-RISC memory access instruction, determine if the
40
* the instruction would perform a memory read or memory write
41
* operation.
42
*
43
* This function assumes that the given instruction is a memory access
44
* instruction (i.e. you should really only call it if you know that
45
* the instruction has generated some sort of a memory access fault).
46
*
47
* Returns:
48
* VM_READ if read operation
49
* VM_WRITE if write operation
50
* VM_EXEC if execute operation
51
*/
52
static unsigned long
53
parisc_acctyp(unsigned long code, unsigned int inst)
54
{
55
if (code == 6 || code == 16)
56
return VM_EXEC;
57
58
switch (inst & 0xf0000000) {
59
case 0x40000000: /* load */
60
case 0x50000000: /* new load */
61
return VM_READ;
62
63
case 0x60000000: /* store */
64
case 0x70000000: /* new store */
65
return VM_WRITE;
66
67
case 0x20000000: /* coproc */
68
case 0x30000000: /* coproc2 */
69
if (bit22set(inst))
70
return VM_WRITE;
71
72
case 0x0: /* indexed/memory management */
73
if (bit22set(inst)) {
74
/*
75
* Check for the 'Graphics Flush Read' instruction.
76
* It resembles an FDC instruction, except for bits
77
* 20 and 21. Any combination other than zero will
78
* utilize the block mover functionality on some
79
* older PA-RISC platforms. The case where a block
80
* move is performed from VM to graphics IO space
81
* should be treated as a READ.
82
*
83
* The significance of bits 20,21 in the FDC
84
* instruction is:
85
*
86
* 00 Flush data cache (normal instruction behavior)
87
* 01 Graphics flush write (IO space -> VM)
88
* 10 Graphics flush read (VM -> IO space)
89
* 11 Graphics flush read/write (VM <-> IO space)
90
*/
91
if (isGraphicsFlushRead(inst))
92
return VM_READ;
93
return VM_WRITE;
94
} else {
95
/*
96
* Check for LDCWX and LDCWS (semaphore instructions).
97
* If bits 23 through 25 are all 1's it is one of
98
* the above two instructions and is a write.
99
*
100
* Note: With the limited bits we are looking at,
101
* this will also catch PROBEW and PROBEWI. However,
102
* these should never get in here because they don't
103
* generate exceptions of the type:
104
* Data TLB miss fault/data page fault
105
* Data memory protection trap
106
*/
107
if (bits23_25set(inst) == BITSSET)
108
return VM_WRITE;
109
}
110
return VM_READ; /* Default */
111
}
112
return VM_READ; /* Default */
113
}
114
115
#undef bit22set
116
#undef bits23_25set
117
#undef isGraphicsFlushRead
118
#undef BITSSET
119
120
121
#if 0
122
/* This is the treewalk to find a vma which is the highest that has
123
* a start < addr. We're using find_vma_prev instead right now, but
124
* we might want to use this at some point in the future. Probably
125
* not, but I want it committed to CVS so I don't lose it :-)
126
*/
127
while (tree != vm_avl_empty) {
128
if (tree->vm_start > addr) {
129
tree = tree->vm_avl_left;
130
} else {
131
prev = tree;
132
if (prev->vm_next == NULL)
133
break;
134
if (prev->vm_next->vm_start > addr)
135
break;
136
tree = tree->vm_avl_right;
137
}
138
}
139
#endif
140
141
int fixup_exception(struct pt_regs *regs)
142
{
143
const struct exception_table_entry *fix;
144
145
fix = search_exception_tables(regs->iaoq[0]);
146
if (fix) {
147
struct exception_data *d;
148
d = &__get_cpu_var(exception_data);
149
d->fault_ip = regs->iaoq[0];
150
d->fault_space = regs->isr;
151
d->fault_addr = regs->ior;
152
153
regs->iaoq[0] = ((fix->fixup) & ~3);
154
/*
155
* NOTE: In some cases the faulting instruction
156
* may be in the delay slot of a branch. We
157
* don't want to take the branch, so we don't
158
* increment iaoq[1], instead we set it to be
159
* iaoq[0]+4, and clear the B bit in the PSW
160
*/
161
regs->iaoq[1] = regs->iaoq[0] + 4;
162
regs->gr[0] &= ~PSW_B; /* IPSW in gr[0] */
163
164
return 1;
165
}
166
167
return 0;
168
}
169
170
void do_page_fault(struct pt_regs *regs, unsigned long code,
171
unsigned long address)
172
{
173
struct vm_area_struct *vma, *prev_vma;
174
struct task_struct *tsk = current;
175
struct mm_struct *mm = tsk->mm;
176
unsigned long acc_type;
177
int fault;
178
179
if (in_atomic() || !mm)
180
goto no_context;
181
182
down_read(&mm->mmap_sem);
183
vma = find_vma_prev(mm, address, &prev_vma);
184
if (!vma || address < vma->vm_start)
185
goto check_expansion;
186
/*
187
* Ok, we have a good vm_area for this memory access. We still need to
188
* check the access permissions.
189
*/
190
191
good_area:
192
193
acc_type = parisc_acctyp(code,regs->iir);
194
195
if ((vma->vm_flags & acc_type) != acc_type)
196
goto bad_area;
197
198
/*
199
* If for any reason at all we couldn't handle the fault, make
200
* sure we exit gracefully rather than endlessly redo the
201
* fault.
202
*/
203
204
fault = handle_mm_fault(mm, vma, address, (acc_type & VM_WRITE) ? FAULT_FLAG_WRITE : 0);
205
if (unlikely(fault & VM_FAULT_ERROR)) {
206
/*
207
* We hit a shared mapping outside of the file, or some
208
* other thing happened to us that made us unable to
209
* handle the page fault gracefully.
210
*/
211
if (fault & VM_FAULT_OOM)
212
goto out_of_memory;
213
else if (fault & VM_FAULT_SIGBUS)
214
goto bad_area;
215
BUG();
216
}
217
if (fault & VM_FAULT_MAJOR)
218
current->maj_flt++;
219
else
220
current->min_flt++;
221
up_read(&mm->mmap_sem);
222
return;
223
224
check_expansion:
225
vma = prev_vma;
226
if (vma && (expand_stack(vma, address) == 0))
227
goto good_area;
228
229
/*
230
* Something tried to access memory that isn't in our memory map..
231
*/
232
bad_area:
233
up_read(&mm->mmap_sem);
234
235
if (user_mode(regs)) {
236
struct siginfo si;
237
238
#ifdef PRINT_USER_FAULTS
239
printk(KERN_DEBUG "\n");
240
printk(KERN_DEBUG "do_page_fault() pid=%d command='%s' type=%lu address=0x%08lx\n",
241
task_pid_nr(tsk), tsk->comm, code, address);
242
if (vma) {
243
printk(KERN_DEBUG "vm_start = 0x%08lx, vm_end = 0x%08lx\n",
244
vma->vm_start, vma->vm_end);
245
}
246
show_regs(regs);
247
#endif
248
/* FIXME: actually we need to get the signo and code correct */
249
si.si_signo = SIGSEGV;
250
si.si_errno = 0;
251
si.si_code = SEGV_MAPERR;
252
si.si_addr = (void __user *) address;
253
force_sig_info(SIGSEGV, &si, current);
254
return;
255
}
256
257
no_context:
258
259
if (!user_mode(regs) && fixup_exception(regs)) {
260
return;
261
}
262
263
parisc_terminate("Bad Address (null pointer deref?)", regs, code, address);
264
265
out_of_memory:
266
up_read(&mm->mmap_sem);
267
if (!user_mode(regs))
268
goto no_context;
269
pagefault_out_of_memory();
270
}
271
272