Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/powerpc/include/asm/bitops.h
15117 views
1
/*
2
* PowerPC atomic bit operations.
3
*
4
* Merged version by David Gibson <[email protected]>.
5
* Based on ppc64 versions by: Dave Engebretsen, Todd Inglett, Don
6
* Reed, Pat McCarthy, Peter Bergner, Anton Blanchard. They
7
* originally took it from the ppc32 code.
8
*
9
* Within a word, bits are numbered LSB first. Lot's of places make
10
* this assumption by directly testing bits with (val & (1<<nr)).
11
* This can cause confusion for large (> 1 word) bitmaps on a
12
* big-endian system because, unlike little endian, the number of each
13
* bit depends on the word size.
14
*
15
* The bitop functions are defined to work on unsigned longs, so for a
16
* ppc64 system the bits end up numbered:
17
* |63..............0|127............64|191...........128|255...........196|
18
* and on ppc32:
19
* |31.....0|63....31|95....64|127...96|159..128|191..160|223..192|255..224|
20
*
21
* There are a few little-endian macros used mostly for filesystem
22
* bitmaps, these work on similar bit arrays layouts, but
23
* byte-oriented:
24
* |7...0|15...8|23...16|31...24|39...32|47...40|55...48|63...56|
25
*
26
* The main difference is that bit 3-5 (64b) or 3-4 (32b) in the bit
27
* number field needs to be reversed compared to the big-endian bit
28
* fields. This can be achieved by XOR with 0x38 (64b) or 0x18 (32b).
29
*
30
* This program is free software; you can redistribute it and/or
31
* modify it under the terms of the GNU General Public License
32
* as published by the Free Software Foundation; either version
33
* 2 of the License, or (at your option) any later version.
34
*/
35
36
#ifndef _ASM_POWERPC_BITOPS_H
37
#define _ASM_POWERPC_BITOPS_H
38
39
#ifdef __KERNEL__
40
41
#ifndef _LINUX_BITOPS_H
42
#error only <linux/bitops.h> can be included directly
43
#endif
44
45
#include <linux/compiler.h>
46
#include <asm/asm-compat.h>
47
#include <asm/synch.h>
48
49
/*
50
* clear_bit doesn't imply a memory barrier
51
*/
52
#define smp_mb__before_clear_bit() smp_mb()
53
#define smp_mb__after_clear_bit() smp_mb()
54
55
#define BITOP_MASK(nr) (1UL << ((nr) % BITS_PER_LONG))
56
#define BITOP_WORD(nr) ((nr) / BITS_PER_LONG)
57
#define BITOP_LE_SWIZZLE ((BITS_PER_LONG-1) & ~0x7)
58
59
/* Macro for generating the ***_bits() functions */
60
#define DEFINE_BITOP(fn, op, prefix, postfix) \
61
static __inline__ void fn(unsigned long mask, \
62
volatile unsigned long *_p) \
63
{ \
64
unsigned long old; \
65
unsigned long *p = (unsigned long *)_p; \
66
__asm__ __volatile__ ( \
67
prefix \
68
"1:" PPC_LLARX(%0,0,%3,0) "\n" \
69
stringify_in_c(op) "%0,%0,%2\n" \
70
PPC405_ERR77(0,%3) \
71
PPC_STLCX "%0,0,%3\n" \
72
"bne- 1b\n" \
73
postfix \
74
: "=&r" (old), "+m" (*p) \
75
: "r" (mask), "r" (p) \
76
: "cc", "memory"); \
77
}
78
79
DEFINE_BITOP(set_bits, or, "", "")
80
DEFINE_BITOP(clear_bits, andc, "", "")
81
DEFINE_BITOP(clear_bits_unlock, andc, PPC_RELEASE_BARRIER, "")
82
DEFINE_BITOP(change_bits, xor, "", "")
83
84
static __inline__ void set_bit(int nr, volatile unsigned long *addr)
85
{
86
set_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr));
87
}
88
89
static __inline__ void clear_bit(int nr, volatile unsigned long *addr)
90
{
91
clear_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr));
92
}
93
94
static __inline__ void clear_bit_unlock(int nr, volatile unsigned long *addr)
95
{
96
clear_bits_unlock(BITOP_MASK(nr), addr + BITOP_WORD(nr));
97
}
98
99
static __inline__ void change_bit(int nr, volatile unsigned long *addr)
100
{
101
change_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr));
102
}
103
104
/* Like DEFINE_BITOP(), with changes to the arguments to 'op' and the output
105
* operands. */
106
#define DEFINE_TESTOP(fn, op, prefix, postfix, eh) \
107
static __inline__ unsigned long fn( \
108
unsigned long mask, \
109
volatile unsigned long *_p) \
110
{ \
111
unsigned long old, t; \
112
unsigned long *p = (unsigned long *)_p; \
113
__asm__ __volatile__ ( \
114
prefix \
115
"1:" PPC_LLARX(%0,0,%3,eh) "\n" \
116
stringify_in_c(op) "%1,%0,%2\n" \
117
PPC405_ERR77(0,%3) \
118
PPC_STLCX "%1,0,%3\n" \
119
"bne- 1b\n" \
120
postfix \
121
: "=&r" (old), "=&r" (t) \
122
: "r" (mask), "r" (p) \
123
: "cc", "memory"); \
124
return (old & mask); \
125
}
126
127
DEFINE_TESTOP(test_and_set_bits, or, PPC_RELEASE_BARRIER,
128
PPC_ACQUIRE_BARRIER, 0)
129
DEFINE_TESTOP(test_and_set_bits_lock, or, "",
130
PPC_ACQUIRE_BARRIER, 1)
131
DEFINE_TESTOP(test_and_clear_bits, andc, PPC_RELEASE_BARRIER,
132
PPC_ACQUIRE_BARRIER, 0)
133
DEFINE_TESTOP(test_and_change_bits, xor, PPC_RELEASE_BARRIER,
134
PPC_ACQUIRE_BARRIER, 0)
135
136
static __inline__ int test_and_set_bit(unsigned long nr,
137
volatile unsigned long *addr)
138
{
139
return test_and_set_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr)) != 0;
140
}
141
142
static __inline__ int test_and_set_bit_lock(unsigned long nr,
143
volatile unsigned long *addr)
144
{
145
return test_and_set_bits_lock(BITOP_MASK(nr),
146
addr + BITOP_WORD(nr)) != 0;
147
}
148
149
static __inline__ int test_and_clear_bit(unsigned long nr,
150
volatile unsigned long *addr)
151
{
152
return test_and_clear_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr)) != 0;
153
}
154
155
static __inline__ int test_and_change_bit(unsigned long nr,
156
volatile unsigned long *addr)
157
{
158
return test_and_change_bits(BITOP_MASK(nr), addr + BITOP_WORD(nr)) != 0;
159
}
160
161
#include <asm-generic/bitops/non-atomic.h>
162
163
static __inline__ void __clear_bit_unlock(int nr, volatile unsigned long *addr)
164
{
165
__asm__ __volatile__(PPC_RELEASE_BARRIER "" ::: "memory");
166
__clear_bit(nr, addr);
167
}
168
169
/*
170
* Return the zero-based bit position (LE, not IBM bit numbering) of
171
* the most significant 1-bit in a double word.
172
*/
173
static __inline__ __attribute__((const))
174
int __ilog2(unsigned long x)
175
{
176
int lz;
177
178
asm (PPC_CNTLZL "%0,%1" : "=r" (lz) : "r" (x));
179
return BITS_PER_LONG - 1 - lz;
180
}
181
182
static inline __attribute__((const))
183
int __ilog2_u32(u32 n)
184
{
185
int bit;
186
asm ("cntlzw %0,%1" : "=r" (bit) : "r" (n));
187
return 31 - bit;
188
}
189
190
#ifdef __powerpc64__
191
static inline __attribute__((const))
192
int __ilog2_u64(u64 n)
193
{
194
int bit;
195
asm ("cntlzd %0,%1" : "=r" (bit) : "r" (n));
196
return 63 - bit;
197
}
198
#endif
199
200
/*
201
* Determines the bit position of the least significant 0 bit in the
202
* specified double word. The returned bit position will be
203
* zero-based, starting from the right side (63/31 - 0).
204
*/
205
static __inline__ unsigned long ffz(unsigned long x)
206
{
207
/* no zero exists anywhere in the 8 byte area. */
208
if ((x = ~x) == 0)
209
return BITS_PER_LONG;
210
211
/*
212
* Calculate the bit position of the least significant '1' bit in x
213
* (since x has been changed this will actually be the least significant
214
* '0' bit in * the original x). Note: (x & -x) gives us a mask that
215
* is the least significant * (RIGHT-most) 1-bit of the value in x.
216
*/
217
return __ilog2(x & -x);
218
}
219
220
static __inline__ int __ffs(unsigned long x)
221
{
222
return __ilog2(x & -x);
223
}
224
225
/*
226
* ffs: find first bit set. This is defined the same way as
227
* the libc and compiler builtin ffs routines, therefore
228
* differs in spirit from the above ffz (man ffs).
229
*/
230
static __inline__ int ffs(int x)
231
{
232
unsigned long i = (unsigned long)x;
233
return __ilog2(i & -i) + 1;
234
}
235
236
/*
237
* fls: find last (most-significant) bit set.
238
* Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
239
*/
240
static __inline__ int fls(unsigned int x)
241
{
242
int lz;
243
244
asm ("cntlzw %0,%1" : "=r" (lz) : "r" (x));
245
return 32 - lz;
246
}
247
248
static __inline__ unsigned long __fls(unsigned long x)
249
{
250
return __ilog2(x);
251
}
252
253
/*
254
* 64-bit can do this using one cntlzd (count leading zeroes doubleword)
255
* instruction; for 32-bit we use the generic version, which does two
256
* 32-bit fls calls.
257
*/
258
#ifdef __powerpc64__
259
static __inline__ int fls64(__u64 x)
260
{
261
int lz;
262
263
asm ("cntlzd %0,%1" : "=r" (lz) : "r" (x));
264
return 64 - lz;
265
}
266
#else
267
#include <asm-generic/bitops/fls64.h>
268
#endif /* __powerpc64__ */
269
270
#ifdef CONFIG_PPC64
271
unsigned int __arch_hweight8(unsigned int w);
272
unsigned int __arch_hweight16(unsigned int w);
273
unsigned int __arch_hweight32(unsigned int w);
274
unsigned long __arch_hweight64(__u64 w);
275
#include <asm-generic/bitops/const_hweight.h>
276
#else
277
#include <asm-generic/bitops/hweight.h>
278
#endif
279
280
#include <asm-generic/bitops/find.h>
281
282
/* Little-endian versions */
283
284
static __inline__ int test_bit_le(unsigned long nr,
285
__const__ void *addr)
286
{
287
__const__ unsigned char *tmp = (__const__ unsigned char *) addr;
288
return (tmp[nr >> 3] >> (nr & 7)) & 1;
289
}
290
291
static inline void __set_bit_le(int nr, void *addr)
292
{
293
__set_bit(nr ^ BITOP_LE_SWIZZLE, addr);
294
}
295
296
static inline void __clear_bit_le(int nr, void *addr)
297
{
298
__clear_bit(nr ^ BITOP_LE_SWIZZLE, addr);
299
}
300
301
static inline int test_and_set_bit_le(int nr, void *addr)
302
{
303
return test_and_set_bit(nr ^ BITOP_LE_SWIZZLE, addr);
304
}
305
306
static inline int test_and_clear_bit_le(int nr, void *addr)
307
{
308
return test_and_clear_bit(nr ^ BITOP_LE_SWIZZLE, addr);
309
}
310
311
static inline int __test_and_set_bit_le(int nr, void *addr)
312
{
313
return __test_and_set_bit(nr ^ BITOP_LE_SWIZZLE, addr);
314
}
315
316
static inline int __test_and_clear_bit_le(int nr, void *addr)
317
{
318
return __test_and_clear_bit(nr ^ BITOP_LE_SWIZZLE, addr);
319
}
320
321
#define find_first_zero_bit_le(addr, size) \
322
find_next_zero_bit_le((addr), (size), 0)
323
unsigned long find_next_zero_bit_le(const void *addr,
324
unsigned long size, unsigned long offset);
325
326
unsigned long find_next_bit_le(const void *addr,
327
unsigned long size, unsigned long offset);
328
/* Bitmap functions for the ext2 filesystem */
329
330
#define ext2_set_bit_atomic(lock, nr, addr) \
331
test_and_set_bit_le((nr), (unsigned long*)addr)
332
#define ext2_clear_bit_atomic(lock, nr, addr) \
333
test_and_clear_bit_le((nr), (unsigned long*)addr)
334
335
#include <asm-generic/bitops/sched.h>
336
337
#endif /* __KERNEL__ */
338
339
#endif /* _ASM_POWERPC_BITOPS_H */
340
341