Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/powerpc/kernel/align.c
10817 views
1
/* align.c - handle alignment exceptions for the Power PC.
2
*
3
* Copyright (c) 1996 Paul Mackerras <[email protected]>
4
* Copyright (c) 1998-1999 TiVo, Inc.
5
* PowerPC 403GCX modifications.
6
* Copyright (c) 1999 Grant Erickson <[email protected]>
7
* PowerPC 403GCX/405GP modifications.
8
* Copyright (c) 2001-2002 PPC64 team, IBM Corp
9
* 64-bit and Power4 support
10
* Copyright (c) 2005 Benjamin Herrenschmidt, IBM Corp
11
* <[email protected]>
12
* Merge ppc32 and ppc64 implementations
13
*
14
* This program is free software; you can redistribute it and/or
15
* modify it under the terms of the GNU General Public License
16
* as published by the Free Software Foundation; either version
17
* 2 of the License, or (at your option) any later version.
18
*/
19
20
#include <linux/kernel.h>
21
#include <linux/mm.h>
22
#include <asm/processor.h>
23
#include <asm/uaccess.h>
24
#include <asm/system.h>
25
#include <asm/cache.h>
26
#include <asm/cputable.h>
27
#include <asm/emulated_ops.h>
28
29
struct aligninfo {
30
unsigned char len;
31
unsigned char flags;
32
};
33
34
#define IS_XFORM(inst) (((inst) >> 26) == 31)
35
#define IS_DSFORM(inst) (((inst) >> 26) >= 56)
36
37
#define INVALID { 0, 0 }
38
39
/* Bits in the flags field */
40
#define LD 0 /* load */
41
#define ST 1 /* store */
42
#define SE 2 /* sign-extend value, or FP ld/st as word */
43
#define F 4 /* to/from fp regs */
44
#define U 8 /* update index register */
45
#define M 0x10 /* multiple load/store */
46
#define SW 0x20 /* byte swap */
47
#define S 0x40 /* single-precision fp or... */
48
#define SX 0x40 /* ... byte count in XER */
49
#define HARD 0x80 /* string, stwcx. */
50
#define E4 0x40 /* SPE endianness is word */
51
#define E8 0x80 /* SPE endianness is double word */
52
#define SPLT 0x80 /* VSX SPLAT load */
53
54
/* DSISR bits reported for a DCBZ instruction: */
55
#define DCBZ 0x5f /* 8xx/82xx dcbz faults when cache not enabled */
56
57
#define SWAP(a, b) (t = (a), (a) = (b), (b) = t)
58
59
/*
60
* The PowerPC stores certain bits of the instruction that caused the
61
* alignment exception in the DSISR register. This array maps those
62
* bits to information about the operand length and what the
63
* instruction would do.
64
*/
65
static struct aligninfo aligninfo[128] = {
66
{ 4, LD }, /* 00 0 0000: lwz / lwarx */
67
INVALID, /* 00 0 0001 */
68
{ 4, ST }, /* 00 0 0010: stw */
69
INVALID, /* 00 0 0011 */
70
{ 2, LD }, /* 00 0 0100: lhz */
71
{ 2, LD+SE }, /* 00 0 0101: lha */
72
{ 2, ST }, /* 00 0 0110: sth */
73
{ 4, LD+M }, /* 00 0 0111: lmw */
74
{ 4, LD+F+S }, /* 00 0 1000: lfs */
75
{ 8, LD+F }, /* 00 0 1001: lfd */
76
{ 4, ST+F+S }, /* 00 0 1010: stfs */
77
{ 8, ST+F }, /* 00 0 1011: stfd */
78
INVALID, /* 00 0 1100 */
79
{ 8, LD }, /* 00 0 1101: ld/ldu/lwa */
80
INVALID, /* 00 0 1110 */
81
{ 8, ST }, /* 00 0 1111: std/stdu */
82
{ 4, LD+U }, /* 00 1 0000: lwzu */
83
INVALID, /* 00 1 0001 */
84
{ 4, ST+U }, /* 00 1 0010: stwu */
85
INVALID, /* 00 1 0011 */
86
{ 2, LD+U }, /* 00 1 0100: lhzu */
87
{ 2, LD+SE+U }, /* 00 1 0101: lhau */
88
{ 2, ST+U }, /* 00 1 0110: sthu */
89
{ 4, ST+M }, /* 00 1 0111: stmw */
90
{ 4, LD+F+S+U }, /* 00 1 1000: lfsu */
91
{ 8, LD+F+U }, /* 00 1 1001: lfdu */
92
{ 4, ST+F+S+U }, /* 00 1 1010: stfsu */
93
{ 8, ST+F+U }, /* 00 1 1011: stfdu */
94
{ 16, LD+F }, /* 00 1 1100: lfdp */
95
INVALID, /* 00 1 1101 */
96
{ 16, ST+F }, /* 00 1 1110: stfdp */
97
INVALID, /* 00 1 1111 */
98
{ 8, LD }, /* 01 0 0000: ldx */
99
INVALID, /* 01 0 0001 */
100
{ 8, ST }, /* 01 0 0010: stdx */
101
INVALID, /* 01 0 0011 */
102
INVALID, /* 01 0 0100 */
103
{ 4, LD+SE }, /* 01 0 0101: lwax */
104
INVALID, /* 01 0 0110 */
105
INVALID, /* 01 0 0111 */
106
{ 4, LD+M+HARD+SX }, /* 01 0 1000: lswx */
107
{ 4, LD+M+HARD }, /* 01 0 1001: lswi */
108
{ 4, ST+M+HARD+SX }, /* 01 0 1010: stswx */
109
{ 4, ST+M+HARD }, /* 01 0 1011: stswi */
110
INVALID, /* 01 0 1100 */
111
{ 8, LD+U }, /* 01 0 1101: ldu */
112
INVALID, /* 01 0 1110 */
113
{ 8, ST+U }, /* 01 0 1111: stdu */
114
{ 8, LD+U }, /* 01 1 0000: ldux */
115
INVALID, /* 01 1 0001 */
116
{ 8, ST+U }, /* 01 1 0010: stdux */
117
INVALID, /* 01 1 0011 */
118
INVALID, /* 01 1 0100 */
119
{ 4, LD+SE+U }, /* 01 1 0101: lwaux */
120
INVALID, /* 01 1 0110 */
121
INVALID, /* 01 1 0111 */
122
INVALID, /* 01 1 1000 */
123
INVALID, /* 01 1 1001 */
124
INVALID, /* 01 1 1010 */
125
INVALID, /* 01 1 1011 */
126
INVALID, /* 01 1 1100 */
127
INVALID, /* 01 1 1101 */
128
INVALID, /* 01 1 1110 */
129
INVALID, /* 01 1 1111 */
130
INVALID, /* 10 0 0000 */
131
INVALID, /* 10 0 0001 */
132
INVALID, /* 10 0 0010: stwcx. */
133
INVALID, /* 10 0 0011 */
134
INVALID, /* 10 0 0100 */
135
INVALID, /* 10 0 0101 */
136
INVALID, /* 10 0 0110 */
137
INVALID, /* 10 0 0111 */
138
{ 4, LD+SW }, /* 10 0 1000: lwbrx */
139
INVALID, /* 10 0 1001 */
140
{ 4, ST+SW }, /* 10 0 1010: stwbrx */
141
INVALID, /* 10 0 1011 */
142
{ 2, LD+SW }, /* 10 0 1100: lhbrx */
143
{ 4, LD+SE }, /* 10 0 1101 lwa */
144
{ 2, ST+SW }, /* 10 0 1110: sthbrx */
145
INVALID, /* 10 0 1111 */
146
INVALID, /* 10 1 0000 */
147
INVALID, /* 10 1 0001 */
148
INVALID, /* 10 1 0010 */
149
INVALID, /* 10 1 0011 */
150
INVALID, /* 10 1 0100 */
151
INVALID, /* 10 1 0101 */
152
INVALID, /* 10 1 0110 */
153
INVALID, /* 10 1 0111 */
154
INVALID, /* 10 1 1000 */
155
INVALID, /* 10 1 1001 */
156
INVALID, /* 10 1 1010 */
157
INVALID, /* 10 1 1011 */
158
INVALID, /* 10 1 1100 */
159
INVALID, /* 10 1 1101 */
160
INVALID, /* 10 1 1110 */
161
{ 0, ST+HARD }, /* 10 1 1111: dcbz */
162
{ 4, LD }, /* 11 0 0000: lwzx */
163
INVALID, /* 11 0 0001 */
164
{ 4, ST }, /* 11 0 0010: stwx */
165
INVALID, /* 11 0 0011 */
166
{ 2, LD }, /* 11 0 0100: lhzx */
167
{ 2, LD+SE }, /* 11 0 0101: lhax */
168
{ 2, ST }, /* 11 0 0110: sthx */
169
INVALID, /* 11 0 0111 */
170
{ 4, LD+F+S }, /* 11 0 1000: lfsx */
171
{ 8, LD+F }, /* 11 0 1001: lfdx */
172
{ 4, ST+F+S }, /* 11 0 1010: stfsx */
173
{ 8, ST+F }, /* 11 0 1011: stfdx */
174
{ 16, LD+F }, /* 11 0 1100: lfdpx */
175
{ 4, LD+F+SE }, /* 11 0 1101: lfiwax */
176
{ 16, ST+F }, /* 11 0 1110: stfdpx */
177
{ 4, ST+F }, /* 11 0 1111: stfiwx */
178
{ 4, LD+U }, /* 11 1 0000: lwzux */
179
INVALID, /* 11 1 0001 */
180
{ 4, ST+U }, /* 11 1 0010: stwux */
181
INVALID, /* 11 1 0011 */
182
{ 2, LD+U }, /* 11 1 0100: lhzux */
183
{ 2, LD+SE+U }, /* 11 1 0101: lhaux */
184
{ 2, ST+U }, /* 11 1 0110: sthux */
185
INVALID, /* 11 1 0111 */
186
{ 4, LD+F+S+U }, /* 11 1 1000: lfsux */
187
{ 8, LD+F+U }, /* 11 1 1001: lfdux */
188
{ 4, ST+F+S+U }, /* 11 1 1010: stfsux */
189
{ 8, ST+F+U }, /* 11 1 1011: stfdux */
190
INVALID, /* 11 1 1100 */
191
{ 4, LD+F }, /* 11 1 1101: lfiwzx */
192
INVALID, /* 11 1 1110 */
193
INVALID, /* 11 1 1111 */
194
};
195
196
/*
197
* Create a DSISR value from the instruction
198
*/
199
static inline unsigned make_dsisr(unsigned instr)
200
{
201
unsigned dsisr;
202
203
204
/* bits 6:15 --> 22:31 */
205
dsisr = (instr & 0x03ff0000) >> 16;
206
207
if (IS_XFORM(instr)) {
208
/* bits 29:30 --> 15:16 */
209
dsisr |= (instr & 0x00000006) << 14;
210
/* bit 25 --> 17 */
211
dsisr |= (instr & 0x00000040) << 8;
212
/* bits 21:24 --> 18:21 */
213
dsisr |= (instr & 0x00000780) << 3;
214
} else {
215
/* bit 5 --> 17 */
216
dsisr |= (instr & 0x04000000) >> 12;
217
/* bits 1: 4 --> 18:21 */
218
dsisr |= (instr & 0x78000000) >> 17;
219
/* bits 30:31 --> 12:13 */
220
if (IS_DSFORM(instr))
221
dsisr |= (instr & 0x00000003) << 18;
222
}
223
224
return dsisr;
225
}
226
227
/*
228
* The dcbz (data cache block zero) instruction
229
* gives an alignment fault if used on non-cacheable
230
* memory. We handle the fault mainly for the
231
* case when we are running with the cache disabled
232
* for debugging.
233
*/
234
static int emulate_dcbz(struct pt_regs *regs, unsigned char __user *addr)
235
{
236
long __user *p;
237
int i, size;
238
239
#ifdef __powerpc64__
240
size = ppc64_caches.dline_size;
241
#else
242
size = L1_CACHE_BYTES;
243
#endif
244
p = (long __user *) (regs->dar & -size);
245
if (user_mode(regs) && !access_ok(VERIFY_WRITE, p, size))
246
return -EFAULT;
247
for (i = 0; i < size / sizeof(long); ++i)
248
if (__put_user_inatomic(0, p+i))
249
return -EFAULT;
250
return 1;
251
}
252
253
/*
254
* Emulate load & store multiple instructions
255
* On 64-bit machines, these instructions only affect/use the
256
* bottom 4 bytes of each register, and the loads clear the
257
* top 4 bytes of the affected register.
258
*/
259
#ifdef CONFIG_PPC64
260
#define REG_BYTE(rp, i) *((u8 *)((rp) + ((i) >> 2)) + ((i) & 3) + 4)
261
#else
262
#define REG_BYTE(rp, i) *((u8 *)(rp) + (i))
263
#endif
264
265
#define SWIZ_PTR(p) ((unsigned char __user *)((p) ^ swiz))
266
267
static int emulate_multiple(struct pt_regs *regs, unsigned char __user *addr,
268
unsigned int reg, unsigned int nb,
269
unsigned int flags, unsigned int instr,
270
unsigned long swiz)
271
{
272
unsigned long *rptr;
273
unsigned int nb0, i, bswiz;
274
unsigned long p;
275
276
/*
277
* We do not try to emulate 8 bytes multiple as they aren't really
278
* available in our operating environments and we don't try to
279
* emulate multiples operations in kernel land as they should never
280
* be used/generated there at least not on unaligned boundaries
281
*/
282
if (unlikely((nb > 4) || !user_mode(regs)))
283
return 0;
284
285
/* lmw, stmw, lswi/x, stswi/x */
286
nb0 = 0;
287
if (flags & HARD) {
288
if (flags & SX) {
289
nb = regs->xer & 127;
290
if (nb == 0)
291
return 1;
292
} else {
293
unsigned long pc = regs->nip ^ (swiz & 4);
294
295
if (__get_user_inatomic(instr,
296
(unsigned int __user *)pc))
297
return -EFAULT;
298
if (swiz == 0 && (flags & SW))
299
instr = cpu_to_le32(instr);
300
nb = (instr >> 11) & 0x1f;
301
if (nb == 0)
302
nb = 32;
303
}
304
if (nb + reg * 4 > 128) {
305
nb0 = nb + reg * 4 - 128;
306
nb = 128 - reg * 4;
307
}
308
} else {
309
/* lwm, stmw */
310
nb = (32 - reg) * 4;
311
}
312
313
if (!access_ok((flags & ST ? VERIFY_WRITE: VERIFY_READ), addr, nb+nb0))
314
return -EFAULT; /* bad address */
315
316
rptr = &regs->gpr[reg];
317
p = (unsigned long) addr;
318
bswiz = (flags & SW)? 3: 0;
319
320
if (!(flags & ST)) {
321
/*
322
* This zeroes the top 4 bytes of the affected registers
323
* in 64-bit mode, and also zeroes out any remaining
324
* bytes of the last register for lsw*.
325
*/
326
memset(rptr, 0, ((nb + 3) / 4) * sizeof(unsigned long));
327
if (nb0 > 0)
328
memset(&regs->gpr[0], 0,
329
((nb0 + 3) / 4) * sizeof(unsigned long));
330
331
for (i = 0; i < nb; ++i, ++p)
332
if (__get_user_inatomic(REG_BYTE(rptr, i ^ bswiz),
333
SWIZ_PTR(p)))
334
return -EFAULT;
335
if (nb0 > 0) {
336
rptr = &regs->gpr[0];
337
addr += nb;
338
for (i = 0; i < nb0; ++i, ++p)
339
if (__get_user_inatomic(REG_BYTE(rptr,
340
i ^ bswiz),
341
SWIZ_PTR(p)))
342
return -EFAULT;
343
}
344
345
} else {
346
for (i = 0; i < nb; ++i, ++p)
347
if (__put_user_inatomic(REG_BYTE(rptr, i ^ bswiz),
348
SWIZ_PTR(p)))
349
return -EFAULT;
350
if (nb0 > 0) {
351
rptr = &regs->gpr[0];
352
addr += nb;
353
for (i = 0; i < nb0; ++i, ++p)
354
if (__put_user_inatomic(REG_BYTE(rptr,
355
i ^ bswiz),
356
SWIZ_PTR(p)))
357
return -EFAULT;
358
}
359
}
360
return 1;
361
}
362
363
/*
364
* Emulate floating-point pair loads and stores.
365
* Only POWER6 has these instructions, and it does true little-endian,
366
* so we don't need the address swizzling.
367
*/
368
static int emulate_fp_pair(unsigned char __user *addr, unsigned int reg,
369
unsigned int flags)
370
{
371
char *ptr0 = (char *) &current->thread.TS_FPR(reg);
372
char *ptr1 = (char *) &current->thread.TS_FPR(reg+1);
373
int i, ret, sw = 0;
374
375
if (!(flags & F))
376
return 0;
377
if (reg & 1)
378
return 0; /* invalid form: FRS/FRT must be even */
379
if (flags & SW)
380
sw = 7;
381
ret = 0;
382
for (i = 0; i < 8; ++i) {
383
if (!(flags & ST)) {
384
ret |= __get_user(ptr0[i^sw], addr + i);
385
ret |= __get_user(ptr1[i^sw], addr + i + 8);
386
} else {
387
ret |= __put_user(ptr0[i^sw], addr + i);
388
ret |= __put_user(ptr1[i^sw], addr + i + 8);
389
}
390
}
391
if (ret)
392
return -EFAULT;
393
return 1; /* exception handled and fixed up */
394
}
395
396
#ifdef CONFIG_SPE
397
398
static struct aligninfo spe_aligninfo[32] = {
399
{ 8, LD+E8 }, /* 0 00 00: evldd[x] */
400
{ 8, LD+E4 }, /* 0 00 01: evldw[x] */
401
{ 8, LD }, /* 0 00 10: evldh[x] */
402
INVALID, /* 0 00 11 */
403
{ 2, LD }, /* 0 01 00: evlhhesplat[x] */
404
INVALID, /* 0 01 01 */
405
{ 2, LD }, /* 0 01 10: evlhhousplat[x] */
406
{ 2, LD+SE }, /* 0 01 11: evlhhossplat[x] */
407
{ 4, LD }, /* 0 10 00: evlwhe[x] */
408
INVALID, /* 0 10 01 */
409
{ 4, LD }, /* 0 10 10: evlwhou[x] */
410
{ 4, LD+SE }, /* 0 10 11: evlwhos[x] */
411
{ 4, LD+E4 }, /* 0 11 00: evlwwsplat[x] */
412
INVALID, /* 0 11 01 */
413
{ 4, LD }, /* 0 11 10: evlwhsplat[x] */
414
INVALID, /* 0 11 11 */
415
416
{ 8, ST+E8 }, /* 1 00 00: evstdd[x] */
417
{ 8, ST+E4 }, /* 1 00 01: evstdw[x] */
418
{ 8, ST }, /* 1 00 10: evstdh[x] */
419
INVALID, /* 1 00 11 */
420
INVALID, /* 1 01 00 */
421
INVALID, /* 1 01 01 */
422
INVALID, /* 1 01 10 */
423
INVALID, /* 1 01 11 */
424
{ 4, ST }, /* 1 10 00: evstwhe[x] */
425
INVALID, /* 1 10 01 */
426
{ 4, ST }, /* 1 10 10: evstwho[x] */
427
INVALID, /* 1 10 11 */
428
{ 4, ST+E4 }, /* 1 11 00: evstwwe[x] */
429
INVALID, /* 1 11 01 */
430
{ 4, ST+E4 }, /* 1 11 10: evstwwo[x] */
431
INVALID, /* 1 11 11 */
432
};
433
434
#define EVLDD 0x00
435
#define EVLDW 0x01
436
#define EVLDH 0x02
437
#define EVLHHESPLAT 0x04
438
#define EVLHHOUSPLAT 0x06
439
#define EVLHHOSSPLAT 0x07
440
#define EVLWHE 0x08
441
#define EVLWHOU 0x0A
442
#define EVLWHOS 0x0B
443
#define EVLWWSPLAT 0x0C
444
#define EVLWHSPLAT 0x0E
445
#define EVSTDD 0x10
446
#define EVSTDW 0x11
447
#define EVSTDH 0x12
448
#define EVSTWHE 0x18
449
#define EVSTWHO 0x1A
450
#define EVSTWWE 0x1C
451
#define EVSTWWO 0x1E
452
453
/*
454
* Emulate SPE loads and stores.
455
* Only Book-E has these instructions, and it does true little-endian,
456
* so we don't need the address swizzling.
457
*/
458
static int emulate_spe(struct pt_regs *regs, unsigned int reg,
459
unsigned int instr)
460
{
461
int t, ret;
462
union {
463
u64 ll;
464
u32 w[2];
465
u16 h[4];
466
u8 v[8];
467
} data, temp;
468
unsigned char __user *p, *addr;
469
unsigned long *evr = &current->thread.evr[reg];
470
unsigned int nb, flags;
471
472
instr = (instr >> 1) & 0x1f;
473
474
/* DAR has the operand effective address */
475
addr = (unsigned char __user *)regs->dar;
476
477
nb = spe_aligninfo[instr].len;
478
flags = spe_aligninfo[instr].flags;
479
480
/* Verify the address of the operand */
481
if (unlikely(user_mode(regs) &&
482
!access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
483
addr, nb)))
484
return -EFAULT;
485
486
/* userland only */
487
if (unlikely(!user_mode(regs)))
488
return 0;
489
490
flush_spe_to_thread(current);
491
492
/* If we are loading, get the data from user space, else
493
* get it from register values
494
*/
495
if (flags & ST) {
496
data.ll = 0;
497
switch (instr) {
498
case EVSTDD:
499
case EVSTDW:
500
case EVSTDH:
501
data.w[0] = *evr;
502
data.w[1] = regs->gpr[reg];
503
break;
504
case EVSTWHE:
505
data.h[2] = *evr >> 16;
506
data.h[3] = regs->gpr[reg] >> 16;
507
break;
508
case EVSTWHO:
509
data.h[2] = *evr & 0xffff;
510
data.h[3] = regs->gpr[reg] & 0xffff;
511
break;
512
case EVSTWWE:
513
data.w[1] = *evr;
514
break;
515
case EVSTWWO:
516
data.w[1] = regs->gpr[reg];
517
break;
518
default:
519
return -EINVAL;
520
}
521
} else {
522
temp.ll = data.ll = 0;
523
ret = 0;
524
p = addr;
525
526
switch (nb) {
527
case 8:
528
ret |= __get_user_inatomic(temp.v[0], p++);
529
ret |= __get_user_inatomic(temp.v[1], p++);
530
ret |= __get_user_inatomic(temp.v[2], p++);
531
ret |= __get_user_inatomic(temp.v[3], p++);
532
case 4:
533
ret |= __get_user_inatomic(temp.v[4], p++);
534
ret |= __get_user_inatomic(temp.v[5], p++);
535
case 2:
536
ret |= __get_user_inatomic(temp.v[6], p++);
537
ret |= __get_user_inatomic(temp.v[7], p++);
538
if (unlikely(ret))
539
return -EFAULT;
540
}
541
542
switch (instr) {
543
case EVLDD:
544
case EVLDW:
545
case EVLDH:
546
data.ll = temp.ll;
547
break;
548
case EVLHHESPLAT:
549
data.h[0] = temp.h[3];
550
data.h[2] = temp.h[3];
551
break;
552
case EVLHHOUSPLAT:
553
case EVLHHOSSPLAT:
554
data.h[1] = temp.h[3];
555
data.h[3] = temp.h[3];
556
break;
557
case EVLWHE:
558
data.h[0] = temp.h[2];
559
data.h[2] = temp.h[3];
560
break;
561
case EVLWHOU:
562
case EVLWHOS:
563
data.h[1] = temp.h[2];
564
data.h[3] = temp.h[3];
565
break;
566
case EVLWWSPLAT:
567
data.w[0] = temp.w[1];
568
data.w[1] = temp.w[1];
569
break;
570
case EVLWHSPLAT:
571
data.h[0] = temp.h[2];
572
data.h[1] = temp.h[2];
573
data.h[2] = temp.h[3];
574
data.h[3] = temp.h[3];
575
break;
576
default:
577
return -EINVAL;
578
}
579
}
580
581
if (flags & SW) {
582
switch (flags & 0xf0) {
583
case E8:
584
SWAP(data.v[0], data.v[7]);
585
SWAP(data.v[1], data.v[6]);
586
SWAP(data.v[2], data.v[5]);
587
SWAP(data.v[3], data.v[4]);
588
break;
589
case E4:
590
591
SWAP(data.v[0], data.v[3]);
592
SWAP(data.v[1], data.v[2]);
593
SWAP(data.v[4], data.v[7]);
594
SWAP(data.v[5], data.v[6]);
595
break;
596
/* Its half word endian */
597
default:
598
SWAP(data.v[0], data.v[1]);
599
SWAP(data.v[2], data.v[3]);
600
SWAP(data.v[4], data.v[5]);
601
SWAP(data.v[6], data.v[7]);
602
break;
603
}
604
}
605
606
if (flags & SE) {
607
data.w[0] = (s16)data.h[1];
608
data.w[1] = (s16)data.h[3];
609
}
610
611
/* Store result to memory or update registers */
612
if (flags & ST) {
613
ret = 0;
614
p = addr;
615
switch (nb) {
616
case 8:
617
ret |= __put_user_inatomic(data.v[0], p++);
618
ret |= __put_user_inatomic(data.v[1], p++);
619
ret |= __put_user_inatomic(data.v[2], p++);
620
ret |= __put_user_inatomic(data.v[3], p++);
621
case 4:
622
ret |= __put_user_inatomic(data.v[4], p++);
623
ret |= __put_user_inatomic(data.v[5], p++);
624
case 2:
625
ret |= __put_user_inatomic(data.v[6], p++);
626
ret |= __put_user_inatomic(data.v[7], p++);
627
}
628
if (unlikely(ret))
629
return -EFAULT;
630
} else {
631
*evr = data.w[0];
632
regs->gpr[reg] = data.w[1];
633
}
634
635
return 1;
636
}
637
#endif /* CONFIG_SPE */
638
639
#ifdef CONFIG_VSX
640
/*
641
* Emulate VSX instructions...
642
*/
643
static int emulate_vsx(unsigned char __user *addr, unsigned int reg,
644
unsigned int areg, struct pt_regs *regs,
645
unsigned int flags, unsigned int length,
646
unsigned int elsize)
647
{
648
char *ptr;
649
unsigned long *lptr;
650
int ret = 0;
651
int sw = 0;
652
int i, j;
653
654
flush_vsx_to_thread(current);
655
656
if (reg < 32)
657
ptr = (char *) &current->thread.TS_FPR(reg);
658
else
659
ptr = (char *) &current->thread.vr[reg - 32];
660
661
lptr = (unsigned long *) ptr;
662
663
if (flags & SW)
664
sw = elsize-1;
665
666
for (j = 0; j < length; j += elsize) {
667
for (i = 0; i < elsize; ++i) {
668
if (flags & ST)
669
ret |= __put_user(ptr[i^sw], addr + i);
670
else
671
ret |= __get_user(ptr[i^sw], addr + i);
672
}
673
ptr += elsize;
674
addr += elsize;
675
}
676
677
if (!ret) {
678
if (flags & U)
679
regs->gpr[areg] = regs->dar;
680
681
/* Splat load copies the same data to top and bottom 8 bytes */
682
if (flags & SPLT)
683
lptr[1] = lptr[0];
684
/* For 8 byte loads, zero the top 8 bytes */
685
else if (!(flags & ST) && (8 == length))
686
lptr[1] = 0;
687
} else
688
return -EFAULT;
689
690
return 1;
691
}
692
#endif
693
694
/*
695
* Called on alignment exception. Attempts to fixup
696
*
697
* Return 1 on success
698
* Return 0 if unable to handle the interrupt
699
* Return -EFAULT if data address is bad
700
*/
701
702
int fix_alignment(struct pt_regs *regs)
703
{
704
unsigned int instr, nb, flags, instruction = 0;
705
unsigned int reg, areg;
706
unsigned int dsisr;
707
unsigned char __user *addr;
708
unsigned long p, swiz;
709
int ret, t;
710
union {
711
u64 ll;
712
double dd;
713
unsigned char v[8];
714
struct {
715
unsigned hi32;
716
int low32;
717
} x32;
718
struct {
719
unsigned char hi48[6];
720
short low16;
721
} x16;
722
} data;
723
724
/*
725
* We require a complete register set, if not, then our assembly
726
* is broken
727
*/
728
CHECK_FULL_REGS(regs);
729
730
dsisr = regs->dsisr;
731
732
/* Some processors don't provide us with a DSISR we can use here,
733
* let's make one up from the instruction
734
*/
735
if (cpu_has_feature(CPU_FTR_NODSISRALIGN)) {
736
unsigned long pc = regs->nip;
737
738
if (cpu_has_feature(CPU_FTR_PPC_LE) && (regs->msr & MSR_LE))
739
pc ^= 4;
740
if (unlikely(__get_user_inatomic(instr,
741
(unsigned int __user *)pc)))
742
return -EFAULT;
743
if (cpu_has_feature(CPU_FTR_REAL_LE) && (regs->msr & MSR_LE))
744
instr = cpu_to_le32(instr);
745
dsisr = make_dsisr(instr);
746
instruction = instr;
747
}
748
749
/* extract the operation and registers from the dsisr */
750
reg = (dsisr >> 5) & 0x1f; /* source/dest register */
751
areg = dsisr & 0x1f; /* register to update */
752
753
#ifdef CONFIG_SPE
754
if ((instr >> 26) == 0x4) {
755
PPC_WARN_ALIGNMENT(spe, regs);
756
return emulate_spe(regs, reg, instr);
757
}
758
#endif
759
760
instr = (dsisr >> 10) & 0x7f;
761
instr |= (dsisr >> 13) & 0x60;
762
763
/* Lookup the operation in our table */
764
nb = aligninfo[instr].len;
765
flags = aligninfo[instr].flags;
766
767
/* Byteswap little endian loads and stores */
768
swiz = 0;
769
if (regs->msr & MSR_LE) {
770
flags ^= SW;
771
/*
772
* So-called "PowerPC little endian" mode works by
773
* swizzling addresses rather than by actually doing
774
* any byte-swapping. To emulate this, we XOR each
775
* byte address with 7. We also byte-swap, because
776
* the processor's address swizzling depends on the
777
* operand size (it xors the address with 7 for bytes,
778
* 6 for halfwords, 4 for words, 0 for doublewords) but
779
* we will xor with 7 and load/store each byte separately.
780
*/
781
if (cpu_has_feature(CPU_FTR_PPC_LE))
782
swiz = 7;
783
}
784
785
/* DAR has the operand effective address */
786
addr = (unsigned char __user *)regs->dar;
787
788
#ifdef CONFIG_VSX
789
if ((instruction & 0xfc00003e) == 0x7c000018) {
790
unsigned int elsize;
791
792
/* Additional register addressing bit (64 VSX vs 32 FPR/GPR) */
793
reg |= (instruction & 0x1) << 5;
794
/* Simple inline decoder instead of a table */
795
/* VSX has only 8 and 16 byte memory accesses */
796
nb = 8;
797
if (instruction & 0x200)
798
nb = 16;
799
800
/* Vector stores in little-endian mode swap individual
801
elements, so process them separately */
802
elsize = 4;
803
if (instruction & 0x80)
804
elsize = 8;
805
806
flags = 0;
807
if (regs->msr & MSR_LE)
808
flags |= SW;
809
if (instruction & 0x100)
810
flags |= ST;
811
if (instruction & 0x040)
812
flags |= U;
813
/* splat load needs a special decoder */
814
if ((instruction & 0x400) == 0){
815
flags |= SPLT;
816
nb = 8;
817
}
818
PPC_WARN_ALIGNMENT(vsx, regs);
819
return emulate_vsx(addr, reg, areg, regs, flags, nb, elsize);
820
}
821
#endif
822
/* A size of 0 indicates an instruction we don't support, with
823
* the exception of DCBZ which is handled as a special case here
824
*/
825
if (instr == DCBZ) {
826
PPC_WARN_ALIGNMENT(dcbz, regs);
827
return emulate_dcbz(regs, addr);
828
}
829
if (unlikely(nb == 0))
830
return 0;
831
832
/* Load/Store Multiple instructions are handled in their own
833
* function
834
*/
835
if (flags & M) {
836
PPC_WARN_ALIGNMENT(multiple, regs);
837
return emulate_multiple(regs, addr, reg, nb,
838
flags, instr, swiz);
839
}
840
841
/* Verify the address of the operand */
842
if (unlikely(user_mode(regs) &&
843
!access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
844
addr, nb)))
845
return -EFAULT;
846
847
/* Force the fprs into the save area so we can reference them */
848
if (flags & F) {
849
/* userland only */
850
if (unlikely(!user_mode(regs)))
851
return 0;
852
flush_fp_to_thread(current);
853
}
854
855
/* Special case for 16-byte FP loads and stores */
856
if (nb == 16) {
857
PPC_WARN_ALIGNMENT(fp_pair, regs);
858
return emulate_fp_pair(addr, reg, flags);
859
}
860
861
PPC_WARN_ALIGNMENT(unaligned, regs);
862
863
/* If we are loading, get the data from user space, else
864
* get it from register values
865
*/
866
if (!(flags & ST)) {
867
data.ll = 0;
868
ret = 0;
869
p = (unsigned long) addr;
870
switch (nb) {
871
case 8:
872
ret |= __get_user_inatomic(data.v[0], SWIZ_PTR(p++));
873
ret |= __get_user_inatomic(data.v[1], SWIZ_PTR(p++));
874
ret |= __get_user_inatomic(data.v[2], SWIZ_PTR(p++));
875
ret |= __get_user_inatomic(data.v[3], SWIZ_PTR(p++));
876
case 4:
877
ret |= __get_user_inatomic(data.v[4], SWIZ_PTR(p++));
878
ret |= __get_user_inatomic(data.v[5], SWIZ_PTR(p++));
879
case 2:
880
ret |= __get_user_inatomic(data.v[6], SWIZ_PTR(p++));
881
ret |= __get_user_inatomic(data.v[7], SWIZ_PTR(p++));
882
if (unlikely(ret))
883
return -EFAULT;
884
}
885
} else if (flags & F) {
886
data.dd = current->thread.TS_FPR(reg);
887
if (flags & S) {
888
/* Single-precision FP store requires conversion... */
889
#ifdef CONFIG_PPC_FPU
890
preempt_disable();
891
enable_kernel_fp();
892
cvt_df(&data.dd, (float *)&data.v[4]);
893
preempt_enable();
894
#else
895
return 0;
896
#endif
897
}
898
} else
899
data.ll = regs->gpr[reg];
900
901
if (flags & SW) {
902
switch (nb) {
903
case 8:
904
SWAP(data.v[0], data.v[7]);
905
SWAP(data.v[1], data.v[6]);
906
SWAP(data.v[2], data.v[5]);
907
SWAP(data.v[3], data.v[4]);
908
break;
909
case 4:
910
SWAP(data.v[4], data.v[7]);
911
SWAP(data.v[5], data.v[6]);
912
break;
913
case 2:
914
SWAP(data.v[6], data.v[7]);
915
break;
916
}
917
}
918
919
/* Perform other misc operations like sign extension
920
* or floating point single precision conversion
921
*/
922
switch (flags & ~(U|SW)) {
923
case LD+SE: /* sign extending integer loads */
924
case LD+F+SE: /* sign extend for lfiwax */
925
if ( nb == 2 )
926
data.ll = data.x16.low16;
927
else /* nb must be 4 */
928
data.ll = data.x32.low32;
929
break;
930
931
/* Single-precision FP load requires conversion... */
932
case LD+F+S:
933
#ifdef CONFIG_PPC_FPU
934
preempt_disable();
935
enable_kernel_fp();
936
cvt_fd((float *)&data.v[4], &data.dd);
937
preempt_enable();
938
#else
939
return 0;
940
#endif
941
break;
942
}
943
944
/* Store result to memory or update registers */
945
if (flags & ST) {
946
ret = 0;
947
p = (unsigned long) addr;
948
switch (nb) {
949
case 8:
950
ret |= __put_user_inatomic(data.v[0], SWIZ_PTR(p++));
951
ret |= __put_user_inatomic(data.v[1], SWIZ_PTR(p++));
952
ret |= __put_user_inatomic(data.v[2], SWIZ_PTR(p++));
953
ret |= __put_user_inatomic(data.v[3], SWIZ_PTR(p++));
954
case 4:
955
ret |= __put_user_inatomic(data.v[4], SWIZ_PTR(p++));
956
ret |= __put_user_inatomic(data.v[5], SWIZ_PTR(p++));
957
case 2:
958
ret |= __put_user_inatomic(data.v[6], SWIZ_PTR(p++));
959
ret |= __put_user_inatomic(data.v[7], SWIZ_PTR(p++));
960
}
961
if (unlikely(ret))
962
return -EFAULT;
963
} else if (flags & F)
964
current->thread.TS_FPR(reg) = data.dd;
965
else
966
regs->gpr[reg] = data.ll;
967
968
/* Update RA as needed */
969
if (flags & U)
970
regs->gpr[areg] = regs->dar;
971
972
return 1;
973
}
974
975