Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/powerpc/mm/init_64.c
10817 views
1
/*
2
* PowerPC version
3
* Copyright (C) 1995-1996 Gary Thomas ([email protected])
4
*
5
* Modifications by Paul Mackerras (PowerMac) ([email protected])
6
* and Cort Dougan (PReP) ([email protected])
7
* Copyright (C) 1996 Paul Mackerras
8
*
9
* Derived from "arch/i386/mm/init.c"
10
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
11
*
12
* Dave Engebretsen <[email protected]>
13
* Rework for PPC64 port.
14
*
15
* This program is free software; you can redistribute it and/or
16
* modify it under the terms of the GNU General Public License
17
* as published by the Free Software Foundation; either version
18
* 2 of the License, or (at your option) any later version.
19
*
20
*/
21
22
#undef DEBUG
23
24
#include <linux/signal.h>
25
#include <linux/sched.h>
26
#include <linux/kernel.h>
27
#include <linux/errno.h>
28
#include <linux/string.h>
29
#include <linux/types.h>
30
#include <linux/mman.h>
31
#include <linux/mm.h>
32
#include <linux/swap.h>
33
#include <linux/stddef.h>
34
#include <linux/vmalloc.h>
35
#include <linux/init.h>
36
#include <linux/delay.h>
37
#include <linux/bootmem.h>
38
#include <linux/highmem.h>
39
#include <linux/idr.h>
40
#include <linux/nodemask.h>
41
#include <linux/module.h>
42
#include <linux/poison.h>
43
#include <linux/memblock.h>
44
#include <linux/hugetlb.h>
45
#include <linux/slab.h>
46
47
#include <asm/pgalloc.h>
48
#include <asm/page.h>
49
#include <asm/prom.h>
50
#include <asm/rtas.h>
51
#include <asm/io.h>
52
#include <asm/mmu_context.h>
53
#include <asm/pgtable.h>
54
#include <asm/mmu.h>
55
#include <asm/uaccess.h>
56
#include <asm/smp.h>
57
#include <asm/machdep.h>
58
#include <asm/tlb.h>
59
#include <asm/eeh.h>
60
#include <asm/processor.h>
61
#include <asm/mmzone.h>
62
#include <asm/cputable.h>
63
#include <asm/sections.h>
64
#include <asm/system.h>
65
#include <asm/iommu.h>
66
#include <asm/abs_addr.h>
67
#include <asm/vdso.h>
68
69
#include "mmu_decl.h"
70
71
#ifdef CONFIG_PPC_STD_MMU_64
72
#if PGTABLE_RANGE > USER_VSID_RANGE
73
#warning Limited user VSID range means pagetable space is wasted
74
#endif
75
76
#if (TASK_SIZE_USER64 < PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE)
77
#warning TASK_SIZE is smaller than it needs to be.
78
#endif
79
#endif /* CONFIG_PPC_STD_MMU_64 */
80
81
phys_addr_t memstart_addr = ~0;
82
EXPORT_SYMBOL_GPL(memstart_addr);
83
phys_addr_t kernstart_addr;
84
EXPORT_SYMBOL_GPL(kernstart_addr);
85
86
void free_initmem(void)
87
{
88
unsigned long addr;
89
90
addr = (unsigned long)__init_begin;
91
for (; addr < (unsigned long)__init_end; addr += PAGE_SIZE) {
92
memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
93
ClearPageReserved(virt_to_page(addr));
94
init_page_count(virt_to_page(addr));
95
free_page(addr);
96
totalram_pages++;
97
}
98
printk ("Freeing unused kernel memory: %luk freed\n",
99
((unsigned long)__init_end - (unsigned long)__init_begin) >> 10);
100
}
101
102
static void pgd_ctor(void *addr)
103
{
104
memset(addr, 0, PGD_TABLE_SIZE);
105
}
106
107
static void pmd_ctor(void *addr)
108
{
109
memset(addr, 0, PMD_TABLE_SIZE);
110
}
111
112
struct kmem_cache *pgtable_cache[MAX_PGTABLE_INDEX_SIZE];
113
114
/*
115
* Create a kmem_cache() for pagetables. This is not used for PTE
116
* pages - they're linked to struct page, come from the normal free
117
* pages pool and have a different entry size (see real_pte_t) to
118
* everything else. Caches created by this function are used for all
119
* the higher level pagetables, and for hugepage pagetables.
120
*/
121
void pgtable_cache_add(unsigned shift, void (*ctor)(void *))
122
{
123
char *name;
124
unsigned long table_size = sizeof(void *) << shift;
125
unsigned long align = table_size;
126
127
/* When batching pgtable pointers for RCU freeing, we store
128
* the index size in the low bits. Table alignment must be
129
* big enough to fit it.
130
*
131
* Likewise, hugeapge pagetable pointers contain a (different)
132
* shift value in the low bits. All tables must be aligned so
133
* as to leave enough 0 bits in the address to contain it. */
134
unsigned long minalign = max(MAX_PGTABLE_INDEX_SIZE + 1,
135
HUGEPD_SHIFT_MASK + 1);
136
struct kmem_cache *new;
137
138
/* It would be nice if this was a BUILD_BUG_ON(), but at the
139
* moment, gcc doesn't seem to recognize is_power_of_2 as a
140
* constant expression, so so much for that. */
141
BUG_ON(!is_power_of_2(minalign));
142
BUG_ON((shift < 1) || (shift > MAX_PGTABLE_INDEX_SIZE));
143
144
if (PGT_CACHE(shift))
145
return; /* Already have a cache of this size */
146
147
align = max_t(unsigned long, align, minalign);
148
name = kasprintf(GFP_KERNEL, "pgtable-2^%d", shift);
149
new = kmem_cache_create(name, table_size, align, 0, ctor);
150
PGT_CACHE(shift) = new;
151
152
pr_debug("Allocated pgtable cache for order %d\n", shift);
153
}
154
155
156
void pgtable_cache_init(void)
157
{
158
pgtable_cache_add(PGD_INDEX_SIZE, pgd_ctor);
159
pgtable_cache_add(PMD_INDEX_SIZE, pmd_ctor);
160
if (!PGT_CACHE(PGD_INDEX_SIZE) || !PGT_CACHE(PMD_INDEX_SIZE))
161
panic("Couldn't allocate pgtable caches");
162
163
/* In all current configs, when the PUD index exists it's the
164
* same size as either the pgd or pmd index. Verify that the
165
* initialization above has also created a PUD cache. This
166
* will need re-examiniation if we add new possibilities for
167
* the pagetable layout. */
168
BUG_ON(PUD_INDEX_SIZE && !PGT_CACHE(PUD_INDEX_SIZE));
169
}
170
171
#ifdef CONFIG_SPARSEMEM_VMEMMAP
172
/*
173
* Given an address within the vmemmap, determine the pfn of the page that
174
* represents the start of the section it is within. Note that we have to
175
* do this by hand as the proffered address may not be correctly aligned.
176
* Subtraction of non-aligned pointers produces undefined results.
177
*/
178
static unsigned long __meminit vmemmap_section_start(unsigned long page)
179
{
180
unsigned long offset = page - ((unsigned long)(vmemmap));
181
182
/* Return the pfn of the start of the section. */
183
return (offset / sizeof(struct page)) & PAGE_SECTION_MASK;
184
}
185
186
/*
187
* Check if this vmemmap page is already initialised. If any section
188
* which overlaps this vmemmap page is initialised then this page is
189
* initialised already.
190
*/
191
static int __meminit vmemmap_populated(unsigned long start, int page_size)
192
{
193
unsigned long end = start + page_size;
194
195
for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page)))
196
if (pfn_valid(vmemmap_section_start(start)))
197
return 1;
198
199
return 0;
200
}
201
202
/* On hash-based CPUs, the vmemmap is bolted in the hash table.
203
*
204
* On Book3E CPUs, the vmemmap is currently mapped in the top half of
205
* the vmalloc space using normal page tables, though the size of
206
* pages encoded in the PTEs can be different
207
*/
208
209
#ifdef CONFIG_PPC_BOOK3E
210
static void __meminit vmemmap_create_mapping(unsigned long start,
211
unsigned long page_size,
212
unsigned long phys)
213
{
214
/* Create a PTE encoding without page size */
215
unsigned long i, flags = _PAGE_PRESENT | _PAGE_ACCESSED |
216
_PAGE_KERNEL_RW;
217
218
/* PTEs only contain page size encodings up to 32M */
219
BUG_ON(mmu_psize_defs[mmu_vmemmap_psize].enc > 0xf);
220
221
/* Encode the size in the PTE */
222
flags |= mmu_psize_defs[mmu_vmemmap_psize].enc << 8;
223
224
/* For each PTE for that area, map things. Note that we don't
225
* increment phys because all PTEs are of the large size and
226
* thus must have the low bits clear
227
*/
228
for (i = 0; i < page_size; i += PAGE_SIZE)
229
BUG_ON(map_kernel_page(start + i, phys, flags));
230
}
231
#else /* CONFIG_PPC_BOOK3E */
232
static void __meminit vmemmap_create_mapping(unsigned long start,
233
unsigned long page_size,
234
unsigned long phys)
235
{
236
int mapped = htab_bolt_mapping(start, start + page_size, phys,
237
PAGE_KERNEL, mmu_vmemmap_psize,
238
mmu_kernel_ssize);
239
BUG_ON(mapped < 0);
240
}
241
#endif /* CONFIG_PPC_BOOK3E */
242
243
struct vmemmap_backing *vmemmap_list;
244
245
static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
246
{
247
static struct vmemmap_backing *next;
248
static int num_left;
249
250
/* allocate a page when required and hand out chunks */
251
if (!next || !num_left) {
252
next = vmemmap_alloc_block(PAGE_SIZE, node);
253
if (unlikely(!next)) {
254
WARN_ON(1);
255
return NULL;
256
}
257
num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
258
}
259
260
num_left--;
261
262
return next++;
263
}
264
265
static __meminit void vmemmap_list_populate(unsigned long phys,
266
unsigned long start,
267
int node)
268
{
269
struct vmemmap_backing *vmem_back;
270
271
vmem_back = vmemmap_list_alloc(node);
272
if (unlikely(!vmem_back)) {
273
WARN_ON(1);
274
return;
275
}
276
277
vmem_back->phys = phys;
278
vmem_back->virt_addr = start;
279
vmem_back->list = vmemmap_list;
280
281
vmemmap_list = vmem_back;
282
}
283
284
int __meminit vmemmap_populate(struct page *start_page,
285
unsigned long nr_pages, int node)
286
{
287
unsigned long start = (unsigned long)start_page;
288
unsigned long end = (unsigned long)(start_page + nr_pages);
289
unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
290
291
/* Align to the page size of the linear mapping. */
292
start = _ALIGN_DOWN(start, page_size);
293
294
pr_debug("vmemmap_populate page %p, %ld pages, node %d\n",
295
start_page, nr_pages, node);
296
pr_debug(" -> map %lx..%lx\n", start, end);
297
298
for (; start < end; start += page_size) {
299
void *p;
300
301
if (vmemmap_populated(start, page_size))
302
continue;
303
304
p = vmemmap_alloc_block(page_size, node);
305
if (!p)
306
return -ENOMEM;
307
308
vmemmap_list_populate(__pa(p), start, node);
309
310
pr_debug(" * %016lx..%016lx allocated at %p\n",
311
start, start + page_size, p);
312
313
vmemmap_create_mapping(start, page_size, __pa(p));
314
}
315
316
return 0;
317
}
318
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
319
320
321