Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/powerpc/mm/slb.c
10817 views
1
/*
2
* PowerPC64 SLB support.
3
*
4
* Copyright (C) 2004 David Gibson <[email protected]>, IBM
5
* Based on earlier code written by:
6
* Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
7
* Copyright (c) 2001 Dave Engebretsen
8
* Copyright (C) 2002 Anton Blanchard <[email protected]>, IBM
9
*
10
*
11
* This program is free software; you can redistribute it and/or
12
* modify it under the terms of the GNU General Public License
13
* as published by the Free Software Foundation; either version
14
* 2 of the License, or (at your option) any later version.
15
*/
16
17
#include <asm/pgtable.h>
18
#include <asm/mmu.h>
19
#include <asm/mmu_context.h>
20
#include <asm/paca.h>
21
#include <asm/cputable.h>
22
#include <asm/cacheflush.h>
23
#include <asm/smp.h>
24
#include <asm/firmware.h>
25
#include <linux/compiler.h>
26
#include <asm/udbg.h>
27
#include <asm/code-patching.h>
28
29
30
extern void slb_allocate_realmode(unsigned long ea);
31
extern void slb_allocate_user(unsigned long ea);
32
33
static void slb_allocate(unsigned long ea)
34
{
35
/* Currently, we do real mode for all SLBs including user, but
36
* that will change if we bring back dynamic VSIDs
37
*/
38
slb_allocate_realmode(ea);
39
}
40
41
#define slb_esid_mask(ssize) \
42
(((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T)
43
44
static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
45
unsigned long slot)
46
{
47
return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | slot;
48
}
49
50
#define slb_vsid_shift(ssize) \
51
((ssize) == MMU_SEGSIZE_256M? SLB_VSID_SHIFT: SLB_VSID_SHIFT_1T)
52
53
static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
54
unsigned long flags)
55
{
56
return (get_kernel_vsid(ea, ssize) << slb_vsid_shift(ssize)) | flags |
57
((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
58
}
59
60
static inline void slb_shadow_update(unsigned long ea, int ssize,
61
unsigned long flags,
62
unsigned long entry)
63
{
64
/*
65
* Clear the ESID first so the entry is not valid while we are
66
* updating it. No write barriers are needed here, provided
67
* we only update the current CPU's SLB shadow buffer.
68
*/
69
get_slb_shadow()->save_area[entry].esid = 0;
70
get_slb_shadow()->save_area[entry].vsid = mk_vsid_data(ea, ssize, flags);
71
get_slb_shadow()->save_area[entry].esid = mk_esid_data(ea, ssize, entry);
72
}
73
74
static inline void slb_shadow_clear(unsigned long entry)
75
{
76
get_slb_shadow()->save_area[entry].esid = 0;
77
}
78
79
static inline void create_shadowed_slbe(unsigned long ea, int ssize,
80
unsigned long flags,
81
unsigned long entry)
82
{
83
/*
84
* Updating the shadow buffer before writing the SLB ensures
85
* we don't get a stale entry here if we get preempted by PHYP
86
* between these two statements.
87
*/
88
slb_shadow_update(ea, ssize, flags, entry);
89
90
asm volatile("slbmte %0,%1" :
91
: "r" (mk_vsid_data(ea, ssize, flags)),
92
"r" (mk_esid_data(ea, ssize, entry))
93
: "memory" );
94
}
95
96
static void __slb_flush_and_rebolt(void)
97
{
98
/* If you change this make sure you change SLB_NUM_BOLTED
99
* appropriately too. */
100
unsigned long linear_llp, vmalloc_llp, lflags, vflags;
101
unsigned long ksp_esid_data, ksp_vsid_data;
102
103
linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
104
vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
105
lflags = SLB_VSID_KERNEL | linear_llp;
106
vflags = SLB_VSID_KERNEL | vmalloc_llp;
107
108
ksp_esid_data = mk_esid_data(get_paca()->kstack, mmu_kernel_ssize, 2);
109
if ((ksp_esid_data & ~0xfffffffUL) <= PAGE_OFFSET) {
110
ksp_esid_data &= ~SLB_ESID_V;
111
ksp_vsid_data = 0;
112
slb_shadow_clear(2);
113
} else {
114
/* Update stack entry; others don't change */
115
slb_shadow_update(get_paca()->kstack, mmu_kernel_ssize, lflags, 2);
116
ksp_vsid_data = get_slb_shadow()->save_area[2].vsid;
117
}
118
119
/* We need to do this all in asm, so we're sure we don't touch
120
* the stack between the slbia and rebolting it. */
121
asm volatile("isync\n"
122
"slbia\n"
123
/* Slot 1 - first VMALLOC segment */
124
"slbmte %0,%1\n"
125
/* Slot 2 - kernel stack */
126
"slbmte %2,%3\n"
127
"isync"
128
:: "r"(mk_vsid_data(VMALLOC_START, mmu_kernel_ssize, vflags)),
129
"r"(mk_esid_data(VMALLOC_START, mmu_kernel_ssize, 1)),
130
"r"(ksp_vsid_data),
131
"r"(ksp_esid_data)
132
: "memory");
133
}
134
135
void slb_flush_and_rebolt(void)
136
{
137
138
WARN_ON(!irqs_disabled());
139
140
/*
141
* We can't take a PMU exception in the following code, so hard
142
* disable interrupts.
143
*/
144
hard_irq_disable();
145
146
__slb_flush_and_rebolt();
147
get_paca()->slb_cache_ptr = 0;
148
}
149
150
void slb_vmalloc_update(void)
151
{
152
unsigned long vflags;
153
154
vflags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmalloc_psize].sllp;
155
slb_shadow_update(VMALLOC_START, mmu_kernel_ssize, vflags, 1);
156
slb_flush_and_rebolt();
157
}
158
159
/* Helper function to compare esids. There are four cases to handle.
160
* 1. The system is not 1T segment size capable. Use the GET_ESID compare.
161
* 2. The system is 1T capable, both addresses are < 1T, use the GET_ESID compare.
162
* 3. The system is 1T capable, only one of the two addresses is > 1T. This is not a match.
163
* 4. The system is 1T capable, both addresses are > 1T, use the GET_ESID_1T macro to compare.
164
*/
165
static inline int esids_match(unsigned long addr1, unsigned long addr2)
166
{
167
int esid_1t_count;
168
169
/* System is not 1T segment size capable. */
170
if (!mmu_has_feature(MMU_FTR_1T_SEGMENT))
171
return (GET_ESID(addr1) == GET_ESID(addr2));
172
173
esid_1t_count = (((addr1 >> SID_SHIFT_1T) != 0) +
174
((addr2 >> SID_SHIFT_1T) != 0));
175
176
/* both addresses are < 1T */
177
if (esid_1t_count == 0)
178
return (GET_ESID(addr1) == GET_ESID(addr2));
179
180
/* One address < 1T, the other > 1T. Not a match */
181
if (esid_1t_count == 1)
182
return 0;
183
184
/* Both addresses are > 1T. */
185
return (GET_ESID_1T(addr1) == GET_ESID_1T(addr2));
186
}
187
188
/* Flush all user entries from the segment table of the current processor. */
189
void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
190
{
191
unsigned long offset;
192
unsigned long slbie_data = 0;
193
unsigned long pc = KSTK_EIP(tsk);
194
unsigned long stack = KSTK_ESP(tsk);
195
unsigned long exec_base;
196
197
/*
198
* We need interrupts hard-disabled here, not just soft-disabled,
199
* so that a PMU interrupt can't occur, which might try to access
200
* user memory (to get a stack trace) and possible cause an SLB miss
201
* which would update the slb_cache/slb_cache_ptr fields in the PACA.
202
*/
203
hard_irq_disable();
204
offset = get_paca()->slb_cache_ptr;
205
if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) &&
206
offset <= SLB_CACHE_ENTRIES) {
207
int i;
208
asm volatile("isync" : : : "memory");
209
for (i = 0; i < offset; i++) {
210
slbie_data = (unsigned long)get_paca()->slb_cache[i]
211
<< SID_SHIFT; /* EA */
212
slbie_data |= user_segment_size(slbie_data)
213
<< SLBIE_SSIZE_SHIFT;
214
slbie_data |= SLBIE_C; /* C set for user addresses */
215
asm volatile("slbie %0" : : "r" (slbie_data));
216
}
217
asm volatile("isync" : : : "memory");
218
} else {
219
__slb_flush_and_rebolt();
220
}
221
222
/* Workaround POWER5 < DD2.1 issue */
223
if (offset == 1 || offset > SLB_CACHE_ENTRIES)
224
asm volatile("slbie %0" : : "r" (slbie_data));
225
226
get_paca()->slb_cache_ptr = 0;
227
get_paca()->context = mm->context;
228
229
/*
230
* preload some userspace segments into the SLB.
231
* Almost all 32 and 64bit PowerPC executables are linked at
232
* 0x10000000 so it makes sense to preload this segment.
233
*/
234
exec_base = 0x10000000;
235
236
if (is_kernel_addr(pc) || is_kernel_addr(stack) ||
237
is_kernel_addr(exec_base))
238
return;
239
240
slb_allocate(pc);
241
242
if (!esids_match(pc, stack))
243
slb_allocate(stack);
244
245
if (!esids_match(pc, exec_base) &&
246
!esids_match(stack, exec_base))
247
slb_allocate(exec_base);
248
}
249
250
static inline void patch_slb_encoding(unsigned int *insn_addr,
251
unsigned int immed)
252
{
253
int insn = (*insn_addr & 0xffff0000) | immed;
254
patch_instruction(insn_addr, insn);
255
}
256
257
void slb_set_size(u16 size)
258
{
259
extern unsigned int *slb_compare_rr_to_size;
260
261
if (mmu_slb_size == size)
262
return;
263
264
mmu_slb_size = size;
265
patch_slb_encoding(slb_compare_rr_to_size, mmu_slb_size);
266
}
267
268
void slb_initialize(void)
269
{
270
unsigned long linear_llp, vmalloc_llp, io_llp;
271
unsigned long lflags, vflags;
272
static int slb_encoding_inited;
273
extern unsigned int *slb_miss_kernel_load_linear;
274
extern unsigned int *slb_miss_kernel_load_io;
275
extern unsigned int *slb_compare_rr_to_size;
276
#ifdef CONFIG_SPARSEMEM_VMEMMAP
277
extern unsigned int *slb_miss_kernel_load_vmemmap;
278
unsigned long vmemmap_llp;
279
#endif
280
281
/* Prepare our SLB miss handler based on our page size */
282
linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
283
io_llp = mmu_psize_defs[mmu_io_psize].sllp;
284
vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
285
get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
286
#ifdef CONFIG_SPARSEMEM_VMEMMAP
287
vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp;
288
#endif
289
if (!slb_encoding_inited) {
290
slb_encoding_inited = 1;
291
patch_slb_encoding(slb_miss_kernel_load_linear,
292
SLB_VSID_KERNEL | linear_llp);
293
patch_slb_encoding(slb_miss_kernel_load_io,
294
SLB_VSID_KERNEL | io_llp);
295
patch_slb_encoding(slb_compare_rr_to_size,
296
mmu_slb_size);
297
298
pr_devel("SLB: linear LLP = %04lx\n", linear_llp);
299
pr_devel("SLB: io LLP = %04lx\n", io_llp);
300
301
#ifdef CONFIG_SPARSEMEM_VMEMMAP
302
patch_slb_encoding(slb_miss_kernel_load_vmemmap,
303
SLB_VSID_KERNEL | vmemmap_llp);
304
pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp);
305
#endif
306
}
307
308
get_paca()->stab_rr = SLB_NUM_BOLTED;
309
310
/* On iSeries the bolted entries have already been set up by
311
* the hypervisor from the lparMap data in head.S */
312
if (firmware_has_feature(FW_FEATURE_ISERIES))
313
return;
314
315
lflags = SLB_VSID_KERNEL | linear_llp;
316
vflags = SLB_VSID_KERNEL | vmalloc_llp;
317
318
/* Invalidate the entire SLB (even slot 0) & all the ERATS */
319
asm volatile("isync":::"memory");
320
asm volatile("slbmte %0,%0"::"r" (0) : "memory");
321
asm volatile("isync; slbia; isync":::"memory");
322
create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, 0);
323
324
create_shadowed_slbe(VMALLOC_START, mmu_kernel_ssize, vflags, 1);
325
326
/* For the boot cpu, we're running on the stack in init_thread_union,
327
* which is in the first segment of the linear mapping, and also
328
* get_paca()->kstack hasn't been initialized yet.
329
* For secondary cpus, we need to bolt the kernel stack entry now.
330
*/
331
slb_shadow_clear(2);
332
if (raw_smp_processor_id() != boot_cpuid &&
333
(get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET)
334
create_shadowed_slbe(get_paca()->kstack,
335
mmu_kernel_ssize, lflags, 2);
336
337
asm volatile("isync":::"memory");
338
}
339
340