Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/powerpc/mm/slice.c
10817 views
1
/*
2
* address space "slices" (meta-segments) support
3
*
4
* Copyright (C) 2007 Benjamin Herrenschmidt, IBM Corporation.
5
*
6
* Based on hugetlb implementation
7
*
8
* Copyright (C) 2003 David Gibson, IBM Corporation.
9
*
10
* This program is free software; you can redistribute it and/or modify
11
* it under the terms of the GNU General Public License as published by
12
* the Free Software Foundation; either version 2 of the License, or
13
* (at your option) any later version.
14
*
15
* This program is distributed in the hope that it will be useful,
16
* but WITHOUT ANY WARRANTY; without even the implied warranty of
17
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18
* GNU General Public License for more details.
19
*
20
* You should have received a copy of the GNU General Public License
21
* along with this program; if not, write to the Free Software
22
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23
*/
24
25
#undef DEBUG
26
27
#include <linux/kernel.h>
28
#include <linux/mm.h>
29
#include <linux/pagemap.h>
30
#include <linux/err.h>
31
#include <linux/spinlock.h>
32
#include <linux/module.h>
33
#include <asm/mman.h>
34
#include <asm/mmu.h>
35
#include <asm/spu.h>
36
37
static DEFINE_SPINLOCK(slice_convert_lock);
38
39
40
#ifdef DEBUG
41
int _slice_debug = 1;
42
43
static void slice_print_mask(const char *label, struct slice_mask mask)
44
{
45
char *p, buf[16 + 3 + 16 + 1];
46
int i;
47
48
if (!_slice_debug)
49
return;
50
p = buf;
51
for (i = 0; i < SLICE_NUM_LOW; i++)
52
*(p++) = (mask.low_slices & (1 << i)) ? '1' : '0';
53
*(p++) = ' ';
54
*(p++) = '-';
55
*(p++) = ' ';
56
for (i = 0; i < SLICE_NUM_HIGH; i++)
57
*(p++) = (mask.high_slices & (1 << i)) ? '1' : '0';
58
*(p++) = 0;
59
60
printk(KERN_DEBUG "%s:%s\n", label, buf);
61
}
62
63
#define slice_dbg(fmt...) do { if (_slice_debug) pr_debug(fmt); } while(0)
64
65
#else
66
67
static void slice_print_mask(const char *label, struct slice_mask mask) {}
68
#define slice_dbg(fmt...)
69
70
#endif
71
72
static struct slice_mask slice_range_to_mask(unsigned long start,
73
unsigned long len)
74
{
75
unsigned long end = start + len - 1;
76
struct slice_mask ret = { 0, 0 };
77
78
if (start < SLICE_LOW_TOP) {
79
unsigned long mend = min(end, SLICE_LOW_TOP);
80
unsigned long mstart = min(start, SLICE_LOW_TOP);
81
82
ret.low_slices = (1u << (GET_LOW_SLICE_INDEX(mend) + 1))
83
- (1u << GET_LOW_SLICE_INDEX(mstart));
84
}
85
86
if ((start + len) > SLICE_LOW_TOP)
87
ret.high_slices = (1u << (GET_HIGH_SLICE_INDEX(end) + 1))
88
- (1u << GET_HIGH_SLICE_INDEX(start));
89
90
return ret;
91
}
92
93
static int slice_area_is_free(struct mm_struct *mm, unsigned long addr,
94
unsigned long len)
95
{
96
struct vm_area_struct *vma;
97
98
if ((mm->task_size - len) < addr)
99
return 0;
100
vma = find_vma(mm, addr);
101
return (!vma || (addr + len) <= vma->vm_start);
102
}
103
104
static int slice_low_has_vma(struct mm_struct *mm, unsigned long slice)
105
{
106
return !slice_area_is_free(mm, slice << SLICE_LOW_SHIFT,
107
1ul << SLICE_LOW_SHIFT);
108
}
109
110
static int slice_high_has_vma(struct mm_struct *mm, unsigned long slice)
111
{
112
unsigned long start = slice << SLICE_HIGH_SHIFT;
113
unsigned long end = start + (1ul << SLICE_HIGH_SHIFT);
114
115
/* Hack, so that each addresses is controlled by exactly one
116
* of the high or low area bitmaps, the first high area starts
117
* at 4GB, not 0 */
118
if (start == 0)
119
start = SLICE_LOW_TOP;
120
121
return !slice_area_is_free(mm, start, end - start);
122
}
123
124
static struct slice_mask slice_mask_for_free(struct mm_struct *mm)
125
{
126
struct slice_mask ret = { 0, 0 };
127
unsigned long i;
128
129
for (i = 0; i < SLICE_NUM_LOW; i++)
130
if (!slice_low_has_vma(mm, i))
131
ret.low_slices |= 1u << i;
132
133
if (mm->task_size <= SLICE_LOW_TOP)
134
return ret;
135
136
for (i = 0; i < SLICE_NUM_HIGH; i++)
137
if (!slice_high_has_vma(mm, i))
138
ret.high_slices |= 1u << i;
139
140
return ret;
141
}
142
143
static struct slice_mask slice_mask_for_size(struct mm_struct *mm, int psize)
144
{
145
struct slice_mask ret = { 0, 0 };
146
unsigned long i;
147
u64 psizes;
148
149
psizes = mm->context.low_slices_psize;
150
for (i = 0; i < SLICE_NUM_LOW; i++)
151
if (((psizes >> (i * 4)) & 0xf) == psize)
152
ret.low_slices |= 1u << i;
153
154
psizes = mm->context.high_slices_psize;
155
for (i = 0; i < SLICE_NUM_HIGH; i++)
156
if (((psizes >> (i * 4)) & 0xf) == psize)
157
ret.high_slices |= 1u << i;
158
159
return ret;
160
}
161
162
static int slice_check_fit(struct slice_mask mask, struct slice_mask available)
163
{
164
return (mask.low_slices & available.low_slices) == mask.low_slices &&
165
(mask.high_slices & available.high_slices) == mask.high_slices;
166
}
167
168
static void slice_flush_segments(void *parm)
169
{
170
struct mm_struct *mm = parm;
171
unsigned long flags;
172
173
if (mm != current->active_mm)
174
return;
175
176
/* update the paca copy of the context struct */
177
get_paca()->context = current->active_mm->context;
178
179
local_irq_save(flags);
180
slb_flush_and_rebolt();
181
local_irq_restore(flags);
182
}
183
184
static void slice_convert(struct mm_struct *mm, struct slice_mask mask, int psize)
185
{
186
/* Write the new slice psize bits */
187
u64 lpsizes, hpsizes;
188
unsigned long i, flags;
189
190
slice_dbg("slice_convert(mm=%p, psize=%d)\n", mm, psize);
191
slice_print_mask(" mask", mask);
192
193
/* We need to use a spinlock here to protect against
194
* concurrent 64k -> 4k demotion ...
195
*/
196
spin_lock_irqsave(&slice_convert_lock, flags);
197
198
lpsizes = mm->context.low_slices_psize;
199
for (i = 0; i < SLICE_NUM_LOW; i++)
200
if (mask.low_slices & (1u << i))
201
lpsizes = (lpsizes & ~(0xful << (i * 4))) |
202
(((unsigned long)psize) << (i * 4));
203
204
hpsizes = mm->context.high_slices_psize;
205
for (i = 0; i < SLICE_NUM_HIGH; i++)
206
if (mask.high_slices & (1u << i))
207
hpsizes = (hpsizes & ~(0xful << (i * 4))) |
208
(((unsigned long)psize) << (i * 4));
209
210
mm->context.low_slices_psize = lpsizes;
211
mm->context.high_slices_psize = hpsizes;
212
213
slice_dbg(" lsps=%lx, hsps=%lx\n",
214
mm->context.low_slices_psize,
215
mm->context.high_slices_psize);
216
217
spin_unlock_irqrestore(&slice_convert_lock, flags);
218
219
#ifdef CONFIG_SPU_BASE
220
spu_flush_all_slbs(mm);
221
#endif
222
}
223
224
static unsigned long slice_find_area_bottomup(struct mm_struct *mm,
225
unsigned long len,
226
struct slice_mask available,
227
int psize, int use_cache)
228
{
229
struct vm_area_struct *vma;
230
unsigned long start_addr, addr;
231
struct slice_mask mask;
232
int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
233
234
if (use_cache) {
235
if (len <= mm->cached_hole_size) {
236
start_addr = addr = TASK_UNMAPPED_BASE;
237
mm->cached_hole_size = 0;
238
} else
239
start_addr = addr = mm->free_area_cache;
240
} else
241
start_addr = addr = TASK_UNMAPPED_BASE;
242
243
full_search:
244
for (;;) {
245
addr = _ALIGN_UP(addr, 1ul << pshift);
246
if ((TASK_SIZE - len) < addr)
247
break;
248
vma = find_vma(mm, addr);
249
BUG_ON(vma && (addr >= vma->vm_end));
250
251
mask = slice_range_to_mask(addr, len);
252
if (!slice_check_fit(mask, available)) {
253
if (addr < SLICE_LOW_TOP)
254
addr = _ALIGN_UP(addr + 1, 1ul << SLICE_LOW_SHIFT);
255
else
256
addr = _ALIGN_UP(addr + 1, 1ul << SLICE_HIGH_SHIFT);
257
continue;
258
}
259
if (!vma || addr + len <= vma->vm_start) {
260
/*
261
* Remember the place where we stopped the search:
262
*/
263
if (use_cache)
264
mm->free_area_cache = addr + len;
265
return addr;
266
}
267
if (use_cache && (addr + mm->cached_hole_size) < vma->vm_start)
268
mm->cached_hole_size = vma->vm_start - addr;
269
addr = vma->vm_end;
270
}
271
272
/* Make sure we didn't miss any holes */
273
if (use_cache && start_addr != TASK_UNMAPPED_BASE) {
274
start_addr = addr = TASK_UNMAPPED_BASE;
275
mm->cached_hole_size = 0;
276
goto full_search;
277
}
278
return -ENOMEM;
279
}
280
281
static unsigned long slice_find_area_topdown(struct mm_struct *mm,
282
unsigned long len,
283
struct slice_mask available,
284
int psize, int use_cache)
285
{
286
struct vm_area_struct *vma;
287
unsigned long addr;
288
struct slice_mask mask;
289
int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
290
291
/* check if free_area_cache is useful for us */
292
if (use_cache) {
293
if (len <= mm->cached_hole_size) {
294
mm->cached_hole_size = 0;
295
mm->free_area_cache = mm->mmap_base;
296
}
297
298
/* either no address requested or can't fit in requested
299
* address hole
300
*/
301
addr = mm->free_area_cache;
302
303
/* make sure it can fit in the remaining address space */
304
if (addr > len) {
305
addr = _ALIGN_DOWN(addr - len, 1ul << pshift);
306
mask = slice_range_to_mask(addr, len);
307
if (slice_check_fit(mask, available) &&
308
slice_area_is_free(mm, addr, len))
309
/* remember the address as a hint for
310
* next time
311
*/
312
return (mm->free_area_cache = addr);
313
}
314
}
315
316
addr = mm->mmap_base;
317
while (addr > len) {
318
/* Go down by chunk size */
319
addr = _ALIGN_DOWN(addr - len, 1ul << pshift);
320
321
/* Check for hit with different page size */
322
mask = slice_range_to_mask(addr, len);
323
if (!slice_check_fit(mask, available)) {
324
if (addr < SLICE_LOW_TOP)
325
addr = _ALIGN_DOWN(addr, 1ul << SLICE_LOW_SHIFT);
326
else if (addr < (1ul << SLICE_HIGH_SHIFT))
327
addr = SLICE_LOW_TOP;
328
else
329
addr = _ALIGN_DOWN(addr, 1ul << SLICE_HIGH_SHIFT);
330
continue;
331
}
332
333
/*
334
* Lookup failure means no vma is above this address,
335
* else if new region fits below vma->vm_start,
336
* return with success:
337
*/
338
vma = find_vma(mm, addr);
339
if (!vma || (addr + len) <= vma->vm_start) {
340
/* remember the address as a hint for next time */
341
if (use_cache)
342
mm->free_area_cache = addr;
343
return addr;
344
}
345
346
/* remember the largest hole we saw so far */
347
if (use_cache && (addr + mm->cached_hole_size) < vma->vm_start)
348
mm->cached_hole_size = vma->vm_start - addr;
349
350
/* try just below the current vma->vm_start */
351
addr = vma->vm_start;
352
}
353
354
/*
355
* A failed mmap() very likely causes application failure,
356
* so fall back to the bottom-up function here. This scenario
357
* can happen with large stack limits and large mmap()
358
* allocations.
359
*/
360
addr = slice_find_area_bottomup(mm, len, available, psize, 0);
361
362
/*
363
* Restore the topdown base:
364
*/
365
if (use_cache) {
366
mm->free_area_cache = mm->mmap_base;
367
mm->cached_hole_size = ~0UL;
368
}
369
370
return addr;
371
}
372
373
374
static unsigned long slice_find_area(struct mm_struct *mm, unsigned long len,
375
struct slice_mask mask, int psize,
376
int topdown, int use_cache)
377
{
378
if (topdown)
379
return slice_find_area_topdown(mm, len, mask, psize, use_cache);
380
else
381
return slice_find_area_bottomup(mm, len, mask, psize, use_cache);
382
}
383
384
#define or_mask(dst, src) do { \
385
(dst).low_slices |= (src).low_slices; \
386
(dst).high_slices |= (src).high_slices; \
387
} while (0)
388
389
#define andnot_mask(dst, src) do { \
390
(dst).low_slices &= ~(src).low_slices; \
391
(dst).high_slices &= ~(src).high_slices; \
392
} while (0)
393
394
#ifdef CONFIG_PPC_64K_PAGES
395
#define MMU_PAGE_BASE MMU_PAGE_64K
396
#else
397
#define MMU_PAGE_BASE MMU_PAGE_4K
398
#endif
399
400
unsigned long slice_get_unmapped_area(unsigned long addr, unsigned long len,
401
unsigned long flags, unsigned int psize,
402
int topdown, int use_cache)
403
{
404
struct slice_mask mask = {0, 0};
405
struct slice_mask good_mask;
406
struct slice_mask potential_mask = {0,0} /* silence stupid warning */;
407
struct slice_mask compat_mask = {0, 0};
408
int fixed = (flags & MAP_FIXED);
409
int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
410
struct mm_struct *mm = current->mm;
411
unsigned long newaddr;
412
413
/* Sanity checks */
414
BUG_ON(mm->task_size == 0);
415
416
slice_dbg("slice_get_unmapped_area(mm=%p, psize=%d...\n", mm, psize);
417
slice_dbg(" addr=%lx, len=%lx, flags=%lx, topdown=%d, use_cache=%d\n",
418
addr, len, flags, topdown, use_cache);
419
420
if (len > mm->task_size)
421
return -ENOMEM;
422
if (len & ((1ul << pshift) - 1))
423
return -EINVAL;
424
if (fixed && (addr & ((1ul << pshift) - 1)))
425
return -EINVAL;
426
if (fixed && addr > (mm->task_size - len))
427
return -EINVAL;
428
429
/* If hint, make sure it matches our alignment restrictions */
430
if (!fixed && addr) {
431
addr = _ALIGN_UP(addr, 1ul << pshift);
432
slice_dbg(" aligned addr=%lx\n", addr);
433
/* Ignore hint if it's too large or overlaps a VMA */
434
if (addr > mm->task_size - len ||
435
!slice_area_is_free(mm, addr, len))
436
addr = 0;
437
}
438
439
/* First make up a "good" mask of slices that have the right size
440
* already
441
*/
442
good_mask = slice_mask_for_size(mm, psize);
443
slice_print_mask(" good_mask", good_mask);
444
445
/*
446
* Here "good" means slices that are already the right page size,
447
* "compat" means slices that have a compatible page size (i.e.
448
* 4k in a 64k pagesize kernel), and "free" means slices without
449
* any VMAs.
450
*
451
* If MAP_FIXED:
452
* check if fits in good | compat => OK
453
* check if fits in good | compat | free => convert free
454
* else bad
455
* If have hint:
456
* check if hint fits in good => OK
457
* check if hint fits in good | free => convert free
458
* Otherwise:
459
* search in good, found => OK
460
* search in good | free, found => convert free
461
* search in good | compat | free, found => convert free.
462
*/
463
464
#ifdef CONFIG_PPC_64K_PAGES
465
/* If we support combo pages, we can allow 64k pages in 4k slices */
466
if (psize == MMU_PAGE_64K) {
467
compat_mask = slice_mask_for_size(mm, MMU_PAGE_4K);
468
if (fixed)
469
or_mask(good_mask, compat_mask);
470
}
471
#endif
472
473
/* First check hint if it's valid or if we have MAP_FIXED */
474
if (addr != 0 || fixed) {
475
/* Build a mask for the requested range */
476
mask = slice_range_to_mask(addr, len);
477
slice_print_mask(" mask", mask);
478
479
/* Check if we fit in the good mask. If we do, we just return,
480
* nothing else to do
481
*/
482
if (slice_check_fit(mask, good_mask)) {
483
slice_dbg(" fits good !\n");
484
return addr;
485
}
486
} else {
487
/* Now let's see if we can find something in the existing
488
* slices for that size
489
*/
490
newaddr = slice_find_area(mm, len, good_mask, psize, topdown,
491
use_cache);
492
if (newaddr != -ENOMEM) {
493
/* Found within the good mask, we don't have to setup,
494
* we thus return directly
495
*/
496
slice_dbg(" found area at 0x%lx\n", newaddr);
497
return newaddr;
498
}
499
}
500
501
/* We don't fit in the good mask, check what other slices are
502
* empty and thus can be converted
503
*/
504
potential_mask = slice_mask_for_free(mm);
505
or_mask(potential_mask, good_mask);
506
slice_print_mask(" potential", potential_mask);
507
508
if ((addr != 0 || fixed) && slice_check_fit(mask, potential_mask)) {
509
slice_dbg(" fits potential !\n");
510
goto convert;
511
}
512
513
/* If we have MAP_FIXED and failed the above steps, then error out */
514
if (fixed)
515
return -EBUSY;
516
517
slice_dbg(" search...\n");
518
519
/* If we had a hint that didn't work out, see if we can fit
520
* anywhere in the good area.
521
*/
522
if (addr) {
523
addr = slice_find_area(mm, len, good_mask, psize, topdown,
524
use_cache);
525
if (addr != -ENOMEM) {
526
slice_dbg(" found area at 0x%lx\n", addr);
527
return addr;
528
}
529
}
530
531
/* Now let's see if we can find something in the existing slices
532
* for that size plus free slices
533
*/
534
addr = slice_find_area(mm, len, potential_mask, psize, topdown,
535
use_cache);
536
537
#ifdef CONFIG_PPC_64K_PAGES
538
if (addr == -ENOMEM && psize == MMU_PAGE_64K) {
539
/* retry the search with 4k-page slices included */
540
or_mask(potential_mask, compat_mask);
541
addr = slice_find_area(mm, len, potential_mask, psize,
542
topdown, use_cache);
543
}
544
#endif
545
546
if (addr == -ENOMEM)
547
return -ENOMEM;
548
549
mask = slice_range_to_mask(addr, len);
550
slice_dbg(" found potential area at 0x%lx\n", addr);
551
slice_print_mask(" mask", mask);
552
553
convert:
554
andnot_mask(mask, good_mask);
555
andnot_mask(mask, compat_mask);
556
if (mask.low_slices || mask.high_slices) {
557
slice_convert(mm, mask, psize);
558
if (psize > MMU_PAGE_BASE)
559
on_each_cpu(slice_flush_segments, mm, 1);
560
}
561
return addr;
562
563
}
564
EXPORT_SYMBOL_GPL(slice_get_unmapped_area);
565
566
unsigned long arch_get_unmapped_area(struct file *filp,
567
unsigned long addr,
568
unsigned long len,
569
unsigned long pgoff,
570
unsigned long flags)
571
{
572
return slice_get_unmapped_area(addr, len, flags,
573
current->mm->context.user_psize,
574
0, 1);
575
}
576
577
unsigned long arch_get_unmapped_area_topdown(struct file *filp,
578
const unsigned long addr0,
579
const unsigned long len,
580
const unsigned long pgoff,
581
const unsigned long flags)
582
{
583
return slice_get_unmapped_area(addr0, len, flags,
584
current->mm->context.user_psize,
585
1, 1);
586
}
587
588
unsigned int get_slice_psize(struct mm_struct *mm, unsigned long addr)
589
{
590
u64 psizes;
591
int index;
592
593
if (addr < SLICE_LOW_TOP) {
594
psizes = mm->context.low_slices_psize;
595
index = GET_LOW_SLICE_INDEX(addr);
596
} else {
597
psizes = mm->context.high_slices_psize;
598
index = GET_HIGH_SLICE_INDEX(addr);
599
}
600
601
return (psizes >> (index * 4)) & 0xf;
602
}
603
EXPORT_SYMBOL_GPL(get_slice_psize);
604
605
/*
606
* This is called by hash_page when it needs to do a lazy conversion of
607
* an address space from real 64K pages to combo 4K pages (typically
608
* when hitting a non cacheable mapping on a processor or hypervisor
609
* that won't allow them for 64K pages).
610
*
611
* This is also called in init_new_context() to change back the user
612
* psize from whatever the parent context had it set to
613
* N.B. This may be called before mm->context.id has been set.
614
*
615
* This function will only change the content of the {low,high)_slice_psize
616
* masks, it will not flush SLBs as this shall be handled lazily by the
617
* caller.
618
*/
619
void slice_set_user_psize(struct mm_struct *mm, unsigned int psize)
620
{
621
unsigned long flags, lpsizes, hpsizes;
622
unsigned int old_psize;
623
int i;
624
625
slice_dbg("slice_set_user_psize(mm=%p, psize=%d)\n", mm, psize);
626
627
spin_lock_irqsave(&slice_convert_lock, flags);
628
629
old_psize = mm->context.user_psize;
630
slice_dbg(" old_psize=%d\n", old_psize);
631
if (old_psize == psize)
632
goto bail;
633
634
mm->context.user_psize = psize;
635
wmb();
636
637
lpsizes = mm->context.low_slices_psize;
638
for (i = 0; i < SLICE_NUM_LOW; i++)
639
if (((lpsizes >> (i * 4)) & 0xf) == old_psize)
640
lpsizes = (lpsizes & ~(0xful << (i * 4))) |
641
(((unsigned long)psize) << (i * 4));
642
643
hpsizes = mm->context.high_slices_psize;
644
for (i = 0; i < SLICE_NUM_HIGH; i++)
645
if (((hpsizes >> (i * 4)) & 0xf) == old_psize)
646
hpsizes = (hpsizes & ~(0xful << (i * 4))) |
647
(((unsigned long)psize) << (i * 4));
648
649
mm->context.low_slices_psize = lpsizes;
650
mm->context.high_slices_psize = hpsizes;
651
652
slice_dbg(" lsps=%lx, hsps=%lx\n",
653
mm->context.low_slices_psize,
654
mm->context.high_slices_psize);
655
656
bail:
657
spin_unlock_irqrestore(&slice_convert_lock, flags);
658
}
659
660
void slice_set_psize(struct mm_struct *mm, unsigned long address,
661
unsigned int psize)
662
{
663
unsigned long i, flags;
664
u64 *p;
665
666
spin_lock_irqsave(&slice_convert_lock, flags);
667
if (address < SLICE_LOW_TOP) {
668
i = GET_LOW_SLICE_INDEX(address);
669
p = &mm->context.low_slices_psize;
670
} else {
671
i = GET_HIGH_SLICE_INDEX(address);
672
p = &mm->context.high_slices_psize;
673
}
674
*p = (*p & ~(0xful << (i * 4))) | ((unsigned long) psize << (i * 4));
675
spin_unlock_irqrestore(&slice_convert_lock, flags);
676
677
#ifdef CONFIG_SPU_BASE
678
spu_flush_all_slbs(mm);
679
#endif
680
}
681
682
void slice_set_range_psize(struct mm_struct *mm, unsigned long start,
683
unsigned long len, unsigned int psize)
684
{
685
struct slice_mask mask = slice_range_to_mask(start, len);
686
687
slice_convert(mm, mask, psize);
688
}
689
690
/*
691
* is_hugepage_only_range() is used by generic code to verify wether
692
* a normal mmap mapping (non hugetlbfs) is valid on a given area.
693
*
694
* until the generic code provides a more generic hook and/or starts
695
* calling arch get_unmapped_area for MAP_FIXED (which our implementation
696
* here knows how to deal with), we hijack it to keep standard mappings
697
* away from us.
698
*
699
* because of that generic code limitation, MAP_FIXED mapping cannot
700
* "convert" back a slice with no VMAs to the standard page size, only
701
* get_unmapped_area() can. It would be possible to fix it here but I
702
* prefer working on fixing the generic code instead.
703
*
704
* WARNING: This will not work if hugetlbfs isn't enabled since the
705
* generic code will redefine that function as 0 in that. This is ok
706
* for now as we only use slices with hugetlbfs enabled. This should
707
* be fixed as the generic code gets fixed.
708
*/
709
int is_hugepage_only_range(struct mm_struct *mm, unsigned long addr,
710
unsigned long len)
711
{
712
struct slice_mask mask, available;
713
unsigned int psize = mm->context.user_psize;
714
715
mask = slice_range_to_mask(addr, len);
716
available = slice_mask_for_size(mm, psize);
717
#ifdef CONFIG_PPC_64K_PAGES
718
/* We need to account for 4k slices too */
719
if (psize == MMU_PAGE_64K) {
720
struct slice_mask compat_mask;
721
compat_mask = slice_mask_for_size(mm, MMU_PAGE_4K);
722
or_mask(available, compat_mask);
723
}
724
#endif
725
726
#if 0 /* too verbose */
727
slice_dbg("is_hugepage_only_range(mm=%p, addr=%lx, len=%lx)\n",
728
mm, addr, len);
729
slice_print_mask(" mask", mask);
730
slice_print_mask(" available", available);
731
#endif
732
return !slice_check_fit(mask, available);
733
}
734
735
736