Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/powerpc/mm/tlb_nohash.c
10818 views
1
/*
2
* This file contains the routines for TLB flushing.
3
* On machines where the MMU does not use a hash table to store virtual to
4
* physical translations (ie, SW loaded TLBs or Book3E compilant processors,
5
* this does -not- include 603 however which shares the implementation with
6
* hash based processors)
7
*
8
* -- BenH
9
*
10
* Copyright 2008,2009 Ben Herrenschmidt <[email protected]>
11
* IBM Corp.
12
*
13
* Derived from arch/ppc/mm/init.c:
14
* Copyright (C) 1995-1996 Gary Thomas ([email protected])
15
*
16
* Modifications by Paul Mackerras (PowerMac) ([email protected])
17
* and Cort Dougan (PReP) ([email protected])
18
* Copyright (C) 1996 Paul Mackerras
19
*
20
* Derived from "arch/i386/mm/init.c"
21
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
22
*
23
* This program is free software; you can redistribute it and/or
24
* modify it under the terms of the GNU General Public License
25
* as published by the Free Software Foundation; either version
26
* 2 of the License, or (at your option) any later version.
27
*
28
*/
29
30
#include <linux/kernel.h>
31
#include <linux/mm.h>
32
#include <linux/init.h>
33
#include <linux/highmem.h>
34
#include <linux/pagemap.h>
35
#include <linux/preempt.h>
36
#include <linux/spinlock.h>
37
#include <linux/memblock.h>
38
39
#include <asm/tlbflush.h>
40
#include <asm/tlb.h>
41
#include <asm/code-patching.h>
42
43
#include "mmu_decl.h"
44
45
#ifdef CONFIG_PPC_BOOK3E
46
struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT] = {
47
[MMU_PAGE_4K] = {
48
.shift = 12,
49
.ind = 20,
50
.enc = BOOK3E_PAGESZ_4K,
51
},
52
[MMU_PAGE_16K] = {
53
.shift = 14,
54
.enc = BOOK3E_PAGESZ_16K,
55
},
56
[MMU_PAGE_64K] = {
57
.shift = 16,
58
.ind = 28,
59
.enc = BOOK3E_PAGESZ_64K,
60
},
61
[MMU_PAGE_1M] = {
62
.shift = 20,
63
.enc = BOOK3E_PAGESZ_1M,
64
},
65
[MMU_PAGE_16M] = {
66
.shift = 24,
67
.ind = 36,
68
.enc = BOOK3E_PAGESZ_16M,
69
},
70
[MMU_PAGE_256M] = {
71
.shift = 28,
72
.enc = BOOK3E_PAGESZ_256M,
73
},
74
[MMU_PAGE_1G] = {
75
.shift = 30,
76
.enc = BOOK3E_PAGESZ_1GB,
77
},
78
};
79
static inline int mmu_get_tsize(int psize)
80
{
81
return mmu_psize_defs[psize].enc;
82
}
83
#else
84
static inline int mmu_get_tsize(int psize)
85
{
86
/* This isn't used on !Book3E for now */
87
return 0;
88
}
89
#endif
90
91
/* The variables below are currently only used on 64-bit Book3E
92
* though this will probably be made common with other nohash
93
* implementations at some point
94
*/
95
#ifdef CONFIG_PPC64
96
97
int mmu_linear_psize; /* Page size used for the linear mapping */
98
int mmu_pte_psize; /* Page size used for PTE pages */
99
int mmu_vmemmap_psize; /* Page size used for the virtual mem map */
100
int book3e_htw_enabled; /* Is HW tablewalk enabled ? */
101
unsigned long linear_map_top; /* Top of linear mapping */
102
103
#endif /* CONFIG_PPC64 */
104
105
/*
106
* Base TLB flushing operations:
107
*
108
* - flush_tlb_mm(mm) flushes the specified mm context TLB's
109
* - flush_tlb_page(vma, vmaddr) flushes one page
110
* - flush_tlb_range(vma, start, end) flushes a range of pages
111
* - flush_tlb_kernel_range(start, end) flushes kernel pages
112
*
113
* - local_* variants of page and mm only apply to the current
114
* processor
115
*/
116
117
/*
118
* These are the base non-SMP variants of page and mm flushing
119
*/
120
void local_flush_tlb_mm(struct mm_struct *mm)
121
{
122
unsigned int pid;
123
124
preempt_disable();
125
pid = mm->context.id;
126
if (pid != MMU_NO_CONTEXT)
127
_tlbil_pid(pid);
128
preempt_enable();
129
}
130
EXPORT_SYMBOL(local_flush_tlb_mm);
131
132
void __local_flush_tlb_page(struct mm_struct *mm, unsigned long vmaddr,
133
int tsize, int ind)
134
{
135
unsigned int pid;
136
137
preempt_disable();
138
pid = mm ? mm->context.id : 0;
139
if (pid != MMU_NO_CONTEXT)
140
_tlbil_va(vmaddr, pid, tsize, ind);
141
preempt_enable();
142
}
143
144
void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
145
{
146
__local_flush_tlb_page(vma ? vma->vm_mm : NULL, vmaddr,
147
mmu_get_tsize(mmu_virtual_psize), 0);
148
}
149
EXPORT_SYMBOL(local_flush_tlb_page);
150
151
/*
152
* And here are the SMP non-local implementations
153
*/
154
#ifdef CONFIG_SMP
155
156
static DEFINE_RAW_SPINLOCK(tlbivax_lock);
157
158
static int mm_is_core_local(struct mm_struct *mm)
159
{
160
return cpumask_subset(mm_cpumask(mm),
161
topology_thread_cpumask(smp_processor_id()));
162
}
163
164
struct tlb_flush_param {
165
unsigned long addr;
166
unsigned int pid;
167
unsigned int tsize;
168
unsigned int ind;
169
};
170
171
static void do_flush_tlb_mm_ipi(void *param)
172
{
173
struct tlb_flush_param *p = param;
174
175
_tlbil_pid(p ? p->pid : 0);
176
}
177
178
static void do_flush_tlb_page_ipi(void *param)
179
{
180
struct tlb_flush_param *p = param;
181
182
_tlbil_va(p->addr, p->pid, p->tsize, p->ind);
183
}
184
185
186
/* Note on invalidations and PID:
187
*
188
* We snapshot the PID with preempt disabled. At this point, it can still
189
* change either because:
190
* - our context is being stolen (PID -> NO_CONTEXT) on another CPU
191
* - we are invaliating some target that isn't currently running here
192
* and is concurrently acquiring a new PID on another CPU
193
* - some other CPU is re-acquiring a lost PID for this mm
194
* etc...
195
*
196
* However, this shouldn't be a problem as we only guarantee
197
* invalidation of TLB entries present prior to this call, so we
198
* don't care about the PID changing, and invalidating a stale PID
199
* is generally harmless.
200
*/
201
202
void flush_tlb_mm(struct mm_struct *mm)
203
{
204
unsigned int pid;
205
206
preempt_disable();
207
pid = mm->context.id;
208
if (unlikely(pid == MMU_NO_CONTEXT))
209
goto no_context;
210
if (!mm_is_core_local(mm)) {
211
struct tlb_flush_param p = { .pid = pid };
212
/* Ignores smp_processor_id() even if set. */
213
smp_call_function_many(mm_cpumask(mm),
214
do_flush_tlb_mm_ipi, &p, 1);
215
}
216
_tlbil_pid(pid);
217
no_context:
218
preempt_enable();
219
}
220
EXPORT_SYMBOL(flush_tlb_mm);
221
222
void __flush_tlb_page(struct mm_struct *mm, unsigned long vmaddr,
223
int tsize, int ind)
224
{
225
struct cpumask *cpu_mask;
226
unsigned int pid;
227
228
preempt_disable();
229
pid = mm ? mm->context.id : 0;
230
if (unlikely(pid == MMU_NO_CONTEXT))
231
goto bail;
232
cpu_mask = mm_cpumask(mm);
233
if (!mm_is_core_local(mm)) {
234
/* If broadcast tlbivax is supported, use it */
235
if (mmu_has_feature(MMU_FTR_USE_TLBIVAX_BCAST)) {
236
int lock = mmu_has_feature(MMU_FTR_LOCK_BCAST_INVAL);
237
if (lock)
238
raw_spin_lock(&tlbivax_lock);
239
_tlbivax_bcast(vmaddr, pid, tsize, ind);
240
if (lock)
241
raw_spin_unlock(&tlbivax_lock);
242
goto bail;
243
} else {
244
struct tlb_flush_param p = {
245
.pid = pid,
246
.addr = vmaddr,
247
.tsize = tsize,
248
.ind = ind,
249
};
250
/* Ignores smp_processor_id() even if set in cpu_mask */
251
smp_call_function_many(cpu_mask,
252
do_flush_tlb_page_ipi, &p, 1);
253
}
254
}
255
_tlbil_va(vmaddr, pid, tsize, ind);
256
bail:
257
preempt_enable();
258
}
259
260
void flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
261
{
262
__flush_tlb_page(vma ? vma->vm_mm : NULL, vmaddr,
263
mmu_get_tsize(mmu_virtual_psize), 0);
264
}
265
EXPORT_SYMBOL(flush_tlb_page);
266
267
#endif /* CONFIG_SMP */
268
269
/*
270
* Flush kernel TLB entries in the given range
271
*/
272
void flush_tlb_kernel_range(unsigned long start, unsigned long end)
273
{
274
#ifdef CONFIG_SMP
275
preempt_disable();
276
smp_call_function(do_flush_tlb_mm_ipi, NULL, 1);
277
_tlbil_pid(0);
278
preempt_enable();
279
#else
280
_tlbil_pid(0);
281
#endif
282
}
283
EXPORT_SYMBOL(flush_tlb_kernel_range);
284
285
/*
286
* Currently, for range flushing, we just do a full mm flush. This should
287
* be optimized based on a threshold on the size of the range, since
288
* some implementation can stack multiple tlbivax before a tlbsync but
289
* for now, we keep it that way
290
*/
291
void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
292
unsigned long end)
293
294
{
295
flush_tlb_mm(vma->vm_mm);
296
}
297
EXPORT_SYMBOL(flush_tlb_range);
298
299
void tlb_flush(struct mmu_gather *tlb)
300
{
301
flush_tlb_mm(tlb->mm);
302
}
303
304
/*
305
* Below are functions specific to the 64-bit variant of Book3E though that
306
* may change in the future
307
*/
308
309
#ifdef CONFIG_PPC64
310
311
/*
312
* Handling of virtual linear page tables or indirect TLB entries
313
* flushing when PTE pages are freed
314
*/
315
void tlb_flush_pgtable(struct mmu_gather *tlb, unsigned long address)
316
{
317
int tsize = mmu_psize_defs[mmu_pte_psize].enc;
318
319
if (book3e_htw_enabled) {
320
unsigned long start = address & PMD_MASK;
321
unsigned long end = address + PMD_SIZE;
322
unsigned long size = 1UL << mmu_psize_defs[mmu_pte_psize].shift;
323
324
/* This isn't the most optimal, ideally we would factor out the
325
* while preempt & CPU mask mucking around, or even the IPI but
326
* it will do for now
327
*/
328
while (start < end) {
329
__flush_tlb_page(tlb->mm, start, tsize, 1);
330
start += size;
331
}
332
} else {
333
unsigned long rmask = 0xf000000000000000ul;
334
unsigned long rid = (address & rmask) | 0x1000000000000000ul;
335
unsigned long vpte = address & ~rmask;
336
337
#ifdef CONFIG_PPC_64K_PAGES
338
vpte = (vpte >> (PAGE_SHIFT - 4)) & ~0xfffful;
339
#else
340
vpte = (vpte >> (PAGE_SHIFT - 3)) & ~0xffful;
341
#endif
342
vpte |= rid;
343
__flush_tlb_page(tlb->mm, vpte, tsize, 0);
344
}
345
}
346
347
static void setup_page_sizes(void)
348
{
349
unsigned int tlb0cfg;
350
unsigned int tlb0ps;
351
unsigned int eptcfg;
352
int i, psize;
353
354
#ifdef CONFIG_PPC_FSL_BOOK3E
355
unsigned int mmucfg = mfspr(SPRN_MMUCFG);
356
357
if (((mmucfg & MMUCFG_MAVN) == MMUCFG_MAVN_V1) &&
358
(mmu_has_feature(MMU_FTR_TYPE_FSL_E))) {
359
unsigned int tlb1cfg = mfspr(SPRN_TLB1CFG);
360
unsigned int min_pg, max_pg;
361
362
min_pg = (tlb1cfg & TLBnCFG_MINSIZE) >> TLBnCFG_MINSIZE_SHIFT;
363
max_pg = (tlb1cfg & TLBnCFG_MAXSIZE) >> TLBnCFG_MAXSIZE_SHIFT;
364
365
for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
366
struct mmu_psize_def *def;
367
unsigned int shift;
368
369
def = &mmu_psize_defs[psize];
370
shift = def->shift;
371
372
if (shift == 0)
373
continue;
374
375
/* adjust to be in terms of 4^shift Kb */
376
shift = (shift - 10) >> 1;
377
378
if ((shift >= min_pg) && (shift <= max_pg))
379
def->flags |= MMU_PAGE_SIZE_DIRECT;
380
}
381
382
goto no_indirect;
383
}
384
#endif
385
386
tlb0cfg = mfspr(SPRN_TLB0CFG);
387
tlb0ps = mfspr(SPRN_TLB0PS);
388
eptcfg = mfspr(SPRN_EPTCFG);
389
390
/* Look for supported direct sizes */
391
for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
392
struct mmu_psize_def *def = &mmu_psize_defs[psize];
393
394
if (tlb0ps & (1U << (def->shift - 10)))
395
def->flags |= MMU_PAGE_SIZE_DIRECT;
396
}
397
398
/* Indirect page sizes supported ? */
399
if ((tlb0cfg & TLBnCFG_IND) == 0)
400
goto no_indirect;
401
402
/* Now, we only deal with one IND page size for each
403
* direct size. Hopefully all implementations today are
404
* unambiguous, but we might want to be careful in the
405
* future.
406
*/
407
for (i = 0; i < 3; i++) {
408
unsigned int ps, sps;
409
410
sps = eptcfg & 0x1f;
411
eptcfg >>= 5;
412
ps = eptcfg & 0x1f;
413
eptcfg >>= 5;
414
if (!ps || !sps)
415
continue;
416
for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
417
struct mmu_psize_def *def = &mmu_psize_defs[psize];
418
419
if (ps == (def->shift - 10))
420
def->flags |= MMU_PAGE_SIZE_INDIRECT;
421
if (sps == (def->shift - 10))
422
def->ind = ps + 10;
423
}
424
}
425
no_indirect:
426
427
/* Cleanup array and print summary */
428
pr_info("MMU: Supported page sizes\n");
429
for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
430
struct mmu_psize_def *def = &mmu_psize_defs[psize];
431
const char *__page_type_names[] = {
432
"unsupported",
433
"direct",
434
"indirect",
435
"direct & indirect"
436
};
437
if (def->flags == 0) {
438
def->shift = 0;
439
continue;
440
}
441
pr_info(" %8ld KB as %s\n", 1ul << (def->shift - 10),
442
__page_type_names[def->flags & 0x3]);
443
}
444
}
445
446
static void setup_mmu_htw(void)
447
{
448
extern unsigned int interrupt_base_book3e;
449
extern unsigned int exc_data_tlb_miss_htw_book3e;
450
extern unsigned int exc_instruction_tlb_miss_htw_book3e;
451
452
unsigned int *ibase = &interrupt_base_book3e;
453
454
/* Check if HW tablewalk is present, and if yes, enable it by:
455
*
456
* - patching the TLB miss handlers to branch to the
457
* one dedicates to it
458
*
459
* - setting the global book3e_htw_enabled
460
*/
461
unsigned int tlb0cfg = mfspr(SPRN_TLB0CFG);
462
463
if ((tlb0cfg & TLBnCFG_IND) &&
464
(tlb0cfg & TLBnCFG_PT)) {
465
/* Our exceptions vectors start with a NOP and -then- a branch
466
* to deal with single stepping from userspace which stops on
467
* the second instruction. Thus we need to patch the second
468
* instruction of the exception, not the first one
469
*/
470
patch_branch(ibase + (0x1c0 / 4) + 1,
471
(unsigned long)&exc_data_tlb_miss_htw_book3e, 0);
472
patch_branch(ibase + (0x1e0 / 4) + 1,
473
(unsigned long)&exc_instruction_tlb_miss_htw_book3e, 0);
474
book3e_htw_enabled = 1;
475
}
476
pr_info("MMU: Book3E Page Tables %s\n",
477
book3e_htw_enabled ? "Enabled" : "Disabled");
478
}
479
480
/*
481
* Early initialization of the MMU TLB code
482
*/
483
static void __early_init_mmu(int boot_cpu)
484
{
485
unsigned int mas4;
486
487
/* XXX This will have to be decided at runtime, but right
488
* now our boot and TLB miss code hard wires it. Ideally
489
* we should find out a suitable page size and patch the
490
* TLB miss code (either that or use the PACA to store
491
* the value we want)
492
*/
493
mmu_linear_psize = MMU_PAGE_1G;
494
495
/* XXX This should be decided at runtime based on supported
496
* page sizes in the TLB, but for now let's assume 16M is
497
* always there and a good fit (which it probably is)
498
*/
499
mmu_vmemmap_psize = MMU_PAGE_16M;
500
501
/* XXX This code only checks for TLB 0 capabilities and doesn't
502
* check what page size combos are supported by the HW. It
503
* also doesn't handle the case where a separate array holds
504
* the IND entries from the array loaded by the PT.
505
*/
506
if (boot_cpu) {
507
/* Look for supported page sizes */
508
setup_page_sizes();
509
510
/* Look for HW tablewalk support */
511
setup_mmu_htw();
512
}
513
514
/* Set MAS4 based on page table setting */
515
516
mas4 = 0x4 << MAS4_WIMGED_SHIFT;
517
if (book3e_htw_enabled) {
518
mas4 |= mas4 | MAS4_INDD;
519
#ifdef CONFIG_PPC_64K_PAGES
520
mas4 |= BOOK3E_PAGESZ_256M << MAS4_TSIZED_SHIFT;
521
mmu_pte_psize = MMU_PAGE_256M;
522
#else
523
mas4 |= BOOK3E_PAGESZ_1M << MAS4_TSIZED_SHIFT;
524
mmu_pte_psize = MMU_PAGE_1M;
525
#endif
526
} else {
527
#ifdef CONFIG_PPC_64K_PAGES
528
mas4 |= BOOK3E_PAGESZ_64K << MAS4_TSIZED_SHIFT;
529
#else
530
mas4 |= BOOK3E_PAGESZ_4K << MAS4_TSIZED_SHIFT;
531
#endif
532
mmu_pte_psize = mmu_virtual_psize;
533
}
534
mtspr(SPRN_MAS4, mas4);
535
536
/* Set the global containing the top of the linear mapping
537
* for use by the TLB miss code
538
*/
539
linear_map_top = memblock_end_of_DRAM();
540
541
#ifdef CONFIG_PPC_FSL_BOOK3E
542
if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) {
543
unsigned int num_cams;
544
545
/* use a quarter of the TLBCAM for bolted linear map */
546
num_cams = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) / 4;
547
linear_map_top = map_mem_in_cams(linear_map_top, num_cams);
548
549
/* limit memory so we dont have linear faults */
550
memblock_enforce_memory_limit(linear_map_top);
551
memblock_analyze();
552
}
553
#endif
554
555
/* A sync won't hurt us after mucking around with
556
* the MMU configuration
557
*/
558
mb();
559
560
memblock_set_current_limit(linear_map_top);
561
}
562
563
void __init early_init_mmu(void)
564
{
565
__early_init_mmu(1);
566
}
567
568
void __cpuinit early_init_mmu_secondary(void)
569
{
570
__early_init_mmu(0);
571
}
572
573
void setup_initial_memory_limit(phys_addr_t first_memblock_base,
574
phys_addr_t first_memblock_size)
575
{
576
/* On Embedded 64-bit, we adjust the RMA size to match
577
* the bolted TLB entry. We know for now that only 1G
578
* entries are supported though that may eventually
579
* change. We crop it to the size of the first MEMBLOCK to
580
* avoid going over total available memory just in case...
581
*/
582
ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
583
584
/* Finally limit subsequent allocations */
585
memblock_set_current_limit(first_memblock_base + ppc64_rma_size);
586
}
587
#endif /* CONFIG_PPC64 */
588
589