Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/powerpc/oprofile/cell/spu_profiler.c
10819 views
1
/*
2
* Cell Broadband Engine OProfile Support
3
*
4
* (C) Copyright IBM Corporation 2006
5
*
6
* Authors: Maynard Johnson <[email protected]>
7
* Carl Love <[email protected]>
8
*
9
* This program is free software; you can redistribute it and/or
10
* modify it under the terms of the GNU General Public License
11
* as published by the Free Software Foundation; either version
12
* 2 of the License, or (at your option) any later version.
13
*/
14
15
#include <linux/hrtimer.h>
16
#include <linux/smp.h>
17
#include <linux/slab.h>
18
#include <asm/cell-pmu.h>
19
#include <asm/time.h>
20
#include "pr_util.h"
21
22
#define SCALE_SHIFT 14
23
24
static u32 *samples;
25
26
/* spu_prof_running is a flag used to indicate if spu profiling is enabled
27
* or not. It is set by the routines start_spu_profiling_cycles() and
28
* start_spu_profiling_events(). The flag is cleared by the routines
29
* stop_spu_profiling_cycles() and stop_spu_profiling_events(). These
30
* routines are called via global_start() and global_stop() which are called in
31
* op_powerpc_start() and op_powerpc_stop(). These routines are called once
32
* per system as a result of the user starting/stopping oprofile. Hence, only
33
* one CPU per user at a time will be changing the value of spu_prof_running.
34
* In general, OProfile does not protect against multiple users trying to run
35
* OProfile at a time.
36
*/
37
int spu_prof_running;
38
static unsigned int profiling_interval;
39
40
#define NUM_SPU_BITS_TRBUF 16
41
#define SPUS_PER_TB_ENTRY 4
42
43
#define SPU_PC_MASK 0xFFFF
44
45
DEFINE_SPINLOCK(oprof_spu_smpl_arry_lck);
46
unsigned long oprof_spu_smpl_arry_lck_flags;
47
48
void set_spu_profiling_frequency(unsigned int freq_khz, unsigned int cycles_reset)
49
{
50
unsigned long ns_per_cyc;
51
52
if (!freq_khz)
53
freq_khz = ppc_proc_freq/1000;
54
55
/* To calculate a timeout in nanoseconds, the basic
56
* formula is ns = cycles_reset * (NSEC_PER_SEC / cpu frequency).
57
* To avoid floating point math, we use the scale math
58
* technique as described in linux/jiffies.h. We use
59
* a scale factor of SCALE_SHIFT, which provides 4 decimal places
60
* of precision. This is close enough for the purpose at hand.
61
*
62
* The value of the timeout should be small enough that the hw
63
* trace buffer will not get more than about 1/3 full for the
64
* maximum user specified (the LFSR value) hw sampling frequency.
65
* This is to ensure the trace buffer will never fill even if the
66
* kernel thread scheduling varies under a heavy system load.
67
*/
68
69
ns_per_cyc = (USEC_PER_SEC << SCALE_SHIFT)/freq_khz;
70
profiling_interval = (ns_per_cyc * cycles_reset) >> SCALE_SHIFT;
71
72
}
73
74
/*
75
* Extract SPU PC from trace buffer entry
76
*/
77
static void spu_pc_extract(int cpu, int entry)
78
{
79
/* the trace buffer is 128 bits */
80
u64 trace_buffer[2];
81
u64 spu_mask;
82
int spu;
83
84
spu_mask = SPU_PC_MASK;
85
86
/* Each SPU PC is 16 bits; hence, four spus in each of
87
* the two 64-bit buffer entries that make up the
88
* 128-bit trace_buffer entry. Process two 64-bit values
89
* simultaneously.
90
* trace[0] SPU PC contents are: 0 1 2 3
91
* trace[1] SPU PC contents are: 4 5 6 7
92
*/
93
94
cbe_read_trace_buffer(cpu, trace_buffer);
95
96
for (spu = SPUS_PER_TB_ENTRY-1; spu >= 0; spu--) {
97
/* spu PC trace entry is upper 16 bits of the
98
* 18 bit SPU program counter
99
*/
100
samples[spu * TRACE_ARRAY_SIZE + entry]
101
= (spu_mask & trace_buffer[0]) << 2;
102
samples[(spu + SPUS_PER_TB_ENTRY) * TRACE_ARRAY_SIZE + entry]
103
= (spu_mask & trace_buffer[1]) << 2;
104
105
trace_buffer[0] = trace_buffer[0] >> NUM_SPU_BITS_TRBUF;
106
trace_buffer[1] = trace_buffer[1] >> NUM_SPU_BITS_TRBUF;
107
}
108
}
109
110
static int cell_spu_pc_collection(int cpu)
111
{
112
u32 trace_addr;
113
int entry;
114
115
/* process the collected SPU PC for the node */
116
117
entry = 0;
118
119
trace_addr = cbe_read_pm(cpu, trace_address);
120
while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) {
121
/* there is data in the trace buffer to process */
122
spu_pc_extract(cpu, entry);
123
124
entry++;
125
126
if (entry >= TRACE_ARRAY_SIZE)
127
/* spu_samples is full */
128
break;
129
130
trace_addr = cbe_read_pm(cpu, trace_address);
131
}
132
133
return entry;
134
}
135
136
137
static enum hrtimer_restart profile_spus(struct hrtimer *timer)
138
{
139
ktime_t kt;
140
int cpu, node, k, num_samples, spu_num;
141
142
if (!spu_prof_running)
143
goto stop;
144
145
for_each_online_cpu(cpu) {
146
if (cbe_get_hw_thread_id(cpu))
147
continue;
148
149
node = cbe_cpu_to_node(cpu);
150
151
/* There should only be one kernel thread at a time processing
152
* the samples. In the very unlikely case that the processing
153
* is taking a very long time and multiple kernel threads are
154
* started to process the samples. Make sure only one kernel
155
* thread is working on the samples array at a time. The
156
* sample array must be loaded and then processed for a given
157
* cpu. The sample array is not per cpu.
158
*/
159
spin_lock_irqsave(&oprof_spu_smpl_arry_lck,
160
oprof_spu_smpl_arry_lck_flags);
161
num_samples = cell_spu_pc_collection(cpu);
162
163
if (num_samples == 0) {
164
spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
165
oprof_spu_smpl_arry_lck_flags);
166
continue;
167
}
168
169
for (k = 0; k < SPUS_PER_NODE; k++) {
170
spu_num = k + (node * SPUS_PER_NODE);
171
spu_sync_buffer(spu_num,
172
samples + (k * TRACE_ARRAY_SIZE),
173
num_samples);
174
}
175
176
spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
177
oprof_spu_smpl_arry_lck_flags);
178
179
}
180
smp_wmb(); /* insure spu event buffer updates are written */
181
/* don't want events intermingled... */
182
183
kt = ktime_set(0, profiling_interval);
184
if (!spu_prof_running)
185
goto stop;
186
hrtimer_forward(timer, timer->base->get_time(), kt);
187
return HRTIMER_RESTART;
188
189
stop:
190
printk(KERN_INFO "SPU_PROF: spu-prof timer ending\n");
191
return HRTIMER_NORESTART;
192
}
193
194
static struct hrtimer timer;
195
/*
196
* Entry point for SPU cycle profiling.
197
* NOTE: SPU profiling is done system-wide, not per-CPU.
198
*
199
* cycles_reset is the count value specified by the user when
200
* setting up OProfile to count SPU_CYCLES.
201
*/
202
int start_spu_profiling_cycles(unsigned int cycles_reset)
203
{
204
ktime_t kt;
205
206
pr_debug("timer resolution: %lu\n", TICK_NSEC);
207
kt = ktime_set(0, profiling_interval);
208
hrtimer_init(&timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
209
hrtimer_set_expires(&timer, kt);
210
timer.function = profile_spus;
211
212
/* Allocate arrays for collecting SPU PC samples */
213
samples = kzalloc(SPUS_PER_NODE *
214
TRACE_ARRAY_SIZE * sizeof(u32), GFP_KERNEL);
215
216
if (!samples)
217
return -ENOMEM;
218
219
spu_prof_running = 1;
220
hrtimer_start(&timer, kt, HRTIMER_MODE_REL);
221
schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE);
222
223
return 0;
224
}
225
226
/*
227
* Entry point for SPU event profiling.
228
* NOTE: SPU profiling is done system-wide, not per-CPU.
229
*
230
* cycles_reset is the count value specified by the user when
231
* setting up OProfile to count SPU_CYCLES.
232
*/
233
void start_spu_profiling_events(void)
234
{
235
spu_prof_running = 1;
236
schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE);
237
238
return;
239
}
240
241
void stop_spu_profiling_cycles(void)
242
{
243
spu_prof_running = 0;
244
hrtimer_cancel(&timer);
245
kfree(samples);
246
pr_debug("SPU_PROF: stop_spu_profiling_cycles issued\n");
247
}
248
249
void stop_spu_profiling_events(void)
250
{
251
spu_prof_running = 0;
252
}
253
254