Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/powerpc/oprofile/cell/spu_task_sync.c
10818 views
1
/*
2
* Cell Broadband Engine OProfile Support
3
*
4
* (C) Copyright IBM Corporation 2006
5
*
6
* Author: Maynard Johnson <[email protected]>
7
*
8
* This program is free software; you can redistribute it and/or
9
* modify it under the terms of the GNU General Public License
10
* as published by the Free Software Foundation; either version
11
* 2 of the License, or (at your option) any later version.
12
*/
13
14
/* The purpose of this file is to handle SPU event task switching
15
* and to record SPU context information into the OProfile
16
* event buffer.
17
*
18
* Additionally, the spu_sync_buffer function is provided as a helper
19
* for recoding actual SPU program counter samples to the event buffer.
20
*/
21
#include <linux/dcookies.h>
22
#include <linux/kref.h>
23
#include <linux/mm.h>
24
#include <linux/fs.h>
25
#include <linux/module.h>
26
#include <linux/notifier.h>
27
#include <linux/numa.h>
28
#include <linux/oprofile.h>
29
#include <linux/slab.h>
30
#include <linux/spinlock.h>
31
#include "pr_util.h"
32
33
#define RELEASE_ALL 9999
34
35
static DEFINE_SPINLOCK(buffer_lock);
36
static DEFINE_SPINLOCK(cache_lock);
37
static int num_spu_nodes;
38
int spu_prof_num_nodes;
39
40
struct spu_buffer spu_buff[MAX_NUMNODES * SPUS_PER_NODE];
41
struct delayed_work spu_work;
42
static unsigned max_spu_buff;
43
44
static void spu_buff_add(unsigned long int value, int spu)
45
{
46
/* spu buff is a circular buffer. Add entries to the
47
* head. Head is the index to store the next value.
48
* The buffer is full when there is one available entry
49
* in the queue, i.e. head and tail can't be equal.
50
* That way we can tell the difference between the
51
* buffer being full versus empty.
52
*
53
* ASSUPTION: the buffer_lock is held when this function
54
* is called to lock the buffer, head and tail.
55
*/
56
int full = 1;
57
58
if (spu_buff[spu].head >= spu_buff[spu].tail) {
59
if ((spu_buff[spu].head - spu_buff[spu].tail)
60
< (max_spu_buff - 1))
61
full = 0;
62
63
} else if (spu_buff[spu].tail > spu_buff[spu].head) {
64
if ((spu_buff[spu].tail - spu_buff[spu].head)
65
> 1)
66
full = 0;
67
}
68
69
if (!full) {
70
spu_buff[spu].buff[spu_buff[spu].head] = value;
71
spu_buff[spu].head++;
72
73
if (spu_buff[spu].head >= max_spu_buff)
74
spu_buff[spu].head = 0;
75
} else {
76
/* From the user's perspective make the SPU buffer
77
* size management/overflow look like we are using
78
* per cpu buffers. The user uses the same
79
* per cpu parameter to adjust the SPU buffer size.
80
* Increment the sample_lost_overflow to inform
81
* the user the buffer size needs to be increased.
82
*/
83
oprofile_cpu_buffer_inc_smpl_lost();
84
}
85
}
86
87
/* This function copies the per SPU buffers to the
88
* OProfile kernel buffer.
89
*/
90
void sync_spu_buff(void)
91
{
92
int spu;
93
unsigned long flags;
94
int curr_head;
95
96
for (spu = 0; spu < num_spu_nodes; spu++) {
97
/* In case there was an issue and the buffer didn't
98
* get created skip it.
99
*/
100
if (spu_buff[spu].buff == NULL)
101
continue;
102
103
/* Hold the lock to make sure the head/tail
104
* doesn't change while spu_buff_add() is
105
* deciding if the buffer is full or not.
106
* Being a little paranoid.
107
*/
108
spin_lock_irqsave(&buffer_lock, flags);
109
curr_head = spu_buff[spu].head;
110
spin_unlock_irqrestore(&buffer_lock, flags);
111
112
/* Transfer the current contents to the kernel buffer.
113
* data can still be added to the head of the buffer.
114
*/
115
oprofile_put_buff(spu_buff[spu].buff,
116
spu_buff[spu].tail,
117
curr_head, max_spu_buff);
118
119
spin_lock_irqsave(&buffer_lock, flags);
120
spu_buff[spu].tail = curr_head;
121
spin_unlock_irqrestore(&buffer_lock, flags);
122
}
123
124
}
125
126
static void wq_sync_spu_buff(struct work_struct *work)
127
{
128
/* move data from spu buffers to kernel buffer */
129
sync_spu_buff();
130
131
/* only reschedule if profiling is not done */
132
if (spu_prof_running)
133
schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE);
134
}
135
136
/* Container for caching information about an active SPU task. */
137
struct cached_info {
138
struct vma_to_fileoffset_map *map;
139
struct spu *the_spu; /* needed to access pointer to local_store */
140
struct kref cache_ref;
141
};
142
143
static struct cached_info *spu_info[MAX_NUMNODES * 8];
144
145
static void destroy_cached_info(struct kref *kref)
146
{
147
struct cached_info *info;
148
149
info = container_of(kref, struct cached_info, cache_ref);
150
vma_map_free(info->map);
151
kfree(info);
152
module_put(THIS_MODULE);
153
}
154
155
/* Return the cached_info for the passed SPU number.
156
* ATTENTION: Callers are responsible for obtaining the
157
* cache_lock if needed prior to invoking this function.
158
*/
159
static struct cached_info *get_cached_info(struct spu *the_spu, int spu_num)
160
{
161
struct kref *ref;
162
struct cached_info *ret_info;
163
164
if (spu_num >= num_spu_nodes) {
165
printk(KERN_ERR "SPU_PROF: "
166
"%s, line %d: Invalid index %d into spu info cache\n",
167
__func__, __LINE__, spu_num);
168
ret_info = NULL;
169
goto out;
170
}
171
if (!spu_info[spu_num] && the_spu) {
172
ref = spu_get_profile_private_kref(the_spu->ctx);
173
if (ref) {
174
spu_info[spu_num] = container_of(ref, struct cached_info, cache_ref);
175
kref_get(&spu_info[spu_num]->cache_ref);
176
}
177
}
178
179
ret_info = spu_info[spu_num];
180
out:
181
return ret_info;
182
}
183
184
185
/* Looks for cached info for the passed spu. If not found, the
186
* cached info is created for the passed spu.
187
* Returns 0 for success; otherwise, -1 for error.
188
*/
189
static int
190
prepare_cached_spu_info(struct spu *spu, unsigned long objectId)
191
{
192
unsigned long flags;
193
struct vma_to_fileoffset_map *new_map;
194
int retval = 0;
195
struct cached_info *info;
196
197
/* We won't bother getting cache_lock here since
198
* don't do anything with the cached_info that's returned.
199
*/
200
info = get_cached_info(spu, spu->number);
201
202
if (info) {
203
pr_debug("Found cached SPU info.\n");
204
goto out;
205
}
206
207
/* Create cached_info and set spu_info[spu->number] to point to it.
208
* spu->number is a system-wide value, not a per-node value.
209
*/
210
info = kzalloc(sizeof(struct cached_info), GFP_KERNEL);
211
if (!info) {
212
printk(KERN_ERR "SPU_PROF: "
213
"%s, line %d: create vma_map failed\n",
214
__func__, __LINE__);
215
retval = -ENOMEM;
216
goto err_alloc;
217
}
218
new_map = create_vma_map(spu, objectId);
219
if (!new_map) {
220
printk(KERN_ERR "SPU_PROF: "
221
"%s, line %d: create vma_map failed\n",
222
__func__, __LINE__);
223
retval = -ENOMEM;
224
goto err_alloc;
225
}
226
227
pr_debug("Created vma_map\n");
228
info->map = new_map;
229
info->the_spu = spu;
230
kref_init(&info->cache_ref);
231
spin_lock_irqsave(&cache_lock, flags);
232
spu_info[spu->number] = info;
233
/* Increment count before passing off ref to SPUFS. */
234
kref_get(&info->cache_ref);
235
236
/* We increment the module refcount here since SPUFS is
237
* responsible for the final destruction of the cached_info,
238
* and it must be able to access the destroy_cached_info()
239
* function defined in the OProfile module. We decrement
240
* the module refcount in destroy_cached_info.
241
*/
242
try_module_get(THIS_MODULE);
243
spu_set_profile_private_kref(spu->ctx, &info->cache_ref,
244
destroy_cached_info);
245
spin_unlock_irqrestore(&cache_lock, flags);
246
goto out;
247
248
err_alloc:
249
kfree(info);
250
out:
251
return retval;
252
}
253
254
/*
255
* NOTE: The caller is responsible for locking the
256
* cache_lock prior to calling this function.
257
*/
258
static int release_cached_info(int spu_index)
259
{
260
int index, end;
261
262
if (spu_index == RELEASE_ALL) {
263
end = num_spu_nodes;
264
index = 0;
265
} else {
266
if (spu_index >= num_spu_nodes) {
267
printk(KERN_ERR "SPU_PROF: "
268
"%s, line %d: "
269
"Invalid index %d into spu info cache\n",
270
__func__, __LINE__, spu_index);
271
goto out;
272
}
273
end = spu_index + 1;
274
index = spu_index;
275
}
276
for (; index < end; index++) {
277
if (spu_info[index]) {
278
kref_put(&spu_info[index]->cache_ref,
279
destroy_cached_info);
280
spu_info[index] = NULL;
281
}
282
}
283
284
out:
285
return 0;
286
}
287
288
/* The source code for fast_get_dcookie was "borrowed"
289
* from drivers/oprofile/buffer_sync.c.
290
*/
291
292
/* Optimisation. We can manage without taking the dcookie sem
293
* because we cannot reach this code without at least one
294
* dcookie user still being registered (namely, the reader
295
* of the event buffer).
296
*/
297
static inline unsigned long fast_get_dcookie(struct path *path)
298
{
299
unsigned long cookie;
300
301
if (path->dentry->d_flags & DCACHE_COOKIE)
302
return (unsigned long)path->dentry;
303
get_dcookie(path, &cookie);
304
return cookie;
305
}
306
307
/* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
308
* which corresponds loosely to "application name". Also, determine
309
* the offset for the SPU ELF object. If computed offset is
310
* non-zero, it implies an embedded SPU object; otherwise, it's a
311
* separate SPU binary, in which case we retrieve it's dcookie.
312
* For the embedded case, we must determine if SPU ELF is embedded
313
* in the executable application or another file (i.e., shared lib).
314
* If embedded in a shared lib, we must get the dcookie and return
315
* that to the caller.
316
*/
317
static unsigned long
318
get_exec_dcookie_and_offset(struct spu *spu, unsigned int *offsetp,
319
unsigned long *spu_bin_dcookie,
320
unsigned long spu_ref)
321
{
322
unsigned long app_cookie = 0;
323
unsigned int my_offset = 0;
324
struct file *app = NULL;
325
struct vm_area_struct *vma;
326
struct mm_struct *mm = spu->mm;
327
328
if (!mm)
329
goto out;
330
331
down_read(&mm->mmap_sem);
332
333
for (vma = mm->mmap; vma; vma = vma->vm_next) {
334
if (!vma->vm_file)
335
continue;
336
if (!(vma->vm_flags & VM_EXECUTABLE))
337
continue;
338
app_cookie = fast_get_dcookie(&vma->vm_file->f_path);
339
pr_debug("got dcookie for %s\n",
340
vma->vm_file->f_dentry->d_name.name);
341
app = vma->vm_file;
342
break;
343
}
344
345
for (vma = mm->mmap; vma; vma = vma->vm_next) {
346
if (vma->vm_start > spu_ref || vma->vm_end <= spu_ref)
347
continue;
348
my_offset = spu_ref - vma->vm_start;
349
if (!vma->vm_file)
350
goto fail_no_image_cookie;
351
352
pr_debug("Found spu ELF at %X(object-id:%lx) for file %s\n",
353
my_offset, spu_ref,
354
vma->vm_file->f_dentry->d_name.name);
355
*offsetp = my_offset;
356
break;
357
}
358
359
*spu_bin_dcookie = fast_get_dcookie(&vma->vm_file->f_path);
360
pr_debug("got dcookie for %s\n", vma->vm_file->f_dentry->d_name.name);
361
362
up_read(&mm->mmap_sem);
363
364
out:
365
return app_cookie;
366
367
fail_no_image_cookie:
368
up_read(&mm->mmap_sem);
369
370
printk(KERN_ERR "SPU_PROF: "
371
"%s, line %d: Cannot find dcookie for SPU binary\n",
372
__func__, __LINE__);
373
goto out;
374
}
375
376
377
378
/* This function finds or creates cached context information for the
379
* passed SPU and records SPU context information into the OProfile
380
* event buffer.
381
*/
382
static int process_context_switch(struct spu *spu, unsigned long objectId)
383
{
384
unsigned long flags;
385
int retval;
386
unsigned int offset = 0;
387
unsigned long spu_cookie = 0, app_dcookie;
388
389
retval = prepare_cached_spu_info(spu, objectId);
390
if (retval)
391
goto out;
392
393
/* Get dcookie first because a mutex_lock is taken in that
394
* code path, so interrupts must not be disabled.
395
*/
396
app_dcookie = get_exec_dcookie_and_offset(spu, &offset, &spu_cookie, objectId);
397
if (!app_dcookie || !spu_cookie) {
398
retval = -ENOENT;
399
goto out;
400
}
401
402
/* Record context info in event buffer */
403
spin_lock_irqsave(&buffer_lock, flags);
404
spu_buff_add(ESCAPE_CODE, spu->number);
405
spu_buff_add(SPU_CTX_SWITCH_CODE, spu->number);
406
spu_buff_add(spu->number, spu->number);
407
spu_buff_add(spu->pid, spu->number);
408
spu_buff_add(spu->tgid, spu->number);
409
spu_buff_add(app_dcookie, spu->number);
410
spu_buff_add(spu_cookie, spu->number);
411
spu_buff_add(offset, spu->number);
412
413
/* Set flag to indicate SPU PC data can now be written out. If
414
* the SPU program counter data is seen before an SPU context
415
* record is seen, the postprocessing will fail.
416
*/
417
spu_buff[spu->number].ctx_sw_seen = 1;
418
419
spin_unlock_irqrestore(&buffer_lock, flags);
420
smp_wmb(); /* insure spu event buffer updates are written */
421
/* don't want entries intermingled... */
422
out:
423
return retval;
424
}
425
426
/*
427
* This function is invoked on either a bind_context or unbind_context.
428
* If called for an unbind_context, the val arg is 0; otherwise,
429
* it is the object-id value for the spu context.
430
* The data arg is of type 'struct spu *'.
431
*/
432
static int spu_active_notify(struct notifier_block *self, unsigned long val,
433
void *data)
434
{
435
int retval;
436
unsigned long flags;
437
struct spu *the_spu = data;
438
439
pr_debug("SPU event notification arrived\n");
440
if (!val) {
441
spin_lock_irqsave(&cache_lock, flags);
442
retval = release_cached_info(the_spu->number);
443
spin_unlock_irqrestore(&cache_lock, flags);
444
} else {
445
retval = process_context_switch(the_spu, val);
446
}
447
return retval;
448
}
449
450
static struct notifier_block spu_active = {
451
.notifier_call = spu_active_notify,
452
};
453
454
static int number_of_online_nodes(void)
455
{
456
u32 cpu; u32 tmp;
457
int nodes = 0;
458
for_each_online_cpu(cpu) {
459
tmp = cbe_cpu_to_node(cpu) + 1;
460
if (tmp > nodes)
461
nodes++;
462
}
463
return nodes;
464
}
465
466
static int oprofile_spu_buff_create(void)
467
{
468
int spu;
469
470
max_spu_buff = oprofile_get_cpu_buffer_size();
471
472
for (spu = 0; spu < num_spu_nodes; spu++) {
473
/* create circular buffers to store the data in.
474
* use locks to manage accessing the buffers
475
*/
476
spu_buff[spu].head = 0;
477
spu_buff[spu].tail = 0;
478
479
/*
480
* Create a buffer for each SPU. Can't reliably
481
* create a single buffer for all spus due to not
482
* enough contiguous kernel memory.
483
*/
484
485
spu_buff[spu].buff = kzalloc((max_spu_buff
486
* sizeof(unsigned long)),
487
GFP_KERNEL);
488
489
if (!spu_buff[spu].buff) {
490
printk(KERN_ERR "SPU_PROF: "
491
"%s, line %d: oprofile_spu_buff_create "
492
"failed to allocate spu buffer %d.\n",
493
__func__, __LINE__, spu);
494
495
/* release the spu buffers that have been allocated */
496
while (spu >= 0) {
497
kfree(spu_buff[spu].buff);
498
spu_buff[spu].buff = 0;
499
spu--;
500
}
501
return -ENOMEM;
502
}
503
}
504
return 0;
505
}
506
507
/* The main purpose of this function is to synchronize
508
* OProfile with SPUFS by registering to be notified of
509
* SPU task switches.
510
*
511
* NOTE: When profiling SPUs, we must ensure that only
512
* spu_sync_start is invoked and not the generic sync_start
513
* in drivers/oprofile/oprof.c. A return value of
514
* SKIP_GENERIC_SYNC or SYNC_START_ERROR will
515
* accomplish this.
516
*/
517
int spu_sync_start(void)
518
{
519
int spu;
520
int ret = SKIP_GENERIC_SYNC;
521
int register_ret;
522
unsigned long flags = 0;
523
524
spu_prof_num_nodes = number_of_online_nodes();
525
num_spu_nodes = spu_prof_num_nodes * 8;
526
INIT_DELAYED_WORK(&spu_work, wq_sync_spu_buff);
527
528
/* create buffer for storing the SPU data to put in
529
* the kernel buffer.
530
*/
531
ret = oprofile_spu_buff_create();
532
if (ret)
533
goto out;
534
535
spin_lock_irqsave(&buffer_lock, flags);
536
for (spu = 0; spu < num_spu_nodes; spu++) {
537
spu_buff_add(ESCAPE_CODE, spu);
538
spu_buff_add(SPU_PROFILING_CODE, spu);
539
spu_buff_add(num_spu_nodes, spu);
540
}
541
spin_unlock_irqrestore(&buffer_lock, flags);
542
543
for (spu = 0; spu < num_spu_nodes; spu++) {
544
spu_buff[spu].ctx_sw_seen = 0;
545
spu_buff[spu].last_guard_val = 0;
546
}
547
548
/* Register for SPU events */
549
register_ret = spu_switch_event_register(&spu_active);
550
if (register_ret) {
551
ret = SYNC_START_ERROR;
552
goto out;
553
}
554
555
pr_debug("spu_sync_start -- running.\n");
556
out:
557
return ret;
558
}
559
560
/* Record SPU program counter samples to the oprofile event buffer. */
561
void spu_sync_buffer(int spu_num, unsigned int *samples,
562
int num_samples)
563
{
564
unsigned long long file_offset;
565
unsigned long flags;
566
int i;
567
struct vma_to_fileoffset_map *map;
568
struct spu *the_spu;
569
unsigned long long spu_num_ll = spu_num;
570
unsigned long long spu_num_shifted = spu_num_ll << 32;
571
struct cached_info *c_info;
572
573
/* We need to obtain the cache_lock here because it's
574
* possible that after getting the cached_info, the SPU job
575
* corresponding to this cached_info may end, thus resulting
576
* in the destruction of the cached_info.
577
*/
578
spin_lock_irqsave(&cache_lock, flags);
579
c_info = get_cached_info(NULL, spu_num);
580
if (!c_info) {
581
/* This legitimately happens when the SPU task ends before all
582
* samples are recorded.
583
* No big deal -- so we just drop a few samples.
584
*/
585
pr_debug("SPU_PROF: No cached SPU contex "
586
"for SPU #%d. Dropping samples.\n", spu_num);
587
goto out;
588
}
589
590
map = c_info->map;
591
the_spu = c_info->the_spu;
592
spin_lock(&buffer_lock);
593
for (i = 0; i < num_samples; i++) {
594
unsigned int sample = *(samples+i);
595
int grd_val = 0;
596
file_offset = 0;
597
if (sample == 0)
598
continue;
599
file_offset = vma_map_lookup( map, sample, the_spu, &grd_val);
600
601
/* If overlays are used by this SPU application, the guard
602
* value is non-zero, indicating which overlay section is in
603
* use. We need to discard samples taken during the time
604
* period which an overlay occurs (i.e., guard value changes).
605
*/
606
if (grd_val && grd_val != spu_buff[spu_num].last_guard_val) {
607
spu_buff[spu_num].last_guard_val = grd_val;
608
/* Drop the rest of the samples. */
609
break;
610
}
611
612
/* We must ensure that the SPU context switch has been written
613
* out before samples for the SPU. Otherwise, the SPU context
614
* information is not available and the postprocessing of the
615
* SPU PC will fail with no available anonymous map information.
616
*/
617
if (spu_buff[spu_num].ctx_sw_seen)
618
spu_buff_add((file_offset | spu_num_shifted),
619
spu_num);
620
}
621
spin_unlock(&buffer_lock);
622
out:
623
spin_unlock_irqrestore(&cache_lock, flags);
624
}
625
626
627
int spu_sync_stop(void)
628
{
629
unsigned long flags = 0;
630
int ret;
631
int k;
632
633
ret = spu_switch_event_unregister(&spu_active);
634
635
if (ret)
636
printk(KERN_ERR "SPU_PROF: "
637
"%s, line %d: spu_switch_event_unregister " \
638
"returned %d\n",
639
__func__, __LINE__, ret);
640
641
/* flush any remaining data in the per SPU buffers */
642
sync_spu_buff();
643
644
spin_lock_irqsave(&cache_lock, flags);
645
ret = release_cached_info(RELEASE_ALL);
646
spin_unlock_irqrestore(&cache_lock, flags);
647
648
/* remove scheduled work queue item rather then waiting
649
* for every queued entry to execute. Then flush pending
650
* system wide buffer to event buffer.
651
*/
652
cancel_delayed_work(&spu_work);
653
654
for (k = 0; k < num_spu_nodes; k++) {
655
spu_buff[k].ctx_sw_seen = 0;
656
657
/*
658
* spu_sys_buff will be null if there was a problem
659
* allocating the buffer. Only delete if it exists.
660
*/
661
kfree(spu_buff[k].buff);
662
spu_buff[k].buff = 0;
663
}
664
pr_debug("spu_sync_stop -- done.\n");
665
return ret;
666
}
667
668
669