Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/powerpc/oprofile/op_model_cell.c
10817 views
1
/*
2
* Cell Broadband Engine OProfile Support
3
*
4
* (C) Copyright IBM Corporation 2006
5
*
6
* Author: David Erb ([email protected])
7
* Modifications:
8
* Carl Love <[email protected]>
9
* Maynard Johnson <[email protected]>
10
*
11
* This program is free software; you can redistribute it and/or
12
* modify it under the terms of the GNU General Public License
13
* as published by the Free Software Foundation; either version
14
* 2 of the License, or (at your option) any later version.
15
*/
16
17
#include <linux/cpufreq.h>
18
#include <linux/delay.h>
19
#include <linux/init.h>
20
#include <linux/jiffies.h>
21
#include <linux/kthread.h>
22
#include <linux/oprofile.h>
23
#include <linux/percpu.h>
24
#include <linux/smp.h>
25
#include <linux/spinlock.h>
26
#include <linux/timer.h>
27
#include <asm/cell-pmu.h>
28
#include <asm/cputable.h>
29
#include <asm/firmware.h>
30
#include <asm/io.h>
31
#include <asm/oprofile_impl.h>
32
#include <asm/processor.h>
33
#include <asm/prom.h>
34
#include <asm/ptrace.h>
35
#include <asm/reg.h>
36
#include <asm/rtas.h>
37
#include <asm/system.h>
38
#include <asm/cell-regs.h>
39
40
#include "../platforms/cell/interrupt.h"
41
#include "cell/pr_util.h"
42
43
#define PPU_PROFILING 0
44
#define SPU_PROFILING_CYCLES 1
45
#define SPU_PROFILING_EVENTS 2
46
47
#define SPU_EVENT_NUM_START 4100
48
#define SPU_EVENT_NUM_STOP 4399
49
#define SPU_PROFILE_EVENT_ADDR 4363 /* spu, address trace, decimal */
50
#define SPU_PROFILE_EVENT_ADDR_MASK_A 0x146 /* sub unit set to zero */
51
#define SPU_PROFILE_EVENT_ADDR_MASK_B 0x186 /* sub unit set to zero */
52
53
#define NUM_SPUS_PER_NODE 8
54
#define SPU_CYCLES_EVENT_NUM 2 /* event number for SPU_CYCLES */
55
56
#define PPU_CYCLES_EVENT_NUM 1 /* event number for CYCLES */
57
#define PPU_CYCLES_GRP_NUM 1 /* special group number for identifying
58
* PPU_CYCLES event
59
*/
60
#define CBE_COUNT_ALL_CYCLES 0x42800000 /* PPU cycle event specifier */
61
62
#define NUM_THREADS 2 /* number of physical threads in
63
* physical processor
64
*/
65
#define NUM_DEBUG_BUS_WORDS 4
66
#define NUM_INPUT_BUS_WORDS 2
67
68
#define MAX_SPU_COUNT 0xFFFFFF /* maximum 24 bit LFSR value */
69
70
/* Minimum HW interval timer setting to send value to trace buffer is 10 cycle.
71
* To configure counter to send value every N cycles set counter to
72
* 2^32 - 1 - N.
73
*/
74
#define NUM_INTERVAL_CYC 0xFFFFFFFF - 10
75
76
/*
77
* spu_cycle_reset is the number of cycles between samples.
78
* This variable is used for SPU profiling and should ONLY be set
79
* at the beginning of cell_reg_setup; otherwise, it's read-only.
80
*/
81
static unsigned int spu_cycle_reset;
82
static unsigned int profiling_mode;
83
static int spu_evnt_phys_spu_indx;
84
85
struct pmc_cntrl_data {
86
unsigned long vcntr;
87
unsigned long evnts;
88
unsigned long masks;
89
unsigned long enabled;
90
};
91
92
/*
93
* ibm,cbe-perftools rtas parameters
94
*/
95
struct pm_signal {
96
u16 cpu; /* Processor to modify */
97
u16 sub_unit; /* hw subunit this applies to (if applicable)*/
98
short int signal_group; /* Signal Group to Enable/Disable */
99
u8 bus_word; /* Enable/Disable on this Trace/Trigger/Event
100
* Bus Word(s) (bitmask)
101
*/
102
u8 bit; /* Trigger/Event bit (if applicable) */
103
};
104
105
/*
106
* rtas call arguments
107
*/
108
enum {
109
SUBFUNC_RESET = 1,
110
SUBFUNC_ACTIVATE = 2,
111
SUBFUNC_DEACTIVATE = 3,
112
113
PASSTHRU_IGNORE = 0,
114
PASSTHRU_ENABLE = 1,
115
PASSTHRU_DISABLE = 2,
116
};
117
118
struct pm_cntrl {
119
u16 enable;
120
u16 stop_at_max;
121
u16 trace_mode;
122
u16 freeze;
123
u16 count_mode;
124
u16 spu_addr_trace;
125
u8 trace_buf_ovflw;
126
};
127
128
static struct {
129
u32 group_control;
130
u32 debug_bus_control;
131
struct pm_cntrl pm_cntrl;
132
u32 pm07_cntrl[NR_PHYS_CTRS];
133
} pm_regs;
134
135
#define GET_SUB_UNIT(x) ((x & 0x0000f000) >> 12)
136
#define GET_BUS_WORD(x) ((x & 0x000000f0) >> 4)
137
#define GET_BUS_TYPE(x) ((x & 0x00000300) >> 8)
138
#define GET_POLARITY(x) ((x & 0x00000002) >> 1)
139
#define GET_COUNT_CYCLES(x) (x & 0x00000001)
140
#define GET_INPUT_CONTROL(x) ((x & 0x00000004) >> 2)
141
142
static DEFINE_PER_CPU(unsigned long[NR_PHYS_CTRS], pmc_values);
143
static unsigned long spu_pm_cnt[MAX_NUMNODES * NUM_SPUS_PER_NODE];
144
static struct pmc_cntrl_data pmc_cntrl[NUM_THREADS][NR_PHYS_CTRS];
145
146
/*
147
* The CELL profiling code makes rtas calls to setup the debug bus to
148
* route the performance signals. Additionally, SPU profiling requires
149
* a second rtas call to setup the hardware to capture the SPU PCs.
150
* The EIO error value is returned if the token lookups or the rtas
151
* call fail. The EIO error number is the best choice of the existing
152
* error numbers. The probability of rtas related error is very low. But
153
* by returning EIO and printing additional information to dmsg the user
154
* will know that OProfile did not start and dmesg will tell them why.
155
* OProfile does not support returning errors on Stop. Not a huge issue
156
* since failure to reset the debug bus or stop the SPU PC collection is
157
* not a fatel issue. Chances are if the Stop failed, Start doesn't work
158
* either.
159
*/
160
161
/*
162
* Interpetation of hdw_thread:
163
* 0 - even virtual cpus 0, 2, 4,...
164
* 1 - odd virtual cpus 1, 3, 5, ...
165
*
166
* FIXME: this is strictly wrong, we need to clean this up in a number
167
* of places. It works for now. -arnd
168
*/
169
static u32 hdw_thread;
170
171
static u32 virt_cntr_inter_mask;
172
static struct timer_list timer_virt_cntr;
173
static struct timer_list timer_spu_event_swap;
174
175
/*
176
* pm_signal needs to be global since it is initialized in
177
* cell_reg_setup at the time when the necessary information
178
* is available.
179
*/
180
static struct pm_signal pm_signal[NR_PHYS_CTRS];
181
static int pm_rtas_token; /* token for debug bus setup call */
182
static int spu_rtas_token; /* token for SPU cycle profiling */
183
184
static u32 reset_value[NR_PHYS_CTRS];
185
static int num_counters;
186
static int oprofile_running;
187
static DEFINE_SPINLOCK(cntr_lock);
188
189
static u32 ctr_enabled;
190
191
static unsigned char input_bus[NUM_INPUT_BUS_WORDS];
192
193
/*
194
* Firmware interface functions
195
*/
196
static int
197
rtas_ibm_cbe_perftools(int subfunc, int passthru,
198
void *address, unsigned long length)
199
{
200
u64 paddr = __pa(address);
201
202
return rtas_call(pm_rtas_token, 5, 1, NULL, subfunc,
203
passthru, paddr >> 32, paddr & 0xffffffff, length);
204
}
205
206
static void pm_rtas_reset_signals(u32 node)
207
{
208
int ret;
209
struct pm_signal pm_signal_local;
210
211
/*
212
* The debug bus is being set to the passthru disable state.
213
* However, the FW still expects atleast one legal signal routing
214
* entry or it will return an error on the arguments. If we don't
215
* supply a valid entry, we must ignore all return values. Ignoring
216
* all return values means we might miss an error we should be
217
* concerned about.
218
*/
219
220
/* fw expects physical cpu #. */
221
pm_signal_local.cpu = node;
222
pm_signal_local.signal_group = 21;
223
pm_signal_local.bus_word = 1;
224
pm_signal_local.sub_unit = 0;
225
pm_signal_local.bit = 0;
226
227
ret = rtas_ibm_cbe_perftools(SUBFUNC_RESET, PASSTHRU_DISABLE,
228
&pm_signal_local,
229
sizeof(struct pm_signal));
230
231
if (unlikely(ret))
232
/*
233
* Not a fatal error. For Oprofile stop, the oprofile
234
* functions do not support returning an error for
235
* failure to stop OProfile.
236
*/
237
printk(KERN_WARNING "%s: rtas returned: %d\n",
238
__func__, ret);
239
}
240
241
static int pm_rtas_activate_signals(u32 node, u32 count)
242
{
243
int ret;
244
int i, j;
245
struct pm_signal pm_signal_local[NR_PHYS_CTRS];
246
247
/*
248
* There is no debug setup required for the cycles event.
249
* Note that only events in the same group can be used.
250
* Otherwise, there will be conflicts in correctly routing
251
* the signals on the debug bus. It is the responsibility
252
* of the OProfile user tool to check the events are in
253
* the same group.
254
*/
255
i = 0;
256
for (j = 0; j < count; j++) {
257
if (pm_signal[j].signal_group != PPU_CYCLES_GRP_NUM) {
258
259
/* fw expects physical cpu # */
260
pm_signal_local[i].cpu = node;
261
pm_signal_local[i].signal_group
262
= pm_signal[j].signal_group;
263
pm_signal_local[i].bus_word = pm_signal[j].bus_word;
264
pm_signal_local[i].sub_unit = pm_signal[j].sub_unit;
265
pm_signal_local[i].bit = pm_signal[j].bit;
266
i++;
267
}
268
}
269
270
if (i != 0) {
271
ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE, PASSTHRU_ENABLE,
272
pm_signal_local,
273
i * sizeof(struct pm_signal));
274
275
if (unlikely(ret)) {
276
printk(KERN_WARNING "%s: rtas returned: %d\n",
277
__func__, ret);
278
return -EIO;
279
}
280
}
281
282
return 0;
283
}
284
285
/*
286
* PM Signal functions
287
*/
288
static void set_pm_event(u32 ctr, int event, u32 unit_mask)
289
{
290
struct pm_signal *p;
291
u32 signal_bit;
292
u32 bus_word, bus_type, count_cycles, polarity, input_control;
293
int j, i;
294
295
if (event == PPU_CYCLES_EVENT_NUM) {
296
/* Special Event: Count all cpu cycles */
297
pm_regs.pm07_cntrl[ctr] = CBE_COUNT_ALL_CYCLES;
298
p = &(pm_signal[ctr]);
299
p->signal_group = PPU_CYCLES_GRP_NUM;
300
p->bus_word = 1;
301
p->sub_unit = 0;
302
p->bit = 0;
303
goto out;
304
} else {
305
pm_regs.pm07_cntrl[ctr] = 0;
306
}
307
308
bus_word = GET_BUS_WORD(unit_mask);
309
bus_type = GET_BUS_TYPE(unit_mask);
310
count_cycles = GET_COUNT_CYCLES(unit_mask);
311
polarity = GET_POLARITY(unit_mask);
312
input_control = GET_INPUT_CONTROL(unit_mask);
313
signal_bit = (event % 100);
314
315
p = &(pm_signal[ctr]);
316
317
p->signal_group = event / 100;
318
p->bus_word = bus_word;
319
p->sub_unit = GET_SUB_UNIT(unit_mask);
320
321
pm_regs.pm07_cntrl[ctr] = 0;
322
pm_regs.pm07_cntrl[ctr] |= PM07_CTR_COUNT_CYCLES(count_cycles);
323
pm_regs.pm07_cntrl[ctr] |= PM07_CTR_POLARITY(polarity);
324
pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_CONTROL(input_control);
325
326
/*
327
* Some of the islands signal selection is based on 64 bit words.
328
* The debug bus words are 32 bits, the input words to the performance
329
* counters are defined as 32 bits. Need to convert the 64 bit island
330
* specification to the appropriate 32 input bit and bus word for the
331
* performance counter event selection. See the CELL Performance
332
* monitoring signals manual and the Perf cntr hardware descriptions
333
* for the details.
334
*/
335
if (input_control == 0) {
336
if (signal_bit > 31) {
337
signal_bit -= 32;
338
if (bus_word == 0x3)
339
bus_word = 0x2;
340
else if (bus_word == 0xc)
341
bus_word = 0x8;
342
}
343
344
if ((bus_type == 0) && p->signal_group >= 60)
345
bus_type = 2;
346
if ((bus_type == 1) && p->signal_group >= 50)
347
bus_type = 0;
348
349
pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_MUX(signal_bit);
350
} else {
351
pm_regs.pm07_cntrl[ctr] = 0;
352
p->bit = signal_bit;
353
}
354
355
for (i = 0; i < NUM_DEBUG_BUS_WORDS; i++) {
356
if (bus_word & (1 << i)) {
357
pm_regs.debug_bus_control |=
358
(bus_type << (30 - (2 * i)));
359
360
for (j = 0; j < NUM_INPUT_BUS_WORDS; j++) {
361
if (input_bus[j] == 0xff) {
362
input_bus[j] = i;
363
pm_regs.group_control |=
364
(i << (30 - (2 * j)));
365
366
break;
367
}
368
}
369
}
370
}
371
out:
372
;
373
}
374
375
static void write_pm_cntrl(int cpu)
376
{
377
/*
378
* Oprofile will use 32 bit counters, set bits 7:10 to 0
379
* pmregs.pm_cntrl is a global
380
*/
381
382
u32 val = 0;
383
if (pm_regs.pm_cntrl.enable == 1)
384
val |= CBE_PM_ENABLE_PERF_MON;
385
386
if (pm_regs.pm_cntrl.stop_at_max == 1)
387
val |= CBE_PM_STOP_AT_MAX;
388
389
if (pm_regs.pm_cntrl.trace_mode != 0)
390
val |= CBE_PM_TRACE_MODE_SET(pm_regs.pm_cntrl.trace_mode);
391
392
if (pm_regs.pm_cntrl.trace_buf_ovflw == 1)
393
val |= CBE_PM_TRACE_BUF_OVFLW(pm_regs.pm_cntrl.trace_buf_ovflw);
394
if (pm_regs.pm_cntrl.freeze == 1)
395
val |= CBE_PM_FREEZE_ALL_CTRS;
396
397
val |= CBE_PM_SPU_ADDR_TRACE_SET(pm_regs.pm_cntrl.spu_addr_trace);
398
399
/*
400
* Routine set_count_mode must be called previously to set
401
* the count mode based on the user selection of user and kernel.
402
*/
403
val |= CBE_PM_COUNT_MODE_SET(pm_regs.pm_cntrl.count_mode);
404
cbe_write_pm(cpu, pm_control, val);
405
}
406
407
static inline void
408
set_count_mode(u32 kernel, u32 user)
409
{
410
/*
411
* The user must specify user and kernel if they want them. If
412
* neither is specified, OProfile will count in hypervisor mode.
413
* pm_regs.pm_cntrl is a global
414
*/
415
if (kernel) {
416
if (user)
417
pm_regs.pm_cntrl.count_mode = CBE_COUNT_ALL_MODES;
418
else
419
pm_regs.pm_cntrl.count_mode =
420
CBE_COUNT_SUPERVISOR_MODE;
421
} else {
422
if (user)
423
pm_regs.pm_cntrl.count_mode = CBE_COUNT_PROBLEM_MODE;
424
else
425
pm_regs.pm_cntrl.count_mode =
426
CBE_COUNT_HYPERVISOR_MODE;
427
}
428
}
429
430
static inline void enable_ctr(u32 cpu, u32 ctr, u32 *pm07_cntrl)
431
{
432
433
pm07_cntrl[ctr] |= CBE_PM_CTR_ENABLE;
434
cbe_write_pm07_control(cpu, ctr, pm07_cntrl[ctr]);
435
}
436
437
/*
438
* Oprofile is expected to collect data on all CPUs simultaneously.
439
* However, there is one set of performance counters per node. There are
440
* two hardware threads or virtual CPUs on each node. Hence, OProfile must
441
* multiplex in time the performance counter collection on the two virtual
442
* CPUs. The multiplexing of the performance counters is done by this
443
* virtual counter routine.
444
*
445
* The pmc_values used below is defined as 'per-cpu' but its use is
446
* more akin to 'per-node'. We need to store two sets of counter
447
* values per node -- one for the previous run and one for the next.
448
* The per-cpu[NR_PHYS_CTRS] gives us the storage we need. Each odd/even
449
* pair of per-cpu arrays is used for storing the previous and next
450
* pmc values for a given node.
451
* NOTE: We use the per-cpu variable to improve cache performance.
452
*
453
* This routine will alternate loading the virtual counters for
454
* virtual CPUs
455
*/
456
static void cell_virtual_cntr(unsigned long data)
457
{
458
int i, prev_hdw_thread, next_hdw_thread;
459
u32 cpu;
460
unsigned long flags;
461
462
/*
463
* Make sure that the interrupt_hander and the virt counter are
464
* not both playing with the counters on the same node.
465
*/
466
467
spin_lock_irqsave(&cntr_lock, flags);
468
469
prev_hdw_thread = hdw_thread;
470
471
/* switch the cpu handling the interrupts */
472
hdw_thread = 1 ^ hdw_thread;
473
next_hdw_thread = hdw_thread;
474
475
pm_regs.group_control = 0;
476
pm_regs.debug_bus_control = 0;
477
478
for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
479
input_bus[i] = 0xff;
480
481
/*
482
* There are some per thread events. Must do the
483
* set event, for the thread that is being started
484
*/
485
for (i = 0; i < num_counters; i++)
486
set_pm_event(i,
487
pmc_cntrl[next_hdw_thread][i].evnts,
488
pmc_cntrl[next_hdw_thread][i].masks);
489
490
/*
491
* The following is done only once per each node, but
492
* we need cpu #, not node #, to pass to the cbe_xxx functions.
493
*/
494
for_each_online_cpu(cpu) {
495
if (cbe_get_hw_thread_id(cpu))
496
continue;
497
498
/*
499
* stop counters, save counter values, restore counts
500
* for previous thread
501
*/
502
cbe_disable_pm(cpu);
503
cbe_disable_pm_interrupts(cpu);
504
for (i = 0; i < num_counters; i++) {
505
per_cpu(pmc_values, cpu + prev_hdw_thread)[i]
506
= cbe_read_ctr(cpu, i);
507
508
if (per_cpu(pmc_values, cpu + next_hdw_thread)[i]
509
== 0xFFFFFFFF)
510
/* If the cntr value is 0xffffffff, we must
511
* reset that to 0xfffffff0 when the current
512
* thread is restarted. This will generate a
513
* new interrupt and make sure that we never
514
* restore the counters to the max value. If
515
* the counters were restored to the max value,
516
* they do not increment and no interrupts are
517
* generated. Hence no more samples will be
518
* collected on that cpu.
519
*/
520
cbe_write_ctr(cpu, i, 0xFFFFFFF0);
521
else
522
cbe_write_ctr(cpu, i,
523
per_cpu(pmc_values,
524
cpu +
525
next_hdw_thread)[i]);
526
}
527
528
/*
529
* Switch to the other thread. Change the interrupt
530
* and control regs to be scheduled on the CPU
531
* corresponding to the thread to execute.
532
*/
533
for (i = 0; i < num_counters; i++) {
534
if (pmc_cntrl[next_hdw_thread][i].enabled) {
535
/*
536
* There are some per thread events.
537
* Must do the set event, enable_cntr
538
* for each cpu.
539
*/
540
enable_ctr(cpu, i,
541
pm_regs.pm07_cntrl);
542
} else {
543
cbe_write_pm07_control(cpu, i, 0);
544
}
545
}
546
547
/* Enable interrupts on the CPU thread that is starting */
548
cbe_enable_pm_interrupts(cpu, next_hdw_thread,
549
virt_cntr_inter_mask);
550
cbe_enable_pm(cpu);
551
}
552
553
spin_unlock_irqrestore(&cntr_lock, flags);
554
555
mod_timer(&timer_virt_cntr, jiffies + HZ / 10);
556
}
557
558
static void start_virt_cntrs(void)
559
{
560
init_timer(&timer_virt_cntr);
561
timer_virt_cntr.function = cell_virtual_cntr;
562
timer_virt_cntr.data = 0UL;
563
timer_virt_cntr.expires = jiffies + HZ / 10;
564
add_timer(&timer_virt_cntr);
565
}
566
567
static int cell_reg_setup_spu_cycles(struct op_counter_config *ctr,
568
struct op_system_config *sys, int num_ctrs)
569
{
570
spu_cycle_reset = ctr[0].count;
571
572
/*
573
* Each node will need to make the rtas call to start
574
* and stop SPU profiling. Get the token once and store it.
575
*/
576
spu_rtas_token = rtas_token("ibm,cbe-spu-perftools");
577
578
if (unlikely(spu_rtas_token == RTAS_UNKNOWN_SERVICE)) {
579
printk(KERN_ERR
580
"%s: rtas token ibm,cbe-spu-perftools unknown\n",
581
__func__);
582
return -EIO;
583
}
584
return 0;
585
}
586
587
/* Unfortunately, the hardware will only support event profiling
588
* on one SPU per node at a time. Therefore, we must time slice
589
* the profiling across all SPUs in the node. Note, we do this
590
* in parallel for each node. The following routine is called
591
* periodically based on kernel timer to switch which SPU is
592
* being monitored in a round robbin fashion.
593
*/
594
static void spu_evnt_swap(unsigned long data)
595
{
596
int node;
597
int cur_phys_spu, nxt_phys_spu, cur_spu_evnt_phys_spu_indx;
598
unsigned long flags;
599
int cpu;
600
int ret;
601
u32 interrupt_mask;
602
603
604
/* enable interrupts on cntr 0 */
605
interrupt_mask = CBE_PM_CTR_OVERFLOW_INTR(0);
606
607
hdw_thread = 0;
608
609
/* Make sure spu event interrupt handler and spu event swap
610
* don't access the counters simultaneously.
611
*/
612
spin_lock_irqsave(&cntr_lock, flags);
613
614
cur_spu_evnt_phys_spu_indx = spu_evnt_phys_spu_indx;
615
616
if (++(spu_evnt_phys_spu_indx) == NUM_SPUS_PER_NODE)
617
spu_evnt_phys_spu_indx = 0;
618
619
pm_signal[0].sub_unit = spu_evnt_phys_spu_indx;
620
pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
621
pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
622
623
/* switch the SPU being profiled on each node */
624
for_each_online_cpu(cpu) {
625
if (cbe_get_hw_thread_id(cpu))
626
continue;
627
628
node = cbe_cpu_to_node(cpu);
629
cur_phys_spu = (node * NUM_SPUS_PER_NODE)
630
+ cur_spu_evnt_phys_spu_indx;
631
nxt_phys_spu = (node * NUM_SPUS_PER_NODE)
632
+ spu_evnt_phys_spu_indx;
633
634
/*
635
* stop counters, save counter values, restore counts
636
* for previous physical SPU
637
*/
638
cbe_disable_pm(cpu);
639
cbe_disable_pm_interrupts(cpu);
640
641
spu_pm_cnt[cur_phys_spu]
642
= cbe_read_ctr(cpu, 0);
643
644
/* restore previous count for the next spu to sample */
645
/* NOTE, hardware issue, counter will not start if the
646
* counter value is at max (0xFFFFFFFF).
647
*/
648
if (spu_pm_cnt[nxt_phys_spu] >= 0xFFFFFFFF)
649
cbe_write_ctr(cpu, 0, 0xFFFFFFF0);
650
else
651
cbe_write_ctr(cpu, 0, spu_pm_cnt[nxt_phys_spu]);
652
653
pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
654
655
/* setup the debug bus measure the one event and
656
* the two events to route the next SPU's PC on
657
* the debug bus
658
*/
659
ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu), 3);
660
if (ret)
661
printk(KERN_ERR "%s: pm_rtas_activate_signals failed, "
662
"SPU event swap\n", __func__);
663
664
/* clear the trace buffer, don't want to take PC for
665
* previous SPU*/
666
cbe_write_pm(cpu, trace_address, 0);
667
668
enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
669
670
/* Enable interrupts on the CPU thread that is starting */
671
cbe_enable_pm_interrupts(cpu, hdw_thread,
672
interrupt_mask);
673
cbe_enable_pm(cpu);
674
}
675
676
spin_unlock_irqrestore(&cntr_lock, flags);
677
678
/* swap approximately every 0.1 seconds */
679
mod_timer(&timer_spu_event_swap, jiffies + HZ / 25);
680
}
681
682
static void start_spu_event_swap(void)
683
{
684
init_timer(&timer_spu_event_swap);
685
timer_spu_event_swap.function = spu_evnt_swap;
686
timer_spu_event_swap.data = 0UL;
687
timer_spu_event_swap.expires = jiffies + HZ / 25;
688
add_timer(&timer_spu_event_swap);
689
}
690
691
static int cell_reg_setup_spu_events(struct op_counter_config *ctr,
692
struct op_system_config *sys, int num_ctrs)
693
{
694
int i;
695
696
/* routine is called once for all nodes */
697
698
spu_evnt_phys_spu_indx = 0;
699
/*
700
* For all events except PPU CYCLEs, each node will need to make
701
* the rtas cbe-perftools call to setup and reset the debug bus.
702
* Make the token lookup call once and store it in the global
703
* variable pm_rtas_token.
704
*/
705
pm_rtas_token = rtas_token("ibm,cbe-perftools");
706
707
if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
708
printk(KERN_ERR
709
"%s: rtas token ibm,cbe-perftools unknown\n",
710
__func__);
711
return -EIO;
712
}
713
714
/* setup the pm_control register settings,
715
* settings will be written per node by the
716
* cell_cpu_setup() function.
717
*/
718
pm_regs.pm_cntrl.trace_buf_ovflw = 1;
719
720
/* Use the occurrence trace mode to have SPU PC saved
721
* to the trace buffer. Occurrence data in trace buffer
722
* is not used. Bit 2 must be set to store SPU addresses.
723
*/
724
pm_regs.pm_cntrl.trace_mode = 2;
725
726
pm_regs.pm_cntrl.spu_addr_trace = 0x1; /* using debug bus
727
event 2 & 3 */
728
729
/* setup the debug bus event array with the SPU PC routing events.
730
* Note, pm_signal[0] will be filled in by set_pm_event() call below.
731
*/
732
pm_signal[1].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
733
pm_signal[1].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_A);
734
pm_signal[1].bit = SPU_PROFILE_EVENT_ADDR % 100;
735
pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
736
737
pm_signal[2].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
738
pm_signal[2].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_B);
739
pm_signal[2].bit = SPU_PROFILE_EVENT_ADDR % 100;
740
pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
741
742
/* Set the user selected spu event to profile on,
743
* note, only one SPU profiling event is supported
744
*/
745
num_counters = 1; /* Only support one SPU event at a time */
746
set_pm_event(0, ctr[0].event, ctr[0].unit_mask);
747
748
reset_value[0] = 0xFFFFFFFF - ctr[0].count;
749
750
/* global, used by cell_cpu_setup */
751
ctr_enabled |= 1;
752
753
/* Initialize the count for each SPU to the reset value */
754
for (i=0; i < MAX_NUMNODES * NUM_SPUS_PER_NODE; i++)
755
spu_pm_cnt[i] = reset_value[0];
756
757
return 0;
758
}
759
760
static int cell_reg_setup_ppu(struct op_counter_config *ctr,
761
struct op_system_config *sys, int num_ctrs)
762
{
763
/* routine is called once for all nodes */
764
int i, j, cpu;
765
766
num_counters = num_ctrs;
767
768
if (unlikely(num_ctrs > NR_PHYS_CTRS)) {
769
printk(KERN_ERR
770
"%s: Oprofile, number of specified events " \
771
"exceeds number of physical counters\n",
772
__func__);
773
return -EIO;
774
}
775
776
set_count_mode(sys->enable_kernel, sys->enable_user);
777
778
/* Setup the thread 0 events */
779
for (i = 0; i < num_ctrs; ++i) {
780
781
pmc_cntrl[0][i].evnts = ctr[i].event;
782
pmc_cntrl[0][i].masks = ctr[i].unit_mask;
783
pmc_cntrl[0][i].enabled = ctr[i].enabled;
784
pmc_cntrl[0][i].vcntr = i;
785
786
for_each_possible_cpu(j)
787
per_cpu(pmc_values, j)[i] = 0;
788
}
789
790
/*
791
* Setup the thread 1 events, map the thread 0 event to the
792
* equivalent thread 1 event.
793
*/
794
for (i = 0; i < num_ctrs; ++i) {
795
if ((ctr[i].event >= 2100) && (ctr[i].event <= 2111))
796
pmc_cntrl[1][i].evnts = ctr[i].event + 19;
797
else if (ctr[i].event == 2203)
798
pmc_cntrl[1][i].evnts = ctr[i].event;
799
else if ((ctr[i].event >= 2200) && (ctr[i].event <= 2215))
800
pmc_cntrl[1][i].evnts = ctr[i].event + 16;
801
else
802
pmc_cntrl[1][i].evnts = ctr[i].event;
803
804
pmc_cntrl[1][i].masks = ctr[i].unit_mask;
805
pmc_cntrl[1][i].enabled = ctr[i].enabled;
806
pmc_cntrl[1][i].vcntr = i;
807
}
808
809
for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
810
input_bus[i] = 0xff;
811
812
/*
813
* Our counters count up, and "count" refers to
814
* how much before the next interrupt, and we interrupt
815
* on overflow. So we calculate the starting value
816
* which will give us "count" until overflow.
817
* Then we set the events on the enabled counters.
818
*/
819
for (i = 0; i < num_counters; ++i) {
820
/* start with virtual counter set 0 */
821
if (pmc_cntrl[0][i].enabled) {
822
/* Using 32bit counters, reset max - count */
823
reset_value[i] = 0xFFFFFFFF - ctr[i].count;
824
set_pm_event(i,
825
pmc_cntrl[0][i].evnts,
826
pmc_cntrl[0][i].masks);
827
828
/* global, used by cell_cpu_setup */
829
ctr_enabled |= (1 << i);
830
}
831
}
832
833
/* initialize the previous counts for the virtual cntrs */
834
for_each_online_cpu(cpu)
835
for (i = 0; i < num_counters; ++i) {
836
per_cpu(pmc_values, cpu)[i] = reset_value[i];
837
}
838
839
return 0;
840
}
841
842
843
/* This function is called once for all cpus combined */
844
static int cell_reg_setup(struct op_counter_config *ctr,
845
struct op_system_config *sys, int num_ctrs)
846
{
847
int ret=0;
848
spu_cycle_reset = 0;
849
850
/* initialize the spu_arr_trace value, will be reset if
851
* doing spu event profiling.
852
*/
853
pm_regs.group_control = 0;
854
pm_regs.debug_bus_control = 0;
855
pm_regs.pm_cntrl.stop_at_max = 1;
856
pm_regs.pm_cntrl.trace_mode = 0;
857
pm_regs.pm_cntrl.freeze = 1;
858
pm_regs.pm_cntrl.trace_buf_ovflw = 0;
859
pm_regs.pm_cntrl.spu_addr_trace = 0;
860
861
/*
862
* For all events except PPU CYCLEs, each node will need to make
863
* the rtas cbe-perftools call to setup and reset the debug bus.
864
* Make the token lookup call once and store it in the global
865
* variable pm_rtas_token.
866
*/
867
pm_rtas_token = rtas_token("ibm,cbe-perftools");
868
869
if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
870
printk(KERN_ERR
871
"%s: rtas token ibm,cbe-perftools unknown\n",
872
__func__);
873
return -EIO;
874
}
875
876
if (ctr[0].event == SPU_CYCLES_EVENT_NUM) {
877
profiling_mode = SPU_PROFILING_CYCLES;
878
ret = cell_reg_setup_spu_cycles(ctr, sys, num_ctrs);
879
} else if ((ctr[0].event >= SPU_EVENT_NUM_START) &&
880
(ctr[0].event <= SPU_EVENT_NUM_STOP)) {
881
profiling_mode = SPU_PROFILING_EVENTS;
882
spu_cycle_reset = ctr[0].count;
883
884
/* for SPU event profiling, need to setup the
885
* pm_signal array with the events to route the
886
* SPU PC before making the FW call. Note, only
887
* one SPU event for profiling can be specified
888
* at a time.
889
*/
890
cell_reg_setup_spu_events(ctr, sys, num_ctrs);
891
} else {
892
profiling_mode = PPU_PROFILING;
893
ret = cell_reg_setup_ppu(ctr, sys, num_ctrs);
894
}
895
896
return ret;
897
}
898
899
900
901
/* This function is called once for each cpu */
902
static int cell_cpu_setup(struct op_counter_config *cntr)
903
{
904
u32 cpu = smp_processor_id();
905
u32 num_enabled = 0;
906
int i;
907
int ret;
908
909
/* Cycle based SPU profiling does not use the performance
910
* counters. The trace array is configured to collect
911
* the data.
912
*/
913
if (profiling_mode == SPU_PROFILING_CYCLES)
914
return 0;
915
916
/* There is one performance monitor per processor chip (i.e. node),
917
* so we only need to perform this function once per node.
918
*/
919
if (cbe_get_hw_thread_id(cpu))
920
return 0;
921
922
/* Stop all counters */
923
cbe_disable_pm(cpu);
924
cbe_disable_pm_interrupts(cpu);
925
926
cbe_write_pm(cpu, pm_start_stop, 0);
927
cbe_write_pm(cpu, group_control, pm_regs.group_control);
928
cbe_write_pm(cpu, debug_bus_control, pm_regs.debug_bus_control);
929
write_pm_cntrl(cpu);
930
931
for (i = 0; i < num_counters; ++i) {
932
if (ctr_enabled & (1 << i)) {
933
pm_signal[num_enabled].cpu = cbe_cpu_to_node(cpu);
934
num_enabled++;
935
}
936
}
937
938
/*
939
* The pm_rtas_activate_signals will return -EIO if the FW
940
* call failed.
941
*/
942
if (profiling_mode == SPU_PROFILING_EVENTS) {
943
/* For SPU event profiling also need to setup the
944
* pm interval timer
945
*/
946
ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
947
num_enabled+2);
948
/* store PC from debug bus to Trace buffer as often
949
* as possible (every 10 cycles)
950
*/
951
cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
952
return ret;
953
} else
954
return pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
955
num_enabled);
956
}
957
958
#define ENTRIES 303
959
#define MAXLFSR 0xFFFFFF
960
961
/* precomputed table of 24 bit LFSR values */
962
static int initial_lfsr[] = {
963
8221349, 12579195, 5379618, 10097839, 7512963, 7519310, 3955098, 10753424,
964
15507573, 7458917, 285419, 2641121, 9780088, 3915503, 6668768, 1548716,
965
4885000, 8774424, 9650099, 2044357, 2304411, 9326253, 10332526, 4421547,
966
3440748, 10179459, 13332843, 10375561, 1313462, 8375100, 5198480, 6071392,
967
9341783, 1526887, 3985002, 1439429, 13923762, 7010104, 11969769, 4547026,
968
2040072, 4025602, 3437678, 7939992, 11444177, 4496094, 9803157, 10745556,
969
3671780, 4257846, 5662259, 13196905, 3237343, 12077182, 16222879, 7587769,
970
14706824, 2184640, 12591135, 10420257, 7406075, 3648978, 11042541, 15906893,
971
11914928, 4732944, 10695697, 12928164, 11980531, 4430912, 11939291, 2917017,
972
6119256, 4172004, 9373765, 8410071, 14788383, 5047459, 5474428, 1737756,
973
15967514, 13351758, 6691285, 8034329, 2856544, 14394753, 11310160, 12149558,
974
7487528, 7542781, 15668898, 12525138, 12790975, 3707933, 9106617, 1965401,
975
16219109, 12801644, 2443203, 4909502, 8762329, 3120803, 6360315, 9309720,
976
15164599, 10844842, 4456529, 6667610, 14924259, 884312, 6234963, 3326042,
977
15973422, 13919464, 5272099, 6414643, 3909029, 2764324, 5237926, 4774955,
978
10445906, 4955302, 5203726, 10798229, 11443419, 2303395, 333836, 9646934,
979
3464726, 4159182, 568492, 995747, 10318756, 13299332, 4836017, 8237783,
980
3878992, 2581665, 11394667, 5672745, 14412947, 3159169, 9094251, 16467278,
981
8671392, 15230076, 4843545, 7009238, 15504095, 1494895, 9627886, 14485051,
982
8304291, 252817, 12421642, 16085736, 4774072, 2456177, 4160695, 15409741,
983
4902868, 5793091, 13162925, 16039714, 782255, 11347835, 14884586, 366972,
984
16308990, 11913488, 13390465, 2958444, 10340278, 1177858, 1319431, 10426302,
985
2868597, 126119, 5784857, 5245324, 10903900, 16436004, 3389013, 1742384,
986
14674502, 10279218, 8536112, 10364279, 6877778, 14051163, 1025130, 6072469,
987
1988305, 8354440, 8216060, 16342977, 13112639, 3976679, 5913576, 8816697,
988
6879995, 14043764, 3339515, 9364420, 15808858, 12261651, 2141560, 5636398,
989
10345425, 10414756, 781725, 6155650, 4746914, 5078683, 7469001, 6799140,
990
10156444, 9667150, 10116470, 4133858, 2121972, 1124204, 1003577, 1611214,
991
14304602, 16221850, 13878465, 13577744, 3629235, 8772583, 10881308, 2410386,
992
7300044, 5378855, 9301235, 12755149, 4977682, 8083074, 10327581, 6395087,
993
9155434, 15501696, 7514362, 14520507, 15808945, 3244584, 4741962, 9658130,
994
14336147, 8654727, 7969093, 15759799, 14029445, 5038459, 9894848, 8659300,
995
13699287, 8834306, 10712885, 14753895, 10410465, 3373251, 309501, 9561475,
996
5526688, 14647426, 14209836, 5339224, 207299, 14069911, 8722990, 2290950,
997
3258216, 12505185, 6007317, 9218111, 14661019, 10537428, 11731949, 9027003,
998
6641507, 9490160, 200241, 9720425, 16277895, 10816638, 1554761, 10431375,
999
7467528, 6790302, 3429078, 14633753, 14428997, 11463204, 3576212, 2003426,
1000
6123687, 820520, 9992513, 15784513, 5778891, 6428165, 8388607
1001
};
1002
1003
/*
1004
* The hardware uses an LFSR counting sequence to determine when to capture
1005
* the SPU PCs. An LFSR sequence is like a puesdo random number sequence
1006
* where each number occurs once in the sequence but the sequence is not in
1007
* numerical order. The SPU PC capture is done when the LFSR sequence reaches
1008
* the last value in the sequence. Hence the user specified value N
1009
* corresponds to the LFSR number that is N from the end of the sequence.
1010
*
1011
* To avoid the time to compute the LFSR, a lookup table is used. The 24 bit
1012
* LFSR sequence is broken into four ranges. The spacing of the precomputed
1013
* values is adjusted in each range so the error between the user specifed
1014
* number (N) of events between samples and the actual number of events based
1015
* on the precomputed value will be les then about 6.2%. Note, if the user
1016
* specifies N < 2^16, the LFSR value that is 2^16 from the end will be used.
1017
* This is to prevent the loss of samples because the trace buffer is full.
1018
*
1019
* User specified N Step between Index in
1020
* precomputed values precomputed
1021
* table
1022
* 0 to 2^16-1 ---- 0
1023
* 2^16 to 2^16+2^19-1 2^12 1 to 128
1024
* 2^16+2^19 to 2^16+2^19+2^22-1 2^15 129 to 256
1025
* 2^16+2^19+2^22 to 2^24-1 2^18 257 to 302
1026
*
1027
*
1028
* For example, the LFSR values in the second range are computed for 2^16,
1029
* 2^16+2^12, ... , 2^19-2^16, 2^19 and stored in the table at indicies
1030
* 1, 2,..., 127, 128.
1031
*
1032
* The 24 bit LFSR value for the nth number in the sequence can be
1033
* calculated using the following code:
1034
*
1035
* #define size 24
1036
* int calculate_lfsr(int n)
1037
* {
1038
* int i;
1039
* unsigned int newlfsr0;
1040
* unsigned int lfsr = 0xFFFFFF;
1041
* unsigned int howmany = n;
1042
*
1043
* for (i = 2; i < howmany + 2; i++) {
1044
* newlfsr0 = (((lfsr >> (size - 1 - 0)) & 1) ^
1045
* ((lfsr >> (size - 1 - 1)) & 1) ^
1046
* (((lfsr >> (size - 1 - 6)) & 1) ^
1047
* ((lfsr >> (size - 1 - 23)) & 1)));
1048
*
1049
* lfsr >>= 1;
1050
* lfsr = lfsr | (newlfsr0 << (size - 1));
1051
* }
1052
* return lfsr;
1053
* }
1054
*/
1055
1056
#define V2_16 (0x1 << 16)
1057
#define V2_19 (0x1 << 19)
1058
#define V2_22 (0x1 << 22)
1059
1060
static int calculate_lfsr(int n)
1061
{
1062
/*
1063
* The ranges and steps are in powers of 2 so the calculations
1064
* can be done using shifts rather then divide.
1065
*/
1066
int index;
1067
1068
if ((n >> 16) == 0)
1069
index = 0;
1070
else if (((n - V2_16) >> 19) == 0)
1071
index = ((n - V2_16) >> 12) + 1;
1072
else if (((n - V2_16 - V2_19) >> 22) == 0)
1073
index = ((n - V2_16 - V2_19) >> 15 ) + 1 + 128;
1074
else if (((n - V2_16 - V2_19 - V2_22) >> 24) == 0)
1075
index = ((n - V2_16 - V2_19 - V2_22) >> 18 ) + 1 + 256;
1076
else
1077
index = ENTRIES-1;
1078
1079
/* make sure index is valid */
1080
if ((index >= ENTRIES) || (index < 0))
1081
index = ENTRIES-1;
1082
1083
return initial_lfsr[index];
1084
}
1085
1086
static int pm_rtas_activate_spu_profiling(u32 node)
1087
{
1088
int ret, i;
1089
struct pm_signal pm_signal_local[NUM_SPUS_PER_NODE];
1090
1091
/*
1092
* Set up the rtas call to configure the debug bus to
1093
* route the SPU PCs. Setup the pm_signal for each SPU
1094
*/
1095
for (i = 0; i < ARRAY_SIZE(pm_signal_local); i++) {
1096
pm_signal_local[i].cpu = node;
1097
pm_signal_local[i].signal_group = 41;
1098
/* spu i on word (i/2) */
1099
pm_signal_local[i].bus_word = 1 << i / 2;
1100
/* spu i */
1101
pm_signal_local[i].sub_unit = i;
1102
pm_signal_local[i].bit = 63;
1103
}
1104
1105
ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE,
1106
PASSTHRU_ENABLE, pm_signal_local,
1107
(ARRAY_SIZE(pm_signal_local)
1108
* sizeof(struct pm_signal)));
1109
1110
if (unlikely(ret)) {
1111
printk(KERN_WARNING "%s: rtas returned: %d\n",
1112
__func__, ret);
1113
return -EIO;
1114
}
1115
1116
return 0;
1117
}
1118
1119
#ifdef CONFIG_CPU_FREQ
1120
static int
1121
oprof_cpufreq_notify(struct notifier_block *nb, unsigned long val, void *data)
1122
{
1123
int ret = 0;
1124
struct cpufreq_freqs *frq = data;
1125
if ((val == CPUFREQ_PRECHANGE && frq->old < frq->new) ||
1126
(val == CPUFREQ_POSTCHANGE && frq->old > frq->new) ||
1127
(val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE))
1128
set_spu_profiling_frequency(frq->new, spu_cycle_reset);
1129
return ret;
1130
}
1131
1132
static struct notifier_block cpu_freq_notifier_block = {
1133
.notifier_call = oprof_cpufreq_notify
1134
};
1135
#endif
1136
1137
/*
1138
* Note the generic OProfile stop calls do not support returning
1139
* an error on stop. Hence, will not return an error if the FW
1140
* calls fail on stop. Failure to reset the debug bus is not an issue.
1141
* Failure to disable the SPU profiling is not an issue. The FW calls
1142
* to enable the performance counters and debug bus will work even if
1143
* the hardware was not cleanly reset.
1144
*/
1145
static void cell_global_stop_spu_cycles(void)
1146
{
1147
int subfunc, rtn_value;
1148
unsigned int lfsr_value;
1149
int cpu;
1150
1151
oprofile_running = 0;
1152
smp_wmb();
1153
1154
#ifdef CONFIG_CPU_FREQ
1155
cpufreq_unregister_notifier(&cpu_freq_notifier_block,
1156
CPUFREQ_TRANSITION_NOTIFIER);
1157
#endif
1158
1159
for_each_online_cpu(cpu) {
1160
if (cbe_get_hw_thread_id(cpu))
1161
continue;
1162
1163
subfunc = 3; /*
1164
* 2 - activate SPU tracing,
1165
* 3 - deactivate
1166
*/
1167
lfsr_value = 0x8f100000;
1168
1169
rtn_value = rtas_call(spu_rtas_token, 3, 1, NULL,
1170
subfunc, cbe_cpu_to_node(cpu),
1171
lfsr_value);
1172
1173
if (unlikely(rtn_value != 0)) {
1174
printk(KERN_ERR
1175
"%s: rtas call ibm,cbe-spu-perftools " \
1176
"failed, return = %d\n",
1177
__func__, rtn_value);
1178
}
1179
1180
/* Deactivate the signals */
1181
pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1182
}
1183
1184
stop_spu_profiling_cycles();
1185
}
1186
1187
static void cell_global_stop_spu_events(void)
1188
{
1189
int cpu;
1190
oprofile_running = 0;
1191
1192
stop_spu_profiling_events();
1193
smp_wmb();
1194
1195
for_each_online_cpu(cpu) {
1196
if (cbe_get_hw_thread_id(cpu))
1197
continue;
1198
1199
cbe_sync_irq(cbe_cpu_to_node(cpu));
1200
/* Stop the counters */
1201
cbe_disable_pm(cpu);
1202
cbe_write_pm07_control(cpu, 0, 0);
1203
1204
/* Deactivate the signals */
1205
pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1206
1207
/* Deactivate interrupts */
1208
cbe_disable_pm_interrupts(cpu);
1209
}
1210
del_timer_sync(&timer_spu_event_swap);
1211
}
1212
1213
static void cell_global_stop_ppu(void)
1214
{
1215
int cpu;
1216
1217
/*
1218
* This routine will be called once for the system.
1219
* There is one performance monitor per node, so we
1220
* only need to perform this function once per node.
1221
*/
1222
del_timer_sync(&timer_virt_cntr);
1223
oprofile_running = 0;
1224
smp_wmb();
1225
1226
for_each_online_cpu(cpu) {
1227
if (cbe_get_hw_thread_id(cpu))
1228
continue;
1229
1230
cbe_sync_irq(cbe_cpu_to_node(cpu));
1231
/* Stop the counters */
1232
cbe_disable_pm(cpu);
1233
1234
/* Deactivate the signals */
1235
pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1236
1237
/* Deactivate interrupts */
1238
cbe_disable_pm_interrupts(cpu);
1239
}
1240
}
1241
1242
static void cell_global_stop(void)
1243
{
1244
if (profiling_mode == PPU_PROFILING)
1245
cell_global_stop_ppu();
1246
else if (profiling_mode == SPU_PROFILING_EVENTS)
1247
cell_global_stop_spu_events();
1248
else
1249
cell_global_stop_spu_cycles();
1250
}
1251
1252
static int cell_global_start_spu_cycles(struct op_counter_config *ctr)
1253
{
1254
int subfunc;
1255
unsigned int lfsr_value;
1256
int cpu;
1257
int ret;
1258
int rtas_error;
1259
unsigned int cpu_khzfreq = 0;
1260
1261
/* The SPU profiling uses time-based profiling based on
1262
* cpu frequency, so if configured with the CPU_FREQ
1263
* option, we should detect frequency changes and react
1264
* accordingly.
1265
*/
1266
#ifdef CONFIG_CPU_FREQ
1267
ret = cpufreq_register_notifier(&cpu_freq_notifier_block,
1268
CPUFREQ_TRANSITION_NOTIFIER);
1269
if (ret < 0)
1270
/* this is not a fatal error */
1271
printk(KERN_ERR "CPU freq change registration failed: %d\n",
1272
ret);
1273
1274
else
1275
cpu_khzfreq = cpufreq_quick_get(smp_processor_id());
1276
#endif
1277
1278
set_spu_profiling_frequency(cpu_khzfreq, spu_cycle_reset);
1279
1280
for_each_online_cpu(cpu) {
1281
if (cbe_get_hw_thread_id(cpu))
1282
continue;
1283
1284
/*
1285
* Setup SPU cycle-based profiling.
1286
* Set perf_mon_control bit 0 to a zero before
1287
* enabling spu collection hardware.
1288
*/
1289
cbe_write_pm(cpu, pm_control, 0);
1290
1291
if (spu_cycle_reset > MAX_SPU_COUNT)
1292
/* use largest possible value */
1293
lfsr_value = calculate_lfsr(MAX_SPU_COUNT-1);
1294
else
1295
lfsr_value = calculate_lfsr(spu_cycle_reset);
1296
1297
/* must use a non zero value. Zero disables data collection. */
1298
if (lfsr_value == 0)
1299
lfsr_value = calculate_lfsr(1);
1300
1301
lfsr_value = lfsr_value << 8; /* shift lfsr to correct
1302
* register location
1303
*/
1304
1305
/* debug bus setup */
1306
ret = pm_rtas_activate_spu_profiling(cbe_cpu_to_node(cpu));
1307
1308
if (unlikely(ret)) {
1309
rtas_error = ret;
1310
goto out;
1311
}
1312
1313
1314
subfunc = 2; /* 2 - activate SPU tracing, 3 - deactivate */
1315
1316
/* start profiling */
1317
ret = rtas_call(spu_rtas_token, 3, 1, NULL, subfunc,
1318
cbe_cpu_to_node(cpu), lfsr_value);
1319
1320
if (unlikely(ret != 0)) {
1321
printk(KERN_ERR
1322
"%s: rtas call ibm,cbe-spu-perftools failed, " \
1323
"return = %d\n", __func__, ret);
1324
rtas_error = -EIO;
1325
goto out;
1326
}
1327
}
1328
1329
rtas_error = start_spu_profiling_cycles(spu_cycle_reset);
1330
if (rtas_error)
1331
goto out_stop;
1332
1333
oprofile_running = 1;
1334
return 0;
1335
1336
out_stop:
1337
cell_global_stop_spu_cycles(); /* clean up the PMU/debug bus */
1338
out:
1339
return rtas_error;
1340
}
1341
1342
static int cell_global_start_spu_events(struct op_counter_config *ctr)
1343
{
1344
int cpu;
1345
u32 interrupt_mask = 0;
1346
int rtn = 0;
1347
1348
hdw_thread = 0;
1349
1350
/* spu event profiling, uses the performance counters to generate
1351
* an interrupt. The hardware is setup to store the SPU program
1352
* counter into the trace array. The occurrence mode is used to
1353
* enable storing data to the trace buffer. The bits are set
1354
* to send/store the SPU address in the trace buffer. The debug
1355
* bus must be setup to route the SPU program counter onto the
1356
* debug bus. The occurrence data in the trace buffer is not used.
1357
*/
1358
1359
/* This routine gets called once for the system.
1360
* There is one performance monitor per node, so we
1361
* only need to perform this function once per node.
1362
*/
1363
1364
for_each_online_cpu(cpu) {
1365
if (cbe_get_hw_thread_id(cpu))
1366
continue;
1367
1368
/*
1369
* Setup SPU event-based profiling.
1370
* Set perf_mon_control bit 0 to a zero before
1371
* enabling spu collection hardware.
1372
*
1373
* Only support one SPU event on one SPU per node.
1374
*/
1375
if (ctr_enabled & 1) {
1376
cbe_write_ctr(cpu, 0, reset_value[0]);
1377
enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
1378
interrupt_mask |=
1379
CBE_PM_CTR_OVERFLOW_INTR(0);
1380
} else {
1381
/* Disable counter */
1382
cbe_write_pm07_control(cpu, 0, 0);
1383
}
1384
1385
cbe_get_and_clear_pm_interrupts(cpu);
1386
cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
1387
cbe_enable_pm(cpu);
1388
1389
/* clear the trace buffer */
1390
cbe_write_pm(cpu, trace_address, 0);
1391
}
1392
1393
/* Start the timer to time slice collecting the event profile
1394
* on each of the SPUs. Note, can collect profile on one SPU
1395
* per node at a time.
1396
*/
1397
start_spu_event_swap();
1398
start_spu_profiling_events();
1399
oprofile_running = 1;
1400
smp_wmb();
1401
1402
return rtn;
1403
}
1404
1405
static int cell_global_start_ppu(struct op_counter_config *ctr)
1406
{
1407
u32 cpu, i;
1408
u32 interrupt_mask = 0;
1409
1410
/* This routine gets called once for the system.
1411
* There is one performance monitor per node, so we
1412
* only need to perform this function once per node.
1413
*/
1414
for_each_online_cpu(cpu) {
1415
if (cbe_get_hw_thread_id(cpu))
1416
continue;
1417
1418
interrupt_mask = 0;
1419
1420
for (i = 0; i < num_counters; ++i) {
1421
if (ctr_enabled & (1 << i)) {
1422
cbe_write_ctr(cpu, i, reset_value[i]);
1423
enable_ctr(cpu, i, pm_regs.pm07_cntrl);
1424
interrupt_mask |= CBE_PM_CTR_OVERFLOW_INTR(i);
1425
} else {
1426
/* Disable counter */
1427
cbe_write_pm07_control(cpu, i, 0);
1428
}
1429
}
1430
1431
cbe_get_and_clear_pm_interrupts(cpu);
1432
cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
1433
cbe_enable_pm(cpu);
1434
}
1435
1436
virt_cntr_inter_mask = interrupt_mask;
1437
oprofile_running = 1;
1438
smp_wmb();
1439
1440
/*
1441
* NOTE: start_virt_cntrs will result in cell_virtual_cntr() being
1442
* executed which manipulates the PMU. We start the "virtual counter"
1443
* here so that we do not need to synchronize access to the PMU in
1444
* the above for-loop.
1445
*/
1446
start_virt_cntrs();
1447
1448
return 0;
1449
}
1450
1451
static int cell_global_start(struct op_counter_config *ctr)
1452
{
1453
if (profiling_mode == SPU_PROFILING_CYCLES)
1454
return cell_global_start_spu_cycles(ctr);
1455
else if (profiling_mode == SPU_PROFILING_EVENTS)
1456
return cell_global_start_spu_events(ctr);
1457
else
1458
return cell_global_start_ppu(ctr);
1459
}
1460
1461
1462
/* The SPU interrupt handler
1463
*
1464
* SPU event profiling works as follows:
1465
* The pm_signal[0] holds the one SPU event to be measured. It is routed on
1466
* the debug bus using word 0 or 1. The value of pm_signal[1] and
1467
* pm_signal[2] contain the necessary events to route the SPU program
1468
* counter for the selected SPU onto the debug bus using words 2 and 3.
1469
* The pm_interval register is setup to write the SPU PC value into the
1470
* trace buffer at the maximum rate possible. The trace buffer is configured
1471
* to store the PCs, wrapping when it is full. The performance counter is
1472
* initialized to the max hardware count minus the number of events, N, between
1473
* samples. Once the N events have occurred, a HW counter overflow occurs
1474
* causing the generation of a HW counter interrupt which also stops the
1475
* writing of the SPU PC values to the trace buffer. Hence the last PC
1476
* written to the trace buffer is the SPU PC that we want. Unfortunately,
1477
* we have to read from the beginning of the trace buffer to get to the
1478
* last value written. We just hope the PPU has nothing better to do then
1479
* service this interrupt. The PC for the specific SPU being profiled is
1480
* extracted from the trace buffer processed and stored. The trace buffer
1481
* is cleared, interrupts are cleared, the counter is reset to max - N.
1482
* A kernel timer is used to periodically call the routine spu_evnt_swap()
1483
* to switch to the next physical SPU in the node to profile in round robbin
1484
* order. This way data is collected for all SPUs on the node. It does mean
1485
* that we need to use a relatively small value of N to ensure enough samples
1486
* on each SPU are collected each SPU is being profiled 1/8 of the time.
1487
* It may also be necessary to use a longer sample collection period.
1488
*/
1489
static void cell_handle_interrupt_spu(struct pt_regs *regs,
1490
struct op_counter_config *ctr)
1491
{
1492
u32 cpu, cpu_tmp;
1493
u64 trace_entry;
1494
u32 interrupt_mask;
1495
u64 trace_buffer[2];
1496
u64 last_trace_buffer;
1497
u32 sample;
1498
u32 trace_addr;
1499
unsigned long sample_array_lock_flags;
1500
int spu_num;
1501
unsigned long flags;
1502
1503
/* Make sure spu event interrupt handler and spu event swap
1504
* don't access the counters simultaneously.
1505
*/
1506
cpu = smp_processor_id();
1507
spin_lock_irqsave(&cntr_lock, flags);
1508
1509
cpu_tmp = cpu;
1510
cbe_disable_pm(cpu);
1511
1512
interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
1513
1514
sample = 0xABCDEF;
1515
trace_entry = 0xfedcba;
1516
last_trace_buffer = 0xdeadbeaf;
1517
1518
if ((oprofile_running == 1) && (interrupt_mask != 0)) {
1519
/* disable writes to trace buff */
1520
cbe_write_pm(cpu, pm_interval, 0);
1521
1522
/* only have one perf cntr being used, cntr 0 */
1523
if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(0))
1524
&& ctr[0].enabled)
1525
/* The SPU PC values will be read
1526
* from the trace buffer, reset counter
1527
*/
1528
1529
cbe_write_ctr(cpu, 0, reset_value[0]);
1530
1531
trace_addr = cbe_read_pm(cpu, trace_address);
1532
1533
while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) {
1534
/* There is data in the trace buffer to process
1535
* Read the buffer until you get to the last
1536
* entry. This is the value we want.
1537
*/
1538
1539
cbe_read_trace_buffer(cpu, trace_buffer);
1540
trace_addr = cbe_read_pm(cpu, trace_address);
1541
}
1542
1543
/* SPU Address 16 bit count format for 128 bit
1544
* HW trace buffer is used for the SPU PC storage
1545
* HDR bits 0:15
1546
* SPU Addr 0 bits 16:31
1547
* SPU Addr 1 bits 32:47
1548
* unused bits 48:127
1549
*
1550
* HDR: bit4 = 1 SPU Address 0 valid
1551
* HDR: bit5 = 1 SPU Address 1 valid
1552
* - unfortunately, the valid bits don't seem to work
1553
*
1554
* Note trace_buffer[0] holds bits 0:63 of the HW
1555
* trace buffer, trace_buffer[1] holds bits 64:127
1556
*/
1557
1558
trace_entry = trace_buffer[0]
1559
& 0x00000000FFFF0000;
1560
1561
/* only top 16 of the 18 bit SPU PC address
1562
* is stored in trace buffer, hence shift right
1563
* by 16 -2 bits */
1564
sample = trace_entry >> 14;
1565
last_trace_buffer = trace_buffer[0];
1566
1567
spu_num = spu_evnt_phys_spu_indx
1568
+ (cbe_cpu_to_node(cpu) * NUM_SPUS_PER_NODE);
1569
1570
/* make sure only one process at a time is calling
1571
* spu_sync_buffer()
1572
*/
1573
spin_lock_irqsave(&oprof_spu_smpl_arry_lck,
1574
sample_array_lock_flags);
1575
spu_sync_buffer(spu_num, &sample, 1);
1576
spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
1577
sample_array_lock_flags);
1578
1579
smp_wmb(); /* insure spu event buffer updates are written
1580
* don't want events intermingled... */
1581
1582
/* The counters were frozen by the interrupt.
1583
* Reenable the interrupt and restart the counters.
1584
*/
1585
cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
1586
cbe_enable_pm_interrupts(cpu, hdw_thread,
1587
virt_cntr_inter_mask);
1588
1589
/* clear the trace buffer, re-enable writes to trace buff */
1590
cbe_write_pm(cpu, trace_address, 0);
1591
cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
1592
1593
/* The writes to the various performance counters only writes
1594
* to a latch. The new values (interrupt setting bits, reset
1595
* counter value etc.) are not copied to the actual registers
1596
* until the performance monitor is enabled. In order to get
1597
* this to work as desired, the performance monitor needs to
1598
* be disabled while writing to the latches. This is a
1599
* HW design issue.
1600
*/
1601
write_pm_cntrl(cpu);
1602
cbe_enable_pm(cpu);
1603
}
1604
spin_unlock_irqrestore(&cntr_lock, flags);
1605
}
1606
1607
static void cell_handle_interrupt_ppu(struct pt_regs *regs,
1608
struct op_counter_config *ctr)
1609
{
1610
u32 cpu;
1611
u64 pc;
1612
int is_kernel;
1613
unsigned long flags = 0;
1614
u32 interrupt_mask;
1615
int i;
1616
1617
cpu = smp_processor_id();
1618
1619
/*
1620
* Need to make sure the interrupt handler and the virt counter
1621
* routine are not running at the same time. See the
1622
* cell_virtual_cntr() routine for additional comments.
1623
*/
1624
spin_lock_irqsave(&cntr_lock, flags);
1625
1626
/*
1627
* Need to disable and reenable the performance counters
1628
* to get the desired behavior from the hardware. This
1629
* is hardware specific.
1630
*/
1631
1632
cbe_disable_pm(cpu);
1633
1634
interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
1635
1636
/*
1637
* If the interrupt mask has been cleared, then the virt cntr
1638
* has cleared the interrupt. When the thread that generated
1639
* the interrupt is restored, the data count will be restored to
1640
* 0xffffff0 to cause the interrupt to be regenerated.
1641
*/
1642
1643
if ((oprofile_running == 1) && (interrupt_mask != 0)) {
1644
pc = regs->nip;
1645
is_kernel = is_kernel_addr(pc);
1646
1647
for (i = 0; i < num_counters; ++i) {
1648
if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(i))
1649
&& ctr[i].enabled) {
1650
oprofile_add_ext_sample(pc, regs, i, is_kernel);
1651
cbe_write_ctr(cpu, i, reset_value[i]);
1652
}
1653
}
1654
1655
/*
1656
* The counters were frozen by the interrupt.
1657
* Reenable the interrupt and restart the counters.
1658
* If there was a race between the interrupt handler and
1659
* the virtual counter routine. The virtual counter
1660
* routine may have cleared the interrupts. Hence must
1661
* use the virt_cntr_inter_mask to re-enable the interrupts.
1662
*/
1663
cbe_enable_pm_interrupts(cpu, hdw_thread,
1664
virt_cntr_inter_mask);
1665
1666
/*
1667
* The writes to the various performance counters only writes
1668
* to a latch. The new values (interrupt setting bits, reset
1669
* counter value etc.) are not copied to the actual registers
1670
* until the performance monitor is enabled. In order to get
1671
* this to work as desired, the performance monitor needs to
1672
* be disabled while writing to the latches. This is a
1673
* HW design issue.
1674
*/
1675
cbe_enable_pm(cpu);
1676
}
1677
spin_unlock_irqrestore(&cntr_lock, flags);
1678
}
1679
1680
static void cell_handle_interrupt(struct pt_regs *regs,
1681
struct op_counter_config *ctr)
1682
{
1683
if (profiling_mode == PPU_PROFILING)
1684
cell_handle_interrupt_ppu(regs, ctr);
1685
else
1686
cell_handle_interrupt_spu(regs, ctr);
1687
}
1688
1689
/*
1690
* This function is called from the generic OProfile
1691
* driver. When profiling PPUs, we need to do the
1692
* generic sync start; otherwise, do spu_sync_start.
1693
*/
1694
static int cell_sync_start(void)
1695
{
1696
if ((profiling_mode == SPU_PROFILING_CYCLES) ||
1697
(profiling_mode == SPU_PROFILING_EVENTS))
1698
return spu_sync_start();
1699
else
1700
return DO_GENERIC_SYNC;
1701
}
1702
1703
static int cell_sync_stop(void)
1704
{
1705
if ((profiling_mode == SPU_PROFILING_CYCLES) ||
1706
(profiling_mode == SPU_PROFILING_EVENTS))
1707
return spu_sync_stop();
1708
else
1709
return 1;
1710
}
1711
1712
struct op_powerpc_model op_model_cell = {
1713
.reg_setup = cell_reg_setup,
1714
.cpu_setup = cell_cpu_setup,
1715
.global_start = cell_global_start,
1716
.global_stop = cell_global_stop,
1717
.sync_start = cell_sync_start,
1718
.sync_stop = cell_sync_stop,
1719
.handle_interrupt = cell_handle_interrupt,
1720
};
1721
1722