Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/powerpc/platforms/iseries/mf.c
10820 views
1
/*
2
* Copyright (C) 2001 Troy D. Armstrong IBM Corporation
3
* Copyright (C) 2004-2005 Stephen Rothwell IBM Corporation
4
*
5
* This modules exists as an interface between a Linux secondary partition
6
* running on an iSeries and the primary partition's Virtual Service
7
* Processor (VSP) object. The VSP has final authority over powering on/off
8
* all partitions in the iSeries. It also provides miscellaneous low-level
9
* machine facility type operations.
10
*
11
*
12
* This program is free software; you can redistribute it and/or modify
13
* it under the terms of the GNU General Public License as published by
14
* the Free Software Foundation; either version 2 of the License, or
15
* (at your option) any later version.
16
*
17
* This program is distributed in the hope that it will be useful,
18
* but WITHOUT ANY WARRANTY; without even the implied warranty of
19
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20
* GNU General Public License for more details.
21
*
22
* You should have received a copy of the GNU General Public License
23
* along with this program; if not, write to the Free Software
24
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25
*/
26
27
#include <linux/types.h>
28
#include <linux/errno.h>
29
#include <linux/kernel.h>
30
#include <linux/init.h>
31
#include <linux/completion.h>
32
#include <linux/delay.h>
33
#include <linux/proc_fs.h>
34
#include <linux/dma-mapping.h>
35
#include <linux/bcd.h>
36
#include <linux/rtc.h>
37
#include <linux/slab.h>
38
39
#include <asm/time.h>
40
#include <asm/uaccess.h>
41
#include <asm/paca.h>
42
#include <asm/abs_addr.h>
43
#include <asm/firmware.h>
44
#include <asm/iseries/mf.h>
45
#include <asm/iseries/hv_lp_config.h>
46
#include <asm/iseries/hv_lp_event.h>
47
#include <asm/iseries/it_lp_queue.h>
48
49
#include "setup.h"
50
51
static int mf_initialized;
52
53
/*
54
* This is the structure layout for the Machine Facilities LPAR event
55
* flows.
56
*/
57
struct vsp_cmd_data {
58
u64 token;
59
u16 cmd;
60
HvLpIndex lp_index;
61
u8 result_code;
62
u32 reserved;
63
union {
64
u64 state; /* GetStateOut */
65
u64 ipl_type; /* GetIplTypeOut, Function02SelectIplTypeIn */
66
u64 ipl_mode; /* GetIplModeOut, Function02SelectIplModeIn */
67
u64 page[4]; /* GetSrcHistoryIn */
68
u64 flag; /* GetAutoIplWhenPrimaryIplsOut,
69
SetAutoIplWhenPrimaryIplsIn,
70
WhiteButtonPowerOffIn,
71
Function08FastPowerOffIn,
72
IsSpcnRackPowerIncompleteOut */
73
struct {
74
u64 token;
75
u64 address_type;
76
u64 side;
77
u32 length;
78
u32 offset;
79
} kern; /* SetKernelImageIn, GetKernelImageIn,
80
SetKernelCmdLineIn, GetKernelCmdLineIn */
81
u32 length_out; /* GetKernelImageOut, GetKernelCmdLineOut */
82
u8 reserved[80];
83
} sub_data;
84
};
85
86
struct vsp_rsp_data {
87
struct completion com;
88
struct vsp_cmd_data *response;
89
};
90
91
struct alloc_data {
92
u16 size;
93
u16 type;
94
u32 count;
95
u16 reserved1;
96
u8 reserved2;
97
HvLpIndex target_lp;
98
};
99
100
struct ce_msg_data;
101
102
typedef void (*ce_msg_comp_hdlr)(void *token, struct ce_msg_data *vsp_cmd_rsp);
103
104
struct ce_msg_comp_data {
105
ce_msg_comp_hdlr handler;
106
void *token;
107
};
108
109
struct ce_msg_data {
110
u8 ce_msg[12];
111
char reserved[4];
112
struct ce_msg_comp_data *completion;
113
};
114
115
struct io_mf_lp_event {
116
struct HvLpEvent hp_lp_event;
117
u16 subtype_result_code;
118
u16 reserved1;
119
u32 reserved2;
120
union {
121
struct alloc_data alloc;
122
struct ce_msg_data ce_msg;
123
struct vsp_cmd_data vsp_cmd;
124
} data;
125
};
126
127
#define subtype_data(a, b, c, d) \
128
(((a) << 24) + ((b) << 16) + ((c) << 8) + (d))
129
130
/*
131
* All outgoing event traffic is kept on a FIFO queue. The first
132
* pointer points to the one that is outstanding, and all new
133
* requests get stuck on the end. Also, we keep a certain number of
134
* preallocated pending events so that we can operate very early in
135
* the boot up sequence (before kmalloc is ready).
136
*/
137
struct pending_event {
138
struct pending_event *next;
139
struct io_mf_lp_event event;
140
MFCompleteHandler hdlr;
141
char dma_data[72];
142
unsigned dma_data_length;
143
unsigned remote_address;
144
};
145
static spinlock_t pending_event_spinlock;
146
static struct pending_event *pending_event_head;
147
static struct pending_event *pending_event_tail;
148
static struct pending_event *pending_event_avail;
149
#define PENDING_EVENT_PREALLOC_LEN 16
150
static struct pending_event pending_event_prealloc[PENDING_EVENT_PREALLOC_LEN];
151
152
/*
153
* Put a pending event onto the available queue, so it can get reused.
154
* Attention! You must have the pending_event_spinlock before calling!
155
*/
156
static void free_pending_event(struct pending_event *ev)
157
{
158
if (ev != NULL) {
159
ev->next = pending_event_avail;
160
pending_event_avail = ev;
161
}
162
}
163
164
/*
165
* Enqueue the outbound event onto the stack. If the queue was
166
* empty to begin with, we must also issue it via the Hypervisor
167
* interface. There is a section of code below that will touch
168
* the first stack pointer without the protection of the pending_event_spinlock.
169
* This is OK, because we know that nobody else will be modifying
170
* the first pointer when we do this.
171
*/
172
static int signal_event(struct pending_event *ev)
173
{
174
int rc = 0;
175
unsigned long flags;
176
int go = 1;
177
struct pending_event *ev1;
178
HvLpEvent_Rc hv_rc;
179
180
/* enqueue the event */
181
if (ev != NULL) {
182
ev->next = NULL;
183
spin_lock_irqsave(&pending_event_spinlock, flags);
184
if (pending_event_head == NULL)
185
pending_event_head = ev;
186
else {
187
go = 0;
188
pending_event_tail->next = ev;
189
}
190
pending_event_tail = ev;
191
spin_unlock_irqrestore(&pending_event_spinlock, flags);
192
}
193
194
/* send the event */
195
while (go) {
196
go = 0;
197
198
/* any DMA data to send beforehand? */
199
if (pending_event_head->dma_data_length > 0)
200
HvCallEvent_dmaToSp(pending_event_head->dma_data,
201
pending_event_head->remote_address,
202
pending_event_head->dma_data_length,
203
HvLpDma_Direction_LocalToRemote);
204
205
hv_rc = HvCallEvent_signalLpEvent(
206
&pending_event_head->event.hp_lp_event);
207
if (hv_rc != HvLpEvent_Rc_Good) {
208
printk(KERN_ERR "mf.c: HvCallEvent_signalLpEvent() "
209
"failed with %d\n", (int)hv_rc);
210
211
spin_lock_irqsave(&pending_event_spinlock, flags);
212
ev1 = pending_event_head;
213
pending_event_head = pending_event_head->next;
214
if (pending_event_head != NULL)
215
go = 1;
216
spin_unlock_irqrestore(&pending_event_spinlock, flags);
217
218
if (ev1 == ev)
219
rc = -EIO;
220
else if (ev1->hdlr != NULL)
221
(*ev1->hdlr)((void *)ev1->event.hp_lp_event.xCorrelationToken, -EIO);
222
223
spin_lock_irqsave(&pending_event_spinlock, flags);
224
free_pending_event(ev1);
225
spin_unlock_irqrestore(&pending_event_spinlock, flags);
226
}
227
}
228
229
return rc;
230
}
231
232
/*
233
* Allocate a new pending_event structure, and initialize it.
234
*/
235
static struct pending_event *new_pending_event(void)
236
{
237
struct pending_event *ev = NULL;
238
HvLpIndex primary_lp = HvLpConfig_getPrimaryLpIndex();
239
unsigned long flags;
240
struct HvLpEvent *hev;
241
242
spin_lock_irqsave(&pending_event_spinlock, flags);
243
if (pending_event_avail != NULL) {
244
ev = pending_event_avail;
245
pending_event_avail = pending_event_avail->next;
246
}
247
spin_unlock_irqrestore(&pending_event_spinlock, flags);
248
if (ev == NULL) {
249
ev = kmalloc(sizeof(struct pending_event), GFP_ATOMIC);
250
if (ev == NULL) {
251
printk(KERN_ERR "mf.c: unable to kmalloc %ld bytes\n",
252
sizeof(struct pending_event));
253
return NULL;
254
}
255
}
256
memset(ev, 0, sizeof(struct pending_event));
257
hev = &ev->event.hp_lp_event;
258
hev->flags = HV_LP_EVENT_VALID | HV_LP_EVENT_DO_ACK | HV_LP_EVENT_INT;
259
hev->xType = HvLpEvent_Type_MachineFac;
260
hev->xSourceLp = HvLpConfig_getLpIndex();
261
hev->xTargetLp = primary_lp;
262
hev->xSizeMinus1 = sizeof(ev->event) - 1;
263
hev->xRc = HvLpEvent_Rc_Good;
264
hev->xSourceInstanceId = HvCallEvent_getSourceLpInstanceId(primary_lp,
265
HvLpEvent_Type_MachineFac);
266
hev->xTargetInstanceId = HvCallEvent_getTargetLpInstanceId(primary_lp,
267
HvLpEvent_Type_MachineFac);
268
269
return ev;
270
}
271
272
static int __maybe_unused
273
signal_vsp_instruction(struct vsp_cmd_data *vsp_cmd)
274
{
275
struct pending_event *ev = new_pending_event();
276
int rc;
277
struct vsp_rsp_data response;
278
279
if (ev == NULL)
280
return -ENOMEM;
281
282
init_completion(&response.com);
283
response.response = vsp_cmd;
284
ev->event.hp_lp_event.xSubtype = 6;
285
ev->event.hp_lp_event.x.xSubtypeData =
286
subtype_data('M', 'F', 'V', 'I');
287
ev->event.data.vsp_cmd.token = (u64)&response;
288
ev->event.data.vsp_cmd.cmd = vsp_cmd->cmd;
289
ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex();
290
ev->event.data.vsp_cmd.result_code = 0xFF;
291
ev->event.data.vsp_cmd.reserved = 0;
292
memcpy(&(ev->event.data.vsp_cmd.sub_data),
293
&(vsp_cmd->sub_data), sizeof(vsp_cmd->sub_data));
294
mb();
295
296
rc = signal_event(ev);
297
if (rc == 0)
298
wait_for_completion(&response.com);
299
return rc;
300
}
301
302
303
/*
304
* Send a 12-byte CE message to the primary partition VSP object
305
*/
306
static int signal_ce_msg(char *ce_msg, struct ce_msg_comp_data *completion)
307
{
308
struct pending_event *ev = new_pending_event();
309
310
if (ev == NULL)
311
return -ENOMEM;
312
313
ev->event.hp_lp_event.xSubtype = 0;
314
ev->event.hp_lp_event.x.xSubtypeData =
315
subtype_data('M', 'F', 'C', 'E');
316
memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12);
317
ev->event.data.ce_msg.completion = completion;
318
return signal_event(ev);
319
}
320
321
/*
322
* Send a 12-byte CE message (with no data) to the primary partition VSP object
323
*/
324
static int signal_ce_msg_simple(u8 ce_op, struct ce_msg_comp_data *completion)
325
{
326
u8 ce_msg[12];
327
328
memset(ce_msg, 0, sizeof(ce_msg));
329
ce_msg[3] = ce_op;
330
return signal_ce_msg(ce_msg, completion);
331
}
332
333
/*
334
* Send a 12-byte CE message and DMA data to the primary partition VSP object
335
*/
336
static int dma_and_signal_ce_msg(char *ce_msg,
337
struct ce_msg_comp_data *completion, void *dma_data,
338
unsigned dma_data_length, unsigned remote_address)
339
{
340
struct pending_event *ev = new_pending_event();
341
342
if (ev == NULL)
343
return -ENOMEM;
344
345
ev->event.hp_lp_event.xSubtype = 0;
346
ev->event.hp_lp_event.x.xSubtypeData =
347
subtype_data('M', 'F', 'C', 'E');
348
memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12);
349
ev->event.data.ce_msg.completion = completion;
350
memcpy(ev->dma_data, dma_data, dma_data_length);
351
ev->dma_data_length = dma_data_length;
352
ev->remote_address = remote_address;
353
return signal_event(ev);
354
}
355
356
/*
357
* Initiate a nice (hopefully) shutdown of Linux. We simply are
358
* going to try and send the init process a SIGINT signal. If
359
* this fails (why?), we'll simply force it off in a not-so-nice
360
* manner.
361
*/
362
static int shutdown(void)
363
{
364
int rc = kill_cad_pid(SIGINT, 1);
365
366
if (rc) {
367
printk(KERN_ALERT "mf.c: SIGINT to init failed (%d), "
368
"hard shutdown commencing\n", rc);
369
mf_power_off();
370
} else
371
printk(KERN_INFO "mf.c: init has been successfully notified "
372
"to proceed with shutdown\n");
373
return rc;
374
}
375
376
/*
377
* The primary partition VSP object is sending us a new
378
* event flow. Handle it...
379
*/
380
static void handle_int(struct io_mf_lp_event *event)
381
{
382
struct ce_msg_data *ce_msg_data;
383
struct ce_msg_data *pce_msg_data;
384
unsigned long flags;
385
struct pending_event *pev;
386
387
/* ack the interrupt */
388
event->hp_lp_event.xRc = HvLpEvent_Rc_Good;
389
HvCallEvent_ackLpEvent(&event->hp_lp_event);
390
391
/* process interrupt */
392
switch (event->hp_lp_event.xSubtype) {
393
case 0: /* CE message */
394
ce_msg_data = &event->data.ce_msg;
395
switch (ce_msg_data->ce_msg[3]) {
396
case 0x5B: /* power control notification */
397
if ((ce_msg_data->ce_msg[5] & 0x20) != 0) {
398
printk(KERN_INFO "mf.c: Commencing partition shutdown\n");
399
if (shutdown() == 0)
400
signal_ce_msg_simple(0xDB, NULL);
401
}
402
break;
403
case 0xC0: /* get time */
404
spin_lock_irqsave(&pending_event_spinlock, flags);
405
pev = pending_event_head;
406
if (pev != NULL)
407
pending_event_head = pending_event_head->next;
408
spin_unlock_irqrestore(&pending_event_spinlock, flags);
409
if (pev == NULL)
410
break;
411
pce_msg_data = &pev->event.data.ce_msg;
412
if (pce_msg_data->ce_msg[3] != 0x40)
413
break;
414
if (pce_msg_data->completion != NULL) {
415
ce_msg_comp_hdlr handler =
416
pce_msg_data->completion->handler;
417
void *token = pce_msg_data->completion->token;
418
419
if (handler != NULL)
420
(*handler)(token, ce_msg_data);
421
}
422
spin_lock_irqsave(&pending_event_spinlock, flags);
423
free_pending_event(pev);
424
spin_unlock_irqrestore(&pending_event_spinlock, flags);
425
/* send next waiting event */
426
if (pending_event_head != NULL)
427
signal_event(NULL);
428
break;
429
}
430
break;
431
case 1: /* IT sys shutdown */
432
printk(KERN_INFO "mf.c: Commencing system shutdown\n");
433
shutdown();
434
break;
435
}
436
}
437
438
/*
439
* The primary partition VSP object is acknowledging the receipt
440
* of a flow we sent to them. If there are other flows queued
441
* up, we must send another one now...
442
*/
443
static void handle_ack(struct io_mf_lp_event *event)
444
{
445
unsigned long flags;
446
struct pending_event *two = NULL;
447
unsigned long free_it = 0;
448
struct ce_msg_data *ce_msg_data;
449
struct ce_msg_data *pce_msg_data;
450
struct vsp_rsp_data *rsp;
451
452
/* handle current event */
453
if (pending_event_head == NULL) {
454
printk(KERN_ERR "mf.c: stack empty for receiving ack\n");
455
return;
456
}
457
458
switch (event->hp_lp_event.xSubtype) {
459
case 0: /* CE msg */
460
ce_msg_data = &event->data.ce_msg;
461
if (ce_msg_data->ce_msg[3] != 0x40) {
462
free_it = 1;
463
break;
464
}
465
if (ce_msg_data->ce_msg[2] == 0)
466
break;
467
free_it = 1;
468
pce_msg_data = &pending_event_head->event.data.ce_msg;
469
if (pce_msg_data->completion != NULL) {
470
ce_msg_comp_hdlr handler =
471
pce_msg_data->completion->handler;
472
void *token = pce_msg_data->completion->token;
473
474
if (handler != NULL)
475
(*handler)(token, ce_msg_data);
476
}
477
break;
478
case 4: /* allocate */
479
case 5: /* deallocate */
480
if (pending_event_head->hdlr != NULL)
481
(*pending_event_head->hdlr)((void *)event->hp_lp_event.xCorrelationToken, event->data.alloc.count);
482
free_it = 1;
483
break;
484
case 6:
485
free_it = 1;
486
rsp = (struct vsp_rsp_data *)event->data.vsp_cmd.token;
487
if (rsp == NULL) {
488
printk(KERN_ERR "mf.c: no rsp\n");
489
break;
490
}
491
if (rsp->response != NULL)
492
memcpy(rsp->response, &event->data.vsp_cmd,
493
sizeof(event->data.vsp_cmd));
494
complete(&rsp->com);
495
break;
496
}
497
498
/* remove from queue */
499
spin_lock_irqsave(&pending_event_spinlock, flags);
500
if ((pending_event_head != NULL) && (free_it == 1)) {
501
struct pending_event *oldHead = pending_event_head;
502
503
pending_event_head = pending_event_head->next;
504
two = pending_event_head;
505
free_pending_event(oldHead);
506
}
507
spin_unlock_irqrestore(&pending_event_spinlock, flags);
508
509
/* send next waiting event */
510
if (two != NULL)
511
signal_event(NULL);
512
}
513
514
/*
515
* This is the generic event handler we are registering with
516
* the Hypervisor. Ensure the flows are for us, and then
517
* parse it enough to know if it is an interrupt or an
518
* acknowledge.
519
*/
520
static void hv_handler(struct HvLpEvent *event)
521
{
522
if ((event != NULL) && (event->xType == HvLpEvent_Type_MachineFac)) {
523
if (hvlpevent_is_ack(event))
524
handle_ack((struct io_mf_lp_event *)event);
525
else
526
handle_int((struct io_mf_lp_event *)event);
527
} else
528
printk(KERN_ERR "mf.c: alien event received\n");
529
}
530
531
/*
532
* Global kernel interface to allocate and seed events into the
533
* Hypervisor.
534
*/
535
void mf_allocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type,
536
unsigned size, unsigned count, MFCompleteHandler hdlr,
537
void *user_token)
538
{
539
struct pending_event *ev = new_pending_event();
540
int rc;
541
542
if (ev == NULL) {
543
rc = -ENOMEM;
544
} else {
545
ev->event.hp_lp_event.xSubtype = 4;
546
ev->event.hp_lp_event.xCorrelationToken = (u64)user_token;
547
ev->event.hp_lp_event.x.xSubtypeData =
548
subtype_data('M', 'F', 'M', 'A');
549
ev->event.data.alloc.target_lp = target_lp;
550
ev->event.data.alloc.type = type;
551
ev->event.data.alloc.size = size;
552
ev->event.data.alloc.count = count;
553
ev->hdlr = hdlr;
554
rc = signal_event(ev);
555
}
556
if ((rc != 0) && (hdlr != NULL))
557
(*hdlr)(user_token, rc);
558
}
559
EXPORT_SYMBOL(mf_allocate_lp_events);
560
561
/*
562
* Global kernel interface to unseed and deallocate events already in
563
* Hypervisor.
564
*/
565
void mf_deallocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type,
566
unsigned count, MFCompleteHandler hdlr, void *user_token)
567
{
568
struct pending_event *ev = new_pending_event();
569
int rc;
570
571
if (ev == NULL)
572
rc = -ENOMEM;
573
else {
574
ev->event.hp_lp_event.xSubtype = 5;
575
ev->event.hp_lp_event.xCorrelationToken = (u64)user_token;
576
ev->event.hp_lp_event.x.xSubtypeData =
577
subtype_data('M', 'F', 'M', 'D');
578
ev->event.data.alloc.target_lp = target_lp;
579
ev->event.data.alloc.type = type;
580
ev->event.data.alloc.count = count;
581
ev->hdlr = hdlr;
582
rc = signal_event(ev);
583
}
584
if ((rc != 0) && (hdlr != NULL))
585
(*hdlr)(user_token, rc);
586
}
587
EXPORT_SYMBOL(mf_deallocate_lp_events);
588
589
/*
590
* Global kernel interface to tell the VSP object in the primary
591
* partition to power this partition off.
592
*/
593
void mf_power_off(void)
594
{
595
printk(KERN_INFO "mf.c: Down it goes...\n");
596
signal_ce_msg_simple(0x4d, NULL);
597
for (;;)
598
;
599
}
600
601
/*
602
* Global kernel interface to tell the VSP object in the primary
603
* partition to reboot this partition.
604
*/
605
void mf_reboot(char *cmd)
606
{
607
printk(KERN_INFO "mf.c: Preparing to bounce...\n");
608
signal_ce_msg_simple(0x4e, NULL);
609
for (;;)
610
;
611
}
612
613
/*
614
* Display a single word SRC onto the VSP control panel.
615
*/
616
void mf_display_src(u32 word)
617
{
618
u8 ce[12];
619
620
memset(ce, 0, sizeof(ce));
621
ce[3] = 0x4a;
622
ce[7] = 0x01;
623
ce[8] = word >> 24;
624
ce[9] = word >> 16;
625
ce[10] = word >> 8;
626
ce[11] = word;
627
signal_ce_msg(ce, NULL);
628
}
629
630
/*
631
* Display a single word SRC of the form "PROGXXXX" on the VSP control panel.
632
*/
633
static __init void mf_display_progress_src(u16 value)
634
{
635
u8 ce[12];
636
u8 src[72];
637
638
memcpy(ce, "\x00\x00\x04\x4A\x00\x00\x00\x48\x00\x00\x00\x00", 12);
639
memcpy(src, "\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00"
640
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
641
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
642
"\x00\x00\x00\x00PROGxxxx ",
643
72);
644
src[6] = value >> 8;
645
src[7] = value & 255;
646
src[44] = "0123456789ABCDEF"[(value >> 12) & 15];
647
src[45] = "0123456789ABCDEF"[(value >> 8) & 15];
648
src[46] = "0123456789ABCDEF"[(value >> 4) & 15];
649
src[47] = "0123456789ABCDEF"[value & 15];
650
dma_and_signal_ce_msg(ce, NULL, src, sizeof(src), 9 * 64 * 1024);
651
}
652
653
/*
654
* Clear the VSP control panel. Used to "erase" an SRC that was
655
* previously displayed.
656
*/
657
static void mf_clear_src(void)
658
{
659
signal_ce_msg_simple(0x4b, NULL);
660
}
661
662
void __init mf_display_progress(u16 value)
663
{
664
if (!mf_initialized)
665
return;
666
667
if (0xFFFF == value)
668
mf_clear_src();
669
else
670
mf_display_progress_src(value);
671
}
672
673
/*
674
* Initialization code here.
675
*/
676
void __init mf_init(void)
677
{
678
int i;
679
680
spin_lock_init(&pending_event_spinlock);
681
682
for (i = 0; i < PENDING_EVENT_PREALLOC_LEN; i++)
683
free_pending_event(&pending_event_prealloc[i]);
684
685
HvLpEvent_registerHandler(HvLpEvent_Type_MachineFac, &hv_handler);
686
687
/* virtual continue ack */
688
signal_ce_msg_simple(0x57, NULL);
689
690
mf_initialized = 1;
691
mb();
692
693
printk(KERN_NOTICE "mf.c: iSeries Linux LPAR Machine Facilities "
694
"initialized\n");
695
}
696
697
struct rtc_time_data {
698
struct completion com;
699
struct ce_msg_data ce_msg;
700
int rc;
701
};
702
703
static void get_rtc_time_complete(void *token, struct ce_msg_data *ce_msg)
704
{
705
struct rtc_time_data *rtc = token;
706
707
memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg));
708
rtc->rc = 0;
709
complete(&rtc->com);
710
}
711
712
static int mf_set_rtc(struct rtc_time *tm)
713
{
714
char ce_time[12];
715
u8 day, mon, hour, min, sec, y1, y2;
716
unsigned year;
717
718
year = 1900 + tm->tm_year;
719
y1 = year / 100;
720
y2 = year % 100;
721
722
sec = tm->tm_sec;
723
min = tm->tm_min;
724
hour = tm->tm_hour;
725
day = tm->tm_mday;
726
mon = tm->tm_mon + 1;
727
728
sec = bin2bcd(sec);
729
min = bin2bcd(min);
730
hour = bin2bcd(hour);
731
mon = bin2bcd(mon);
732
day = bin2bcd(day);
733
y1 = bin2bcd(y1);
734
y2 = bin2bcd(y2);
735
736
memset(ce_time, 0, sizeof(ce_time));
737
ce_time[3] = 0x41;
738
ce_time[4] = y1;
739
ce_time[5] = y2;
740
ce_time[6] = sec;
741
ce_time[7] = min;
742
ce_time[8] = hour;
743
ce_time[10] = day;
744
ce_time[11] = mon;
745
746
return signal_ce_msg(ce_time, NULL);
747
}
748
749
static int rtc_set_tm(int rc, u8 *ce_msg, struct rtc_time *tm)
750
{
751
tm->tm_wday = 0;
752
tm->tm_yday = 0;
753
tm->tm_isdst = 0;
754
if (rc) {
755
tm->tm_sec = 0;
756
tm->tm_min = 0;
757
tm->tm_hour = 0;
758
tm->tm_mday = 15;
759
tm->tm_mon = 5;
760
tm->tm_year = 52;
761
return rc;
762
}
763
764
if ((ce_msg[2] == 0xa9) ||
765
(ce_msg[2] == 0xaf)) {
766
/* TOD clock is not set */
767
tm->tm_sec = 1;
768
tm->tm_min = 1;
769
tm->tm_hour = 1;
770
tm->tm_mday = 10;
771
tm->tm_mon = 8;
772
tm->tm_year = 71;
773
mf_set_rtc(tm);
774
}
775
{
776
u8 year = ce_msg[5];
777
u8 sec = ce_msg[6];
778
u8 min = ce_msg[7];
779
u8 hour = ce_msg[8];
780
u8 day = ce_msg[10];
781
u8 mon = ce_msg[11];
782
783
sec = bcd2bin(sec);
784
min = bcd2bin(min);
785
hour = bcd2bin(hour);
786
day = bcd2bin(day);
787
mon = bcd2bin(mon);
788
year = bcd2bin(year);
789
790
if (year <= 69)
791
year += 100;
792
793
tm->tm_sec = sec;
794
tm->tm_min = min;
795
tm->tm_hour = hour;
796
tm->tm_mday = day;
797
tm->tm_mon = mon;
798
tm->tm_year = year;
799
}
800
801
return 0;
802
}
803
804
static int mf_get_rtc(struct rtc_time *tm)
805
{
806
struct ce_msg_comp_data ce_complete;
807
struct rtc_time_data rtc_data;
808
int rc;
809
810
memset(&ce_complete, 0, sizeof(ce_complete));
811
memset(&rtc_data, 0, sizeof(rtc_data));
812
init_completion(&rtc_data.com);
813
ce_complete.handler = &get_rtc_time_complete;
814
ce_complete.token = &rtc_data;
815
rc = signal_ce_msg_simple(0x40, &ce_complete);
816
if (rc)
817
return rc;
818
wait_for_completion(&rtc_data.com);
819
return rtc_set_tm(rtc_data.rc, rtc_data.ce_msg.ce_msg, tm);
820
}
821
822
struct boot_rtc_time_data {
823
int busy;
824
struct ce_msg_data ce_msg;
825
int rc;
826
};
827
828
static void get_boot_rtc_time_complete(void *token, struct ce_msg_data *ce_msg)
829
{
830
struct boot_rtc_time_data *rtc = token;
831
832
memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg));
833
rtc->rc = 0;
834
rtc->busy = 0;
835
}
836
837
static int mf_get_boot_rtc(struct rtc_time *tm)
838
{
839
struct ce_msg_comp_data ce_complete;
840
struct boot_rtc_time_data rtc_data;
841
int rc;
842
843
memset(&ce_complete, 0, sizeof(ce_complete));
844
memset(&rtc_data, 0, sizeof(rtc_data));
845
rtc_data.busy = 1;
846
ce_complete.handler = &get_boot_rtc_time_complete;
847
ce_complete.token = &rtc_data;
848
rc = signal_ce_msg_simple(0x40, &ce_complete);
849
if (rc)
850
return rc;
851
/* We need to poll here as we are not yet taking interrupts */
852
while (rtc_data.busy) {
853
if (hvlpevent_is_pending())
854
process_hvlpevents();
855
}
856
return rtc_set_tm(rtc_data.rc, rtc_data.ce_msg.ce_msg, tm);
857
}
858
859
#ifdef CONFIG_PROC_FS
860
static int mf_cmdline_proc_show(struct seq_file *m, void *v)
861
{
862
char *page, *p;
863
struct vsp_cmd_data vsp_cmd;
864
int rc;
865
dma_addr_t dma_addr;
866
867
/* The HV appears to return no more than 256 bytes of command line */
868
page = kmalloc(256, GFP_KERNEL);
869
if (!page)
870
return -ENOMEM;
871
872
dma_addr = iseries_hv_map(page, 256, DMA_FROM_DEVICE);
873
if (dma_addr == DMA_ERROR_CODE) {
874
kfree(page);
875
return -ENOMEM;
876
}
877
memset(page, 0, 256);
878
memset(&vsp_cmd, 0, sizeof(vsp_cmd));
879
vsp_cmd.cmd = 33;
880
vsp_cmd.sub_data.kern.token = dma_addr;
881
vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
882
vsp_cmd.sub_data.kern.side = (u64)m->private;
883
vsp_cmd.sub_data.kern.length = 256;
884
mb();
885
rc = signal_vsp_instruction(&vsp_cmd);
886
iseries_hv_unmap(dma_addr, 256, DMA_FROM_DEVICE);
887
if (rc) {
888
kfree(page);
889
return rc;
890
}
891
if (vsp_cmd.result_code != 0) {
892
kfree(page);
893
return -ENOMEM;
894
}
895
p = page;
896
while (p - page < 256) {
897
if (*p == '\0' || *p == '\n') {
898
*p = '\n';
899
break;
900
}
901
p++;
902
903
}
904
seq_write(m, page, p - page);
905
kfree(page);
906
return 0;
907
}
908
909
static int mf_cmdline_proc_open(struct inode *inode, struct file *file)
910
{
911
return single_open(file, mf_cmdline_proc_show, PDE(inode)->data);
912
}
913
914
#if 0
915
static int mf_getVmlinuxChunk(char *buffer, int *size, int offset, u64 side)
916
{
917
struct vsp_cmd_data vsp_cmd;
918
int rc;
919
int len = *size;
920
dma_addr_t dma_addr;
921
922
dma_addr = iseries_hv_map(buffer, len, DMA_FROM_DEVICE);
923
memset(buffer, 0, len);
924
memset(&vsp_cmd, 0, sizeof(vsp_cmd));
925
vsp_cmd.cmd = 32;
926
vsp_cmd.sub_data.kern.token = dma_addr;
927
vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
928
vsp_cmd.sub_data.kern.side = side;
929
vsp_cmd.sub_data.kern.offset = offset;
930
vsp_cmd.sub_data.kern.length = len;
931
mb();
932
rc = signal_vsp_instruction(&vsp_cmd);
933
if (rc == 0) {
934
if (vsp_cmd.result_code == 0)
935
*size = vsp_cmd.sub_data.length_out;
936
else
937
rc = -ENOMEM;
938
}
939
940
iseries_hv_unmap(dma_addr, len, DMA_FROM_DEVICE);
941
942
return rc;
943
}
944
945
static int proc_mf_dump_vmlinux(char *page, char **start, off_t off,
946
int count, int *eof, void *data)
947
{
948
int sizeToGet = count;
949
950
if (!capable(CAP_SYS_ADMIN))
951
return -EACCES;
952
953
if (mf_getVmlinuxChunk(page, &sizeToGet, off, (u64)data) == 0) {
954
if (sizeToGet != 0) {
955
*start = page + off;
956
return sizeToGet;
957
}
958
*eof = 1;
959
return 0;
960
}
961
*eof = 1;
962
return 0;
963
}
964
#endif
965
966
static int mf_side_proc_show(struct seq_file *m, void *v)
967
{
968
char mf_current_side = ' ';
969
struct vsp_cmd_data vsp_cmd;
970
971
memset(&vsp_cmd, 0, sizeof(vsp_cmd));
972
vsp_cmd.cmd = 2;
973
vsp_cmd.sub_data.ipl_type = 0;
974
mb();
975
976
if (signal_vsp_instruction(&vsp_cmd) == 0) {
977
if (vsp_cmd.result_code == 0) {
978
switch (vsp_cmd.sub_data.ipl_type) {
979
case 0: mf_current_side = 'A';
980
break;
981
case 1: mf_current_side = 'B';
982
break;
983
case 2: mf_current_side = 'C';
984
break;
985
default: mf_current_side = 'D';
986
break;
987
}
988
}
989
}
990
991
seq_printf(m, "%c\n", mf_current_side);
992
return 0;
993
}
994
995
static int mf_side_proc_open(struct inode *inode, struct file *file)
996
{
997
return single_open(file, mf_side_proc_show, NULL);
998
}
999
1000
static ssize_t mf_side_proc_write(struct file *file, const char __user *buffer,
1001
size_t count, loff_t *pos)
1002
{
1003
char side;
1004
u64 newSide;
1005
struct vsp_cmd_data vsp_cmd;
1006
1007
if (!capable(CAP_SYS_ADMIN))
1008
return -EACCES;
1009
1010
if (count == 0)
1011
return 0;
1012
1013
if (get_user(side, buffer))
1014
return -EFAULT;
1015
1016
switch (side) {
1017
case 'A': newSide = 0;
1018
break;
1019
case 'B': newSide = 1;
1020
break;
1021
case 'C': newSide = 2;
1022
break;
1023
case 'D': newSide = 3;
1024
break;
1025
default:
1026
printk(KERN_ERR "mf_proc.c: proc_mf_change_side: invalid side\n");
1027
return -EINVAL;
1028
}
1029
1030
memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1031
vsp_cmd.sub_data.ipl_type = newSide;
1032
vsp_cmd.cmd = 10;
1033
1034
(void)signal_vsp_instruction(&vsp_cmd);
1035
1036
return count;
1037
}
1038
1039
static const struct file_operations mf_side_proc_fops = {
1040
.owner = THIS_MODULE,
1041
.open = mf_side_proc_open,
1042
.read = seq_read,
1043
.llseek = seq_lseek,
1044
.release = single_release,
1045
.write = mf_side_proc_write,
1046
};
1047
1048
static int mf_src_proc_show(struct seq_file *m, void *v)
1049
{
1050
return 0;
1051
}
1052
1053
static int mf_src_proc_open(struct inode *inode, struct file *file)
1054
{
1055
return single_open(file, mf_src_proc_show, NULL);
1056
}
1057
1058
static ssize_t mf_src_proc_write(struct file *file, const char __user *buffer,
1059
size_t count, loff_t *pos)
1060
{
1061
char stkbuf[10];
1062
1063
if (!capable(CAP_SYS_ADMIN))
1064
return -EACCES;
1065
1066
if ((count < 4) && (count != 1)) {
1067
printk(KERN_ERR "mf_proc: invalid src\n");
1068
return -EINVAL;
1069
}
1070
1071
if (count > (sizeof(stkbuf) - 1))
1072
count = sizeof(stkbuf) - 1;
1073
if (copy_from_user(stkbuf, buffer, count))
1074
return -EFAULT;
1075
1076
if ((count == 1) && (*stkbuf == '\0'))
1077
mf_clear_src();
1078
else
1079
mf_display_src(*(u32 *)stkbuf);
1080
1081
return count;
1082
}
1083
1084
static const struct file_operations mf_src_proc_fops = {
1085
.owner = THIS_MODULE,
1086
.open = mf_src_proc_open,
1087
.read = seq_read,
1088
.llseek = seq_lseek,
1089
.release = single_release,
1090
.write = mf_src_proc_write,
1091
};
1092
1093
static ssize_t mf_cmdline_proc_write(struct file *file, const char __user *buffer,
1094
size_t count, loff_t *pos)
1095
{
1096
void *data = PDE(file->f_path.dentry->d_inode)->data;
1097
struct vsp_cmd_data vsp_cmd;
1098
dma_addr_t dma_addr;
1099
char *page;
1100
int ret = -EACCES;
1101
1102
if (!capable(CAP_SYS_ADMIN))
1103
goto out;
1104
1105
dma_addr = 0;
1106
page = iseries_hv_alloc(count, &dma_addr, GFP_ATOMIC);
1107
ret = -ENOMEM;
1108
if (page == NULL)
1109
goto out;
1110
1111
ret = -EFAULT;
1112
if (copy_from_user(page, buffer, count))
1113
goto out_free;
1114
1115
memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1116
vsp_cmd.cmd = 31;
1117
vsp_cmd.sub_data.kern.token = dma_addr;
1118
vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
1119
vsp_cmd.sub_data.kern.side = (u64)data;
1120
vsp_cmd.sub_data.kern.length = count;
1121
mb();
1122
(void)signal_vsp_instruction(&vsp_cmd);
1123
ret = count;
1124
1125
out_free:
1126
iseries_hv_free(count, page, dma_addr);
1127
out:
1128
return ret;
1129
}
1130
1131
static const struct file_operations mf_cmdline_proc_fops = {
1132
.owner = THIS_MODULE,
1133
.open = mf_cmdline_proc_open,
1134
.read = seq_read,
1135
.llseek = seq_lseek,
1136
.release = single_release,
1137
.write = mf_cmdline_proc_write,
1138
};
1139
1140
static ssize_t proc_mf_change_vmlinux(struct file *file,
1141
const char __user *buf,
1142
size_t count, loff_t *ppos)
1143
{
1144
struct proc_dir_entry *dp = PDE(file->f_path.dentry->d_inode);
1145
ssize_t rc;
1146
dma_addr_t dma_addr;
1147
char *page;
1148
struct vsp_cmd_data vsp_cmd;
1149
1150
rc = -EACCES;
1151
if (!capable(CAP_SYS_ADMIN))
1152
goto out;
1153
1154
dma_addr = 0;
1155
page = iseries_hv_alloc(count, &dma_addr, GFP_ATOMIC);
1156
rc = -ENOMEM;
1157
if (page == NULL) {
1158
printk(KERN_ERR "mf.c: couldn't allocate memory to set vmlinux chunk\n");
1159
goto out;
1160
}
1161
rc = -EFAULT;
1162
if (copy_from_user(page, buf, count))
1163
goto out_free;
1164
1165
memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1166
vsp_cmd.cmd = 30;
1167
vsp_cmd.sub_data.kern.token = dma_addr;
1168
vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
1169
vsp_cmd.sub_data.kern.side = (u64)dp->data;
1170
vsp_cmd.sub_data.kern.offset = *ppos;
1171
vsp_cmd.sub_data.kern.length = count;
1172
mb();
1173
rc = signal_vsp_instruction(&vsp_cmd);
1174
if (rc)
1175
goto out_free;
1176
rc = -ENOMEM;
1177
if (vsp_cmd.result_code != 0)
1178
goto out_free;
1179
1180
*ppos += count;
1181
rc = count;
1182
out_free:
1183
iseries_hv_free(count, page, dma_addr);
1184
out:
1185
return rc;
1186
}
1187
1188
static const struct file_operations proc_vmlinux_operations = {
1189
.write = proc_mf_change_vmlinux,
1190
.llseek = default_llseek,
1191
};
1192
1193
static int __init mf_proc_init(void)
1194
{
1195
struct proc_dir_entry *mf_proc_root;
1196
struct proc_dir_entry *ent;
1197
struct proc_dir_entry *mf;
1198
char name[2];
1199
int i;
1200
1201
if (!firmware_has_feature(FW_FEATURE_ISERIES))
1202
return 0;
1203
1204
mf_proc_root = proc_mkdir("iSeries/mf", NULL);
1205
if (!mf_proc_root)
1206
return 1;
1207
1208
name[1] = '\0';
1209
for (i = 0; i < 4; i++) {
1210
name[0] = 'A' + i;
1211
mf = proc_mkdir(name, mf_proc_root);
1212
if (!mf)
1213
return 1;
1214
1215
ent = proc_create_data("cmdline", S_IRUSR|S_IWUSR, mf,
1216
&mf_cmdline_proc_fops, (void *)(long)i);
1217
if (!ent)
1218
return 1;
1219
1220
if (i == 3) /* no vmlinux entry for 'D' */
1221
continue;
1222
1223
ent = proc_create_data("vmlinux", S_IFREG|S_IWUSR, mf,
1224
&proc_vmlinux_operations,
1225
(void *)(long)i);
1226
if (!ent)
1227
return 1;
1228
}
1229
1230
ent = proc_create("side", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root,
1231
&mf_side_proc_fops);
1232
if (!ent)
1233
return 1;
1234
1235
ent = proc_create("src", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root,
1236
&mf_src_proc_fops);
1237
if (!ent)
1238
return 1;
1239
1240
return 0;
1241
}
1242
1243
__initcall(mf_proc_init);
1244
1245
#endif /* CONFIG_PROC_FS */
1246
1247
/*
1248
* Get the RTC from the virtual service processor
1249
* This requires flowing LpEvents to the primary partition
1250
*/
1251
void iSeries_get_rtc_time(struct rtc_time *rtc_tm)
1252
{
1253
mf_get_rtc(rtc_tm);
1254
rtc_tm->tm_mon--;
1255
}
1256
1257
/*
1258
* Set the RTC in the virtual service processor
1259
* This requires flowing LpEvents to the primary partition
1260
*/
1261
int iSeries_set_rtc_time(struct rtc_time *tm)
1262
{
1263
mf_set_rtc(tm);
1264
return 0;
1265
}
1266
1267
unsigned long iSeries_get_boot_time(void)
1268
{
1269
struct rtc_time tm;
1270
1271
mf_get_boot_rtc(&tm);
1272
return mktime(tm.tm_year + 1900, tm.tm_mon, tm.tm_mday,
1273
tm.tm_hour, tm.tm_min, tm.tm_sec);
1274
}
1275
1276