Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/powerpc/platforms/pseries/eeh_cache.c
10818 views
1
/*
2
* eeh_cache.c
3
* PCI address cache; allows the lookup of PCI devices based on I/O address
4
*
5
* Copyright IBM Corporation 2004
6
* Copyright Linas Vepstas <[email protected]> 2004
7
*
8
* This program is free software; you can redistribute it and/or modify
9
* it under the terms of the GNU General Public License as published by
10
* the Free Software Foundation; either version 2 of the License, or
11
* (at your option) any later version.
12
*
13
* This program is distributed in the hope that it will be useful,
14
* but WITHOUT ANY WARRANTY; without even the implied warranty of
15
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16
* GNU General Public License for more details.
17
*
18
* You should have received a copy of the GNU General Public License
19
* along with this program; if not, write to the Free Software
20
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21
*/
22
23
#include <linux/list.h>
24
#include <linux/pci.h>
25
#include <linux/rbtree.h>
26
#include <linux/slab.h>
27
#include <linux/spinlock.h>
28
#include <asm/atomic.h>
29
#include <asm/pci-bridge.h>
30
#include <asm/ppc-pci.h>
31
32
33
/**
34
* The pci address cache subsystem. This subsystem places
35
* PCI device address resources into a red-black tree, sorted
36
* according to the address range, so that given only an i/o
37
* address, the corresponding PCI device can be **quickly**
38
* found. It is safe to perform an address lookup in an interrupt
39
* context; this ability is an important feature.
40
*
41
* Currently, the only customer of this code is the EEH subsystem;
42
* thus, this code has been somewhat tailored to suit EEH better.
43
* In particular, the cache does *not* hold the addresses of devices
44
* for which EEH is not enabled.
45
*
46
* (Implementation Note: The RB tree seems to be better/faster
47
* than any hash algo I could think of for this problem, even
48
* with the penalty of slow pointer chases for d-cache misses).
49
*/
50
struct pci_io_addr_range
51
{
52
struct rb_node rb_node;
53
unsigned long addr_lo;
54
unsigned long addr_hi;
55
struct pci_dev *pcidev;
56
unsigned int flags;
57
};
58
59
static struct pci_io_addr_cache
60
{
61
struct rb_root rb_root;
62
spinlock_t piar_lock;
63
} pci_io_addr_cache_root;
64
65
static inline struct pci_dev *__pci_get_device_by_addr(unsigned long addr)
66
{
67
struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;
68
69
while (n) {
70
struct pci_io_addr_range *piar;
71
piar = rb_entry(n, struct pci_io_addr_range, rb_node);
72
73
if (addr < piar->addr_lo) {
74
n = n->rb_left;
75
} else {
76
if (addr > piar->addr_hi) {
77
n = n->rb_right;
78
} else {
79
pci_dev_get(piar->pcidev);
80
return piar->pcidev;
81
}
82
}
83
}
84
85
return NULL;
86
}
87
88
/**
89
* pci_get_device_by_addr - Get device, given only address
90
* @addr: mmio (PIO) phys address or i/o port number
91
*
92
* Given an mmio phys address, or a port number, find a pci device
93
* that implements this address. Be sure to pci_dev_put the device
94
* when finished. I/O port numbers are assumed to be offset
95
* from zero (that is, they do *not* have pci_io_addr added in).
96
* It is safe to call this function within an interrupt.
97
*/
98
struct pci_dev *pci_get_device_by_addr(unsigned long addr)
99
{
100
struct pci_dev *dev;
101
unsigned long flags;
102
103
spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
104
dev = __pci_get_device_by_addr(addr);
105
spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
106
return dev;
107
}
108
109
#ifdef DEBUG
110
/*
111
* Handy-dandy debug print routine, does nothing more
112
* than print out the contents of our addr cache.
113
*/
114
static void pci_addr_cache_print(struct pci_io_addr_cache *cache)
115
{
116
struct rb_node *n;
117
int cnt = 0;
118
119
n = rb_first(&cache->rb_root);
120
while (n) {
121
struct pci_io_addr_range *piar;
122
piar = rb_entry(n, struct pci_io_addr_range, rb_node);
123
printk(KERN_DEBUG "PCI: %s addr range %d [%lx-%lx]: %s\n",
124
(piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
125
piar->addr_lo, piar->addr_hi, pci_name(piar->pcidev));
126
cnt++;
127
n = rb_next(n);
128
}
129
}
130
#endif
131
132
/* Insert address range into the rb tree. */
133
static struct pci_io_addr_range *
134
pci_addr_cache_insert(struct pci_dev *dev, unsigned long alo,
135
unsigned long ahi, unsigned int flags)
136
{
137
struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
138
struct rb_node *parent = NULL;
139
struct pci_io_addr_range *piar;
140
141
/* Walk tree, find a place to insert into tree */
142
while (*p) {
143
parent = *p;
144
piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
145
if (ahi < piar->addr_lo) {
146
p = &parent->rb_left;
147
} else if (alo > piar->addr_hi) {
148
p = &parent->rb_right;
149
} else {
150
if (dev != piar->pcidev ||
151
alo != piar->addr_lo || ahi != piar->addr_hi) {
152
printk(KERN_WARNING "PIAR: overlapping address range\n");
153
}
154
return piar;
155
}
156
}
157
piar = kmalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
158
if (!piar)
159
return NULL;
160
161
pci_dev_get(dev);
162
piar->addr_lo = alo;
163
piar->addr_hi = ahi;
164
piar->pcidev = dev;
165
piar->flags = flags;
166
167
#ifdef DEBUG
168
printk(KERN_DEBUG "PIAR: insert range=[%lx:%lx] dev=%s\n",
169
alo, ahi, pci_name (dev));
170
#endif
171
172
rb_link_node(&piar->rb_node, parent, p);
173
rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);
174
175
return piar;
176
}
177
178
static void __pci_addr_cache_insert_device(struct pci_dev *dev)
179
{
180
struct device_node *dn;
181
struct pci_dn *pdn;
182
int i;
183
184
dn = pci_device_to_OF_node(dev);
185
if (!dn) {
186
printk(KERN_WARNING "PCI: no pci dn found for dev=%s\n", pci_name(dev));
187
return;
188
}
189
190
/* Skip any devices for which EEH is not enabled. */
191
pdn = PCI_DN(dn);
192
if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
193
pdn->eeh_mode & EEH_MODE_NOCHECK) {
194
#ifdef DEBUG
195
printk(KERN_INFO "PCI: skip building address cache for=%s - %s\n",
196
pci_name(dev), pdn->node->full_name);
197
#endif
198
return;
199
}
200
201
/* Walk resources on this device, poke them into the tree */
202
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
203
unsigned long start = pci_resource_start(dev,i);
204
unsigned long end = pci_resource_end(dev,i);
205
unsigned int flags = pci_resource_flags(dev,i);
206
207
/* We are interested only bus addresses, not dma or other stuff */
208
if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
209
continue;
210
if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
211
continue;
212
pci_addr_cache_insert(dev, start, end, flags);
213
}
214
}
215
216
/**
217
* pci_addr_cache_insert_device - Add a device to the address cache
218
* @dev: PCI device whose I/O addresses we are interested in.
219
*
220
* In order to support the fast lookup of devices based on addresses,
221
* we maintain a cache of devices that can be quickly searched.
222
* This routine adds a device to that cache.
223
*/
224
void pci_addr_cache_insert_device(struct pci_dev *dev)
225
{
226
unsigned long flags;
227
228
/* Ignore PCI bridges */
229
if ((dev->class >> 16) == PCI_BASE_CLASS_BRIDGE)
230
return;
231
232
spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
233
__pci_addr_cache_insert_device(dev);
234
spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
235
}
236
237
static inline void __pci_addr_cache_remove_device(struct pci_dev *dev)
238
{
239
struct rb_node *n;
240
241
restart:
242
n = rb_first(&pci_io_addr_cache_root.rb_root);
243
while (n) {
244
struct pci_io_addr_range *piar;
245
piar = rb_entry(n, struct pci_io_addr_range, rb_node);
246
247
if (piar->pcidev == dev) {
248
rb_erase(n, &pci_io_addr_cache_root.rb_root);
249
pci_dev_put(piar->pcidev);
250
kfree(piar);
251
goto restart;
252
}
253
n = rb_next(n);
254
}
255
}
256
257
/**
258
* pci_addr_cache_remove_device - remove pci device from addr cache
259
* @dev: device to remove
260
*
261
* Remove a device from the addr-cache tree.
262
* This is potentially expensive, since it will walk
263
* the tree multiple times (once per resource).
264
* But so what; device removal doesn't need to be that fast.
265
*/
266
void pci_addr_cache_remove_device(struct pci_dev *dev)
267
{
268
unsigned long flags;
269
270
spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
271
__pci_addr_cache_remove_device(dev);
272
spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
273
}
274
275
/**
276
* pci_addr_cache_build - Build a cache of I/O addresses
277
*
278
* Build a cache of pci i/o addresses. This cache will be used to
279
* find the pci device that corresponds to a given address.
280
* This routine scans all pci busses to build the cache.
281
* Must be run late in boot process, after the pci controllers
282
* have been scanned for devices (after all device resources are known).
283
*/
284
void __init pci_addr_cache_build(void)
285
{
286
struct device_node *dn;
287
struct pci_dev *dev = NULL;
288
289
spin_lock_init(&pci_io_addr_cache_root.piar_lock);
290
291
for_each_pci_dev(dev) {
292
pci_addr_cache_insert_device(dev);
293
294
dn = pci_device_to_OF_node(dev);
295
if (!dn)
296
continue;
297
pci_dev_get(dev); /* matching put is in eeh_remove_device() */
298
PCI_DN(dn)->pcidev = dev;
299
300
eeh_sysfs_add_device(dev);
301
}
302
303
#ifdef DEBUG
304
/* Verify tree built up above, echo back the list of addrs. */
305
pci_addr_cache_print(&pci_io_addr_cache_root);
306
#endif
307
}
308
309
310