Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
awilliam
GitHub Repository: awilliam/linux-vfio
Path: blob/master/arch/powerpc/platforms/pseries/nvram.c
10818 views
1
/*
2
* c 2001 PPC 64 Team, IBM Corp
3
*
4
* This program is free software; you can redistribute it and/or
5
* modify it under the terms of the GNU General Public License
6
* as published by the Free Software Foundation; either version
7
* 2 of the License, or (at your option) any later version.
8
*
9
* /dev/nvram driver for PPC64
10
*
11
* This perhaps should live in drivers/char
12
*/
13
14
15
#include <linux/types.h>
16
#include <linux/errno.h>
17
#include <linux/init.h>
18
#include <linux/spinlock.h>
19
#include <linux/slab.h>
20
#include <linux/kmsg_dump.h>
21
#include <asm/uaccess.h>
22
#include <asm/nvram.h>
23
#include <asm/rtas.h>
24
#include <asm/prom.h>
25
#include <asm/machdep.h>
26
27
/* Max bytes to read/write in one go */
28
#define NVRW_CNT 0x20
29
30
static unsigned int nvram_size;
31
static int nvram_fetch, nvram_store;
32
static char nvram_buf[NVRW_CNT]; /* assume this is in the first 4GB */
33
static DEFINE_SPINLOCK(nvram_lock);
34
35
struct err_log_info {
36
int error_type;
37
unsigned int seq_num;
38
};
39
40
struct nvram_os_partition {
41
const char *name;
42
int req_size; /* desired size, in bytes */
43
int min_size; /* minimum acceptable size (0 means req_size) */
44
long size; /* size of data portion (excluding err_log_info) */
45
long index; /* offset of data portion of partition */
46
};
47
48
static struct nvram_os_partition rtas_log_partition = {
49
.name = "ibm,rtas-log",
50
.req_size = 2079,
51
.min_size = 1055,
52
.index = -1
53
};
54
55
static struct nvram_os_partition oops_log_partition = {
56
.name = "lnx,oops-log",
57
.req_size = 4000,
58
.min_size = 2000,
59
.index = -1
60
};
61
62
static const char *pseries_nvram_os_partitions[] = {
63
"ibm,rtas-log",
64
"lnx,oops-log",
65
NULL
66
};
67
68
static void oops_to_nvram(struct kmsg_dumper *dumper,
69
enum kmsg_dump_reason reason,
70
const char *old_msgs, unsigned long old_len,
71
const char *new_msgs, unsigned long new_len);
72
73
static struct kmsg_dumper nvram_kmsg_dumper = {
74
.dump = oops_to_nvram
75
};
76
77
/* See clobbering_unread_rtas_event() */
78
#define NVRAM_RTAS_READ_TIMEOUT 5 /* seconds */
79
static unsigned long last_unread_rtas_event; /* timestamp */
80
81
/* We preallocate oops_buf during init to avoid kmalloc during oops/panic. */
82
static char *oops_buf;
83
84
static ssize_t pSeries_nvram_read(char *buf, size_t count, loff_t *index)
85
{
86
unsigned int i;
87
unsigned long len;
88
int done;
89
unsigned long flags;
90
char *p = buf;
91
92
93
if (nvram_size == 0 || nvram_fetch == RTAS_UNKNOWN_SERVICE)
94
return -ENODEV;
95
96
if (*index >= nvram_size)
97
return 0;
98
99
i = *index;
100
if (i + count > nvram_size)
101
count = nvram_size - i;
102
103
spin_lock_irqsave(&nvram_lock, flags);
104
105
for (; count != 0; count -= len) {
106
len = count;
107
if (len > NVRW_CNT)
108
len = NVRW_CNT;
109
110
if ((rtas_call(nvram_fetch, 3, 2, &done, i, __pa(nvram_buf),
111
len) != 0) || len != done) {
112
spin_unlock_irqrestore(&nvram_lock, flags);
113
return -EIO;
114
}
115
116
memcpy(p, nvram_buf, len);
117
118
p += len;
119
i += len;
120
}
121
122
spin_unlock_irqrestore(&nvram_lock, flags);
123
124
*index = i;
125
return p - buf;
126
}
127
128
static ssize_t pSeries_nvram_write(char *buf, size_t count, loff_t *index)
129
{
130
unsigned int i;
131
unsigned long len;
132
int done;
133
unsigned long flags;
134
const char *p = buf;
135
136
if (nvram_size == 0 || nvram_store == RTAS_UNKNOWN_SERVICE)
137
return -ENODEV;
138
139
if (*index >= nvram_size)
140
return 0;
141
142
i = *index;
143
if (i + count > nvram_size)
144
count = nvram_size - i;
145
146
spin_lock_irqsave(&nvram_lock, flags);
147
148
for (; count != 0; count -= len) {
149
len = count;
150
if (len > NVRW_CNT)
151
len = NVRW_CNT;
152
153
memcpy(nvram_buf, p, len);
154
155
if ((rtas_call(nvram_store, 3, 2, &done, i, __pa(nvram_buf),
156
len) != 0) || len != done) {
157
spin_unlock_irqrestore(&nvram_lock, flags);
158
return -EIO;
159
}
160
161
p += len;
162
i += len;
163
}
164
spin_unlock_irqrestore(&nvram_lock, flags);
165
166
*index = i;
167
return p - buf;
168
}
169
170
static ssize_t pSeries_nvram_get_size(void)
171
{
172
return nvram_size ? nvram_size : -ENODEV;
173
}
174
175
176
/* nvram_write_os_partition, nvram_write_error_log
177
*
178
* We need to buffer the error logs into nvram to ensure that we have
179
* the failure information to decode. If we have a severe error there
180
* is no way to guarantee that the OS or the machine is in a state to
181
* get back to user land and write the error to disk. For example if
182
* the SCSI device driver causes a Machine Check by writing to a bad
183
* IO address, there is no way of guaranteeing that the device driver
184
* is in any state that is would also be able to write the error data
185
* captured to disk, thus we buffer it in NVRAM for analysis on the
186
* next boot.
187
*
188
* In NVRAM the partition containing the error log buffer will looks like:
189
* Header (in bytes):
190
* +-----------+----------+--------+------------+------------------+
191
* | signature | checksum | length | name | data |
192
* |0 |1 |2 3|4 15|16 length-1|
193
* +-----------+----------+--------+------------+------------------+
194
*
195
* The 'data' section would look like (in bytes):
196
* +--------------+------------+-----------------------------------+
197
* | event_logged | sequence # | error log |
198
* |0 3|4 7|8 error_log_size-1|
199
* +--------------+------------+-----------------------------------+
200
*
201
* event_logged: 0 if event has not been logged to syslog, 1 if it has
202
* sequence #: The unique sequence # for each event. (until it wraps)
203
* error log: The error log from event_scan
204
*/
205
int nvram_write_os_partition(struct nvram_os_partition *part, char * buff,
206
int length, unsigned int err_type, unsigned int error_log_cnt)
207
{
208
int rc;
209
loff_t tmp_index;
210
struct err_log_info info;
211
212
if (part->index == -1) {
213
return -ESPIPE;
214
}
215
216
if (length > part->size) {
217
length = part->size;
218
}
219
220
info.error_type = err_type;
221
info.seq_num = error_log_cnt;
222
223
tmp_index = part->index;
224
225
rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info), &tmp_index);
226
if (rc <= 0) {
227
pr_err("%s: Failed nvram_write (%d)\n", __FUNCTION__, rc);
228
return rc;
229
}
230
231
rc = ppc_md.nvram_write(buff, length, &tmp_index);
232
if (rc <= 0) {
233
pr_err("%s: Failed nvram_write (%d)\n", __FUNCTION__, rc);
234
return rc;
235
}
236
237
return 0;
238
}
239
240
int nvram_write_error_log(char * buff, int length,
241
unsigned int err_type, unsigned int error_log_cnt)
242
{
243
int rc = nvram_write_os_partition(&rtas_log_partition, buff, length,
244
err_type, error_log_cnt);
245
if (!rc)
246
last_unread_rtas_event = get_seconds();
247
return rc;
248
}
249
250
/* nvram_read_error_log
251
*
252
* Reads nvram for error log for at most 'length'
253
*/
254
int nvram_read_error_log(char * buff, int length,
255
unsigned int * err_type, unsigned int * error_log_cnt)
256
{
257
int rc;
258
loff_t tmp_index;
259
struct err_log_info info;
260
261
if (rtas_log_partition.index == -1)
262
return -1;
263
264
if (length > rtas_log_partition.size)
265
length = rtas_log_partition.size;
266
267
tmp_index = rtas_log_partition.index;
268
269
rc = ppc_md.nvram_read((char *)&info, sizeof(struct err_log_info), &tmp_index);
270
if (rc <= 0) {
271
printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc);
272
return rc;
273
}
274
275
rc = ppc_md.nvram_read(buff, length, &tmp_index);
276
if (rc <= 0) {
277
printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc);
278
return rc;
279
}
280
281
*error_log_cnt = info.seq_num;
282
*err_type = info.error_type;
283
284
return 0;
285
}
286
287
/* This doesn't actually zero anything, but it sets the event_logged
288
* word to tell that this event is safely in syslog.
289
*/
290
int nvram_clear_error_log(void)
291
{
292
loff_t tmp_index;
293
int clear_word = ERR_FLAG_ALREADY_LOGGED;
294
int rc;
295
296
if (rtas_log_partition.index == -1)
297
return -1;
298
299
tmp_index = rtas_log_partition.index;
300
301
rc = ppc_md.nvram_write((char *)&clear_word, sizeof(int), &tmp_index);
302
if (rc <= 0) {
303
printk(KERN_ERR "nvram_clear_error_log: Failed nvram_write (%d)\n", rc);
304
return rc;
305
}
306
last_unread_rtas_event = 0;
307
308
return 0;
309
}
310
311
/* pseries_nvram_init_os_partition
312
*
313
* This sets up a partition with an "OS" signature.
314
*
315
* The general strategy is the following:
316
* 1.) If a partition with the indicated name already exists...
317
* - If it's large enough, use it.
318
* - Otherwise, recycle it and keep going.
319
* 2.) Search for a free partition that is large enough.
320
* 3.) If there's not a free partition large enough, recycle any obsolete
321
* OS partitions and try again.
322
* 4.) Will first try getting a chunk that will satisfy the requested size.
323
* 5.) If a chunk of the requested size cannot be allocated, then try finding
324
* a chunk that will satisfy the minum needed.
325
*
326
* Returns 0 on success, else -1.
327
*/
328
static int __init pseries_nvram_init_os_partition(struct nvram_os_partition
329
*part)
330
{
331
loff_t p;
332
int size;
333
334
/* Scan nvram for partitions */
335
nvram_scan_partitions();
336
337
/* Look for ours */
338
p = nvram_find_partition(part->name, NVRAM_SIG_OS, &size);
339
340
/* Found one but too small, remove it */
341
if (p && size < part->min_size) {
342
pr_info("nvram: Found too small %s partition,"
343
" removing it...\n", part->name);
344
nvram_remove_partition(part->name, NVRAM_SIG_OS, NULL);
345
p = 0;
346
}
347
348
/* Create one if we didn't find */
349
if (!p) {
350
p = nvram_create_partition(part->name, NVRAM_SIG_OS,
351
part->req_size, part->min_size);
352
if (p == -ENOSPC) {
353
pr_info("nvram: No room to create %s partition, "
354
"deleting any obsolete OS partitions...\n",
355
part->name);
356
nvram_remove_partition(NULL, NVRAM_SIG_OS,
357
pseries_nvram_os_partitions);
358
p = nvram_create_partition(part->name, NVRAM_SIG_OS,
359
part->req_size, part->min_size);
360
}
361
}
362
363
if (p <= 0) {
364
pr_err("nvram: Failed to find or create %s"
365
" partition, err %d\n", part->name, (int)p);
366
return -1;
367
}
368
369
part->index = p;
370
part->size = nvram_get_partition_size(p) - sizeof(struct err_log_info);
371
372
return 0;
373
}
374
375
static void __init nvram_init_oops_partition(int rtas_partition_exists)
376
{
377
int rc;
378
379
rc = pseries_nvram_init_os_partition(&oops_log_partition);
380
if (rc != 0) {
381
if (!rtas_partition_exists)
382
return;
383
pr_notice("nvram: Using %s partition to log both"
384
" RTAS errors and oops/panic reports\n",
385
rtas_log_partition.name);
386
memcpy(&oops_log_partition, &rtas_log_partition,
387
sizeof(rtas_log_partition));
388
}
389
oops_buf = kmalloc(oops_log_partition.size, GFP_KERNEL);
390
rc = kmsg_dump_register(&nvram_kmsg_dumper);
391
if (rc != 0) {
392
pr_err("nvram: kmsg_dump_register() failed; returned %d\n", rc);
393
kfree(oops_buf);
394
return;
395
}
396
}
397
398
static int __init pseries_nvram_init_log_partitions(void)
399
{
400
int rc;
401
402
rc = pseries_nvram_init_os_partition(&rtas_log_partition);
403
nvram_init_oops_partition(rc == 0);
404
return 0;
405
}
406
machine_arch_initcall(pseries, pseries_nvram_init_log_partitions);
407
408
int __init pSeries_nvram_init(void)
409
{
410
struct device_node *nvram;
411
const unsigned int *nbytes_p;
412
unsigned int proplen;
413
414
nvram = of_find_node_by_type(NULL, "nvram");
415
if (nvram == NULL)
416
return -ENODEV;
417
418
nbytes_p = of_get_property(nvram, "#bytes", &proplen);
419
if (nbytes_p == NULL || proplen != sizeof(unsigned int)) {
420
of_node_put(nvram);
421
return -EIO;
422
}
423
424
nvram_size = *nbytes_p;
425
426
nvram_fetch = rtas_token("nvram-fetch");
427
nvram_store = rtas_token("nvram-store");
428
printk(KERN_INFO "PPC64 nvram contains %d bytes\n", nvram_size);
429
of_node_put(nvram);
430
431
ppc_md.nvram_read = pSeries_nvram_read;
432
ppc_md.nvram_write = pSeries_nvram_write;
433
ppc_md.nvram_size = pSeries_nvram_get_size;
434
435
return 0;
436
}
437
438
/*
439
* Try to capture the last capture_len bytes of the printk buffer. Return
440
* the amount actually captured.
441
*/
442
static size_t capture_last_msgs(const char *old_msgs, size_t old_len,
443
const char *new_msgs, size_t new_len,
444
char *captured, size_t capture_len)
445
{
446
if (new_len >= capture_len) {
447
memcpy(captured, new_msgs + (new_len - capture_len),
448
capture_len);
449
return capture_len;
450
} else {
451
/* Grab the end of old_msgs. */
452
size_t old_tail_len = min(old_len, capture_len - new_len);
453
memcpy(captured, old_msgs + (old_len - old_tail_len),
454
old_tail_len);
455
memcpy(captured + old_tail_len, new_msgs, new_len);
456
return old_tail_len + new_len;
457
}
458
}
459
460
/*
461
* Are we using the ibm,rtas-log for oops/panic reports? And if so,
462
* would logging this oops/panic overwrite an RTAS event that rtas_errd
463
* hasn't had a chance to read and process? Return 1 if so, else 0.
464
*
465
* We assume that if rtas_errd hasn't read the RTAS event in
466
* NVRAM_RTAS_READ_TIMEOUT seconds, it's probably not going to.
467
*/
468
static int clobbering_unread_rtas_event(void)
469
{
470
return (oops_log_partition.index == rtas_log_partition.index
471
&& last_unread_rtas_event
472
&& get_seconds() - last_unread_rtas_event <=
473
NVRAM_RTAS_READ_TIMEOUT);
474
}
475
476
/* our kmsg_dump callback */
477
static void oops_to_nvram(struct kmsg_dumper *dumper,
478
enum kmsg_dump_reason reason,
479
const char *old_msgs, unsigned long old_len,
480
const char *new_msgs, unsigned long new_len)
481
{
482
static unsigned int oops_count = 0;
483
static bool panicking = false;
484
size_t text_len;
485
486
switch (reason) {
487
case KMSG_DUMP_RESTART:
488
case KMSG_DUMP_HALT:
489
case KMSG_DUMP_POWEROFF:
490
/* These are almost always orderly shutdowns. */
491
return;
492
case KMSG_DUMP_OOPS:
493
case KMSG_DUMP_KEXEC:
494
break;
495
case KMSG_DUMP_PANIC:
496
panicking = true;
497
break;
498
case KMSG_DUMP_EMERG:
499
if (panicking)
500
/* Panic report already captured. */
501
return;
502
break;
503
default:
504
pr_err("%s: ignoring unrecognized KMSG_DUMP_* reason %d\n",
505
__FUNCTION__, (int) reason);
506
return;
507
}
508
509
if (clobbering_unread_rtas_event())
510
return;
511
512
text_len = capture_last_msgs(old_msgs, old_len, new_msgs, new_len,
513
oops_buf, oops_log_partition.size);
514
(void) nvram_write_os_partition(&oops_log_partition, oops_buf,
515
(int) text_len, ERR_TYPE_KERNEL_PANIC, ++oops_count);
516
}
517
518